
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 1 / 36

Compositional Deep Learning

Bruno Gavranović

Faculty of Electrical Engineering and Computing (FER)
University of Zagreb, Croatia

bruno.gavranovic@fer.hr

December 18, 2018

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 2 / 36

Overview

Usage of rudimentary category theory

Neural networks
They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress
Experiments

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 3 / 36

Overview

Usage of rudimentary category theory
Neural networks

They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress
Experiments

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 3 / 36

Overview

Usage of rudimentary category theory
Neural networks

They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress
Experiments

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 3 / 36

Overview

Usage of rudimentary category theory
Neural networks

They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress

Experiments

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 3 / 36

Overview

Usage of rudimentary category theory
Neural networks

They’re compositional. You can stack layers and get better results
They’re discovering (compositional) structures in data

Work in Progress
Experiments

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 3 / 36

Generative modelling - State of the art - 2018

We can generate completely realistic looking images

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 4 / 36

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 5 / 36

Space of all possible images

Natural images form a low dimensional manifold in its embedding space

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 6 / 36

Space of all possible images

Natural images form a low dimensional manifold in its embedding space

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 6 / 36

Generative Adversarial Networks

But we have minimal control over the network output!

0http://dl-ai.blogspot.com/2017/08/gan-problems.html
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 7 / 36

http://dl-ai.blogspot.com/2017/08/gan-problems.html

Generative Adversarial Networks

But we have minimal control over the network output!

0http://dl-ai.blogspot.com/2017/08/gan-problems.html
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 7 / 36

http://dl-ai.blogspot.com/2017/08/gan-problems.html

Claim

It’s possible to assign semantics to the network training procedure using the
same schemas from Functorial Data Migration1

Functorial Data Migration Compositional Deep Learning
F : C → − Set Para
F is Fixed Learned

1

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 8 / 36

Claim

It’s possible to assign semantics to the network training procedure using the
same schemas from Functorial Data Migration1

Functorial Data Migration Compositional Deep Learning
F : C → − Set Para
F is Fixed Learned

1

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 8 / 36

Functorial data migration

Categorical schema generated by a graph G and a path equivalence
relation: C := (G,')

Beatle•
Rock-and-roll

instrument•Played

A database instance is a functor F : C → Set

Beatle Played
George Lead guitar

John Rhythm guitar
Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums
Keyboard

Lead guitar
Rhythm guitar

In databases, we have sets of data and clear mappings between them

1https://arxiv.org/abs/1803.05316
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 9 / 36

https://arxiv.org/abs/1803.05316

Functorial data migration

Categorical schema generated by a graph G and a path equivalence
relation: C := (G,')

Beatle•
Rock-and-roll

instrument•Played

A database instance is a functor F : C → Set

Beatle Played
George Lead guitar

John Rhythm guitar
Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums
Keyboard

Lead guitar
Rhythm guitar

In databases, we have sets of data and clear mappings between them

1https://arxiv.org/abs/1803.05316
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 9 / 36

https://arxiv.org/abs/1803.05316

Functorial data migration

Categorical schema generated by a graph G and a path equivalence
relation: C := (G,')

Beatle•
Rock-and-roll

instrument•Played

A database instance is a functor F : C → Set

Beatle Played
George Lead guitar

John Rhythm guitar
Paul Bass guitar

Ringo Drums

Rock-and-roll instrument
Bass guitar

Drums
Keyboard

Lead guitar
Rhythm guitar

In databases, we have sets of data and clear mappings between them

1https://arxiv.org/abs/1803.05316
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 9 / 36

https://arxiv.org/abs/1803.05316

Neural networks

In machine learning all we have is plenty of data, but no known
implementations of functions

Input
DataSample1
DataSample2
DataSample3
DataSample4

Output
ExpectedOutput1
ExpectedOutput2
ExpectedOutput3
ExpectedOutput4

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 10 / 36

1https://arxiv.org/abs/1703.10593
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 11 / 36

https://arxiv.org/abs/1703.10593

1https://arxiv.org/abs/1703.10593
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 11 / 36

https://arxiv.org/abs/1703.10593

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

Style transfer

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 12 / 36

CycleGAN

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 13 / 36

Previous work

Backprop as Functor
Compositional perspective on supervised learning
Category of learners Learn
Category of differentiable parametrized functions Para

The Simple Essence of Automatic Differentiation
Compositional, side-effect free way of performing mode-independent
automatic differentiation

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 14 / 36

Previous work

Backprop as Functor
Compositional perspective on supervised learning
Category of learners Learn
Category of differentiable parametrized functions Para

The Simple Essence of Automatic Differentiation
Compositional, side-effect free way of performing mode-independent
automatic differentiation

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 14 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces

For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.

