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Overview

Usage of rudimentary category theory

Neural networks
They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress
Experiments
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Generative modelling - State of the art - 2018

We can generate completely realistic looking images
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Space of all possible images

Natural images form a low dimensional manifold in its embedding space
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Generative Adversarial Networks

But we have minimal control over the network output!

0http://dl-ai.blogspot.com/2017/08/gan-problems.html
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Claim

It’s possible to assign semantics to the network training procedure using the
same schemas from Functorial Data Migration1

Functorial Data Migration Compositional Deep Learning
F : C → − Set Para
F is Fixed Learned

1
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Functorial data migration

Categorical schema generated by a graph G and a path equivalence
relation: C := (G,')

Beatle•
Rock-and-roll

instrument•Played

A database instance is a functor F : C → Set

Beatle Played
George Lead guitar

John Rhythm guitar
Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums
Keyboard

Lead guitar
Rhythm guitar

In databases, we have sets of data and clear mappings between them

1https://arxiv.org/abs/1803.05316
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Neural networks

In machine learning all we have is plenty of data, but no known
implementations of functions

Input
DataSample1
DataSample2
DataSample3
DataSample4

Output
ExpectedOutput1
ExpectedOutput2
ExpectedOutput3
ExpectedOutput4
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1https://arxiv.org/abs/1703.10593
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Style transfer
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Style transfer
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CycleGAN
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Previous work

Backprop as Functor
Compositional perspective on supervised learning
Category of learners Learn
Category of differentiable parametrized functions Para

The Simple Essence of Automatic Differentiation
Compositional, side-effect free way of performing mode-independent
automatic differentiation
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Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory
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Category of learners

Learn:
Let A and B be sets. A supervised learning algorithm, or simply learner,
A→ B is a tuple (P, I, U, r) where P is a set, and I, U , and r are functions of
types:

P : P,

I : P ×A→ B,

U : P ×A×B → P,

r : P ×A×B → A.

Update:

UI(p, a, b) := p− ε∇pEI(p, a, b)

Request

rI(p, a, b) := fa

(
1

αB
∇aEI(p, a, b)

)
,
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Many overlapping notions

The update function UI(p, a, b) := p− ε∇pEI(p, a, b) is computing two
different things.

It’s calcuating the gradient pg = ∇pEI(p, a, b)
It’s computing the parameter update by the rule of stochastic gradient
descent: (p, pg) 7→ p− εpg.

Request function r in itself encodes the computation of ∇aEI .
Inside both r and U is embedded a notion of a cost function, which is
fixed for all learners.

Problem: These concepts are not separated into abstractions that reuse
and compose well!
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The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!

Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects
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The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions

Morphism A→ B is a function of type a→ b× (a( b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+
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BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation

SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) ( B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?
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Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')

Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)
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R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C
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Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36



R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C
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Some possible schemas

This procedure generalizes several existing network architectures
But it also allows us to ask, what other interesting schemas are possible?
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Some possible schemas

Latent sp.
•

Image
•

f

no equations

Figure: GAN

Horse• Zebra•

f

g

f . g = idh

g . f = idz

Figure: CycleGAN

A• B• C•f g
h

f . h = f . g

Figure: Equalizer

A• B × C•

f

g

f . g = idA

g . f = idB×C

Figure: Product
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Equalizer schema

A• B• C•f g
h

f . h = f . g

Given two networks h, g : B → C,
find a subset B′ ⊆ B such that
B′ = {b ∈ B | h(b) = g(b)}
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Consider two sets of images

Left: Background of color X with a circle with fixed size and position of
color Y
Right: Background of color Z
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Product schema

A• B × C•

f

g

f . g = idA

g . f = idB×C

Same learning algorithm can learn to remove both types of objects
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Experiments

CelebA dataset of 200K images of human faces

Conveniently, there is a “glasses” annotation
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Experiments

PC :=

R32×32×3

• R32×32×3×R100

•

P f

P g

f . g = idH

g . f = idZ

Collection of neural networks with total 40m parameters
7h training on a GeForce GTX 1080
Successful results
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Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 30 / 36



Experiments

Figure: Same image, different Z vector
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Experiments

Figure: Same Z vector, different image

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 32 / 36



Experiments

Figure: Top row: original image, bottom row: Removed glasses
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Conclusions

Specify a collection of neural networks which are closed under
composition

Specify composition invariants
Given the right data and parametrized functions of sufficient complexity,
it’s possible to train them with the right inductive bias
Common language to talk about semantics of data and training procedure
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Future work

This is still rough around the edges

What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris
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Thank you!

Bruno Gavranović
Faculty of Electrical Engineering and Computing

University of Zagreb
bruno.gavranovic@fer.hr

Feel free to drop me an email with any questions!
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