For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection

For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of differentiable parametrized functions
Para:

Objects a, b, c, ... are Euclidean spaces
For each two objects a, b, we specify a set Para(a, b) whose elements
are differentiable functions of type P ×A→ B.
For every object a, we specify an identity morphism ida ∈ Para(a, a), a
function of type 1×A→ A, which is just a projection
For every three objects a, b, c and morphisms f ∈ Para(A,B) and
g ∈ Para(B,C) one specifies a morphism g ◦ f ∈ Para(A,C) in the
following way:

◦ : (Q×B → C)× (P ×A→ B)→ ((P ×Q)×A→ C) (1)
◦(g, f) = λ((p, q), a)→ g(q, f(p, a)) (2)

I
J

Q

P

A

C

Note: Coherence conditions are valid only up to isomorphism!
We can consider equivalence classes of morphisms or a consider Para
as a bicategory
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 15 / 36

Category of learners

Learn:
Let A and B be sets. A supervised learning algorithm, or simply learner,
A→ B is a tuple (P, I, U, r) where P is a set, and I, U , and r are functions of
types:

P : P,

I : P ×A→ B,

U : P ×A×B → P,

r : P ×A×B → A.

Update:

UI(p, a, b) := p− ε∇pEI(p, a, b)

Request

rI(p, a, b) := fa

(
1

αB
∇aEI(p, a, b)

)
,

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 16 / 36

Many overlapping notions

The update function UI(p, a, b) := p− ε∇pEI(p, a, b) is computing two
different things.

It’s calcuating the gradient pg = ∇pEI(p, a, b)
It’s computing the parameter update by the rule of stochastic gradient
descent: (p, pg) 7→ p− εpg.

Request function r in itself encodes the computation of ∇aEI .
Inside both r and U is embedded a notion of a cost function, which is
fixed for all learners.

Problem: These concepts are not separated into abstractions that reuse
and compose well!

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 17 / 36

Many overlapping notions

The update function UI(p, a, b) := p− ε∇pEI(p, a, b) is computing two
different things.

It’s calcuating the gradient pg = ∇pEI(p, a, b)
It’s computing the parameter update by the rule of stochastic gradient
descent: (p, pg) 7→ p− εpg.

Request function r in itself encodes the computation of ∇aEI .
Inside both r and U is embedded a notion of a cost function, which is
fixed for all learners.

Problem: These concepts are not separated into abstractions that reuse
and compose well!

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 17 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!

Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!
Implementing an efficient composable differentiation framework is more
art than science

Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)
Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!
Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!
Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!
Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate

Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

“Category of differentiable functions” is tricky to get right in a
computational setting!
Implementing an efficient composable differentiation framework is more
art than science
Chain rule isn’t compositional (g ◦ f)′(x) = g′(f(x)) · f ′(x)

Derivative of the composition can’t be expressed only as a composition of
derivatives!

You need to store output of every function you evaluate
Every deep learning framework has a carefully crafted implementation of
side-effects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 18 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions

Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions
Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions
Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)

Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions
Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires

Generalization to more than just linear maps
Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions
Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

The Simple Essence of Automatic Differentiation

Automatic differentiation - category D of differentiable functions
Morphism A→ B is a function of type a→ b× (a(b)

Composition: g ◦ f = λa→ let(b, f ′) = f(a), (c, g′) = g(b) in(c, g′ ◦ f ′)
Structure for splitting and joining wires
Generalization to more than just linear maps

Forward-mode automatic differentiation
Reverse-mode automatic differentiation
Backpropagation - DDual→+

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 19 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation

SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation
SimpleAD doesn’t talk about learning itself

Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation
SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts

For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation
SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation
SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability

Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

BackpropFunctor + SimpleAD

BackpropFunctor doesn’t mention categorical differentiation
SimpleAD doesn’t talk about learning itself
Both are talking about similar concepts
For each P ×A→ B in Hom(a, b) in Para, we’d like to specify a set of
functions of type P ×A→ B × ((P ×A) (B) instead of just P ×A→ B

Separate the structure needed for parametricity and structure needed for
composable differentiability
Solution: ?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 20 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')

Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')

Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')

Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')
Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')
Learn a functor P : C → Para

Start with a functor Free(G)→ Para

Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')
Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

Main result

Specify the semantics of your datasets
with a categorical schema C := (G,')
Learn a functor P : C → Para

Start with a functor Free(G)→ Para
Iteratively update it using samples from
your datasets
The learned functor will also preserve '

Novel regularization mechanism for neural
networks.

Horse• Zebra•

f

g

f . g = idh

g . f = idz

(3)

R64×64×3

• R64×64×3

•

P f

P g

(4)

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 21 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects

Start with randomly initialized morphisms
Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P

Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold

For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

R64×64×3

• R64×64×3

•

P f

P g

Start with a functor Free(G)→ Para

Specify how it acts on objects
Start with randomly initialized morphisms

Every morphism in Para is a function parametrized by some P
Initializing P randomly => “initializing” a morphism

Get data samples da, db, ... corresponding to every object in C and in
every iteration:

For every morphism (f : A→ B) in the transitive reduction of morphisms in
C, find Pf and minimize the distance between (Pf)(da) and the
corresponding image manifold
For all path equations from A→ B where f = g, compute both f(Ra) and
g(Ra). Calculate the distance d = ||f(Ra)− g(Ra)||. Minimize d and update
all parameters of f and g.

The path equation regularization term forces the optimization procedure to
select functors which preserve the path equivalence relation and, thus, C

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 22 / 36

Some possible schemas

This procedure generalizes several existing network architectures
But it also allows us to ask, what other interesting schemas are possible?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 23 / 36

Some possible schemas

This procedure generalizes several existing network architectures

But it also allows us to ask, what other interesting schemas are possible?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 23 / 36

Some possible schemas

This procedure generalizes several existing network architectures
But it also allows us to ask, what other interesting schemas are possible?

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 23 / 36

Some possible schemas

Latent sp.
•

Image
•

f

no equations

Figure: GAN

Horse• Zebra•

f

g

f . g = idh

g . f = idz

Figure: CycleGAN

A• B• C•f g
h

f . h = f . g

Figure: Equalizer

A• B × C•

f

g

f . g = idA

g . f = idB×C

Figure: Product
Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 24 / 36

Equalizer schema

A• B• C•f g
h

f . h = f . g

Given two networks h, g : B → C,
find a subset B′ ⊆ B such that
B′ = {b ∈ B | h(b) = g(b)}

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 25 / 36

Consider two sets of images

Left: Background of color X with a circle with fixed size and position of
color Y
Right: Background of color Z

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 26 / 36

Product schema

A• B × C•

f

g

f . g = idA

g . f = idB×C

Same learning algorithm can learn to remove both types of objects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 27 / 36

Product schema

A• B × C•

f

g

f . g = idA

g . f = idB×C

Same learning algorithm can learn to remove both types of objects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 27 / 36

Product schema

A• B × C•

f

g

f . g = idA

g . f = idB×C

Same learning algorithm can learn to remove both types of objects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 27 / 36

Product schema

A• B × C•

f

g

f . g = idA

g . f = idB×C

Same learning algorithm can learn to remove both types of objects

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 27 / 36

Experiments

CelebA dataset of 200K images of human faces

Conveniently, there is a “glasses” annotation

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 28 / 36

Experiments

CelebA dataset of 200K images of human faces

Conveniently, there is a “glasses” annotation

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 28 / 36

Experiments

PC :=

R32×32×3

• R32×32×3×R100

•

P f

P g

f . g = idH

g . f = idZ

Collection of neural networks with total 40m parameters
7h training on a GeForce GTX 1080
Successful results

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 29 / 36

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 30 / 36

Experiments

Figure: Same image, different Z vector

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 31 / 36

Experiments

Figure: Same Z vector, different image

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 32 / 36

Experiments

Figure: Top row: original image, bottom row: Removed glasses

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 33 / 36

Conclusions

Specify a collection of neural networks which are closed under
composition

Specify composition invariants
Given the right data and parametrized functions of sufficient complexity,
it’s possible to train them with the right inductive bias
Common language to talk about semantics of data and training procedure

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 34 / 36

Conclusions

Specify a collection of neural networks which are closed under
composition
Specify composition invariants

Given the right data and parametrized functions of sufficient complexity,
it’s possible to train them with the right inductive bias
Common language to talk about semantics of data and training procedure

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 34 / 36

Conclusions

Specify a collection of neural networks which are closed under
composition
Specify composition invariants
Given the right data and parametrized functions of sufficient complexity,
it’s possible to train them with the right inductive bias

Common language to talk about semantics of data and training procedure

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 34 / 36

Conclusions

Specify a collection of neural networks which are closed under
composition
Specify composition invariants
Given the right data and parametrized functions of sufficient complexity,
it’s possible to train them with the right inductive bias
Common language to talk about semantics of data and training procedure

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 34 / 36

Future work

This is still rough around the edges

What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Future work

This is still rough around the edges
What other schemas can we think of?

Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Future work

This is still rough around the edges
What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?

Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Future work

This is still rough around the edges
What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?

Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Future work

This is still rough around the edges
What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?

Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Future work

This is still rough around the edges
What other schemas can we think of?
Can we quantify type of informaton we’re giving to the network using
these schemas?
Do data migration functors make sense in the context of neural networks?
Can game-theoretic properties of Generative Adversarial Networks be
expressed categorically?
Coding these ideas in Idris

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 35 / 36

Thank you!

Bruno Gavranović
Faculty of Electrical Engineering and Computing

University of Zagreb
bruno.gavranovic@fer.hr

Feel free to drop me an email with any questions!

Bruno Gavranović SYCO2 Compositional Deep Learning December 18, 2018 36 / 36

	Introduction

