

Compositional Deep Learning

Bruno Gavranović

Faculty of Electrical Engineering and Computing (FER) University of Zagreb, Croatia

bruno.gavranovic@fer.hr

December 18, 2018

• Usage of rudimentary category theory

- Usage of rudimentary category theory
- Neural networks

- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data

- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data
- Work in Progress

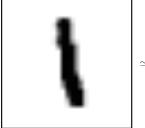
- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data
- Work in Progress
- Experiments

Generative modelling - State of the art - 2018

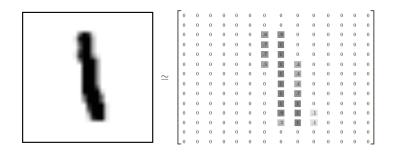
We can generate completely realistic looking images

Bruno Gavranović SYCO2

Space of all possible images

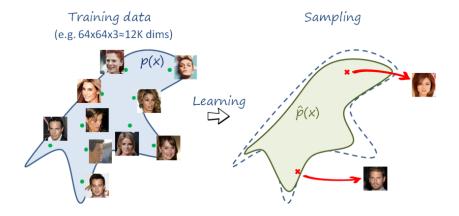


	۲o	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	.6	.8	0	0	0	0	0	0	
	0	0	0	0	0	0	.7	1	0	0	0	0	0	0	
	0	0	0	0	0	0	.7	1	0	0	0	0	0	0	
	0	0	0	0	0	0	.5	1	.4	0	0	0	0	0	
~	0	0	0	0	0	0	0	1	.4	0	0	0	0	0	
_	0	0	0	0	0	0	0	1	.4	0	0	0	0	0	
	0	0	0	0	0	0	0	1	.7	0	0	0	0	0	
	0	0	0	0	0	0	0	1	1	0	0	0	0	0	
	0	0	0	0	0	0	0	.9	1	.1	0	0	0	0	
	0	0	0	0	0	0	0	.3	1	.1	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Lo	0	0	0	0	0	0	0	0	0	0	0	0	0	



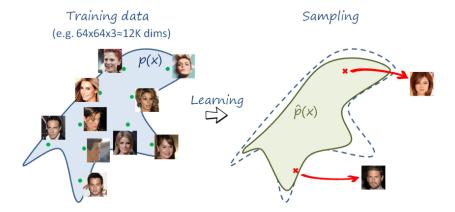
Natural images form a low dimensional manifold in its embedding space

Generative Adversarial Networks



0http://dl-ai.blogspot.com/2017/08/gan-problems.html

Generative Adversarial Networks



But we have minimal control over the network output!

⁰http://dl-ai.blogspot.com/2017/08/gan-problems.html

It's possible to assign semantics to the network training procedure using the same schemas from Functorial Data ${\rm Migration}^1$

It's possible to assign semantics to the network training procedure using the same schemas from Functorial Data Migration¹

	Functorial Data Migration	Compositional Deep Learning
$F: \mathcal{C} \to -$	Set	Para
F is	Fixed	Learned

Functorial data migration

• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$



¹https://arxiv.org/abs/1803.05316

Functorial data migration

• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$

• A database instance is a functor $F : \mathcal{C} \to \mathbf{Set}$

Beatle	Played	Rock-and-roll instrument
George	Lead guitar	Bass guitar
John	Rhythm guitar	Drums
Paul	Bass guitar	Keyboard
Ringo	Drums	Lead guitar
_		Rhythm guitar

¹https://arxiv.org/abs/1803.05316

Functorial data migration

• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$

• A database instance is a functor $F : \mathcal{C} \to \mathbf{Set}$

Beatle	Played	Rock-and-roll instrument
George	Lead guitar	Bass guitar
John	Rhythm guitar	Drums
Paul	Bass guitar	Keyboard
Ringo	Drums	Lead guitar
-		Rhythm guitar

In databases, we have sets of data and clear mappings between them

¹https://arxiv.org/abs/1803.05316

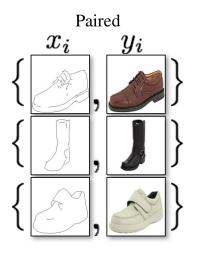
 In machine learning all we have is plenty of data, but no known implementations of functions

Input

DataSample1 DataSample2 DataSample3 DataSample4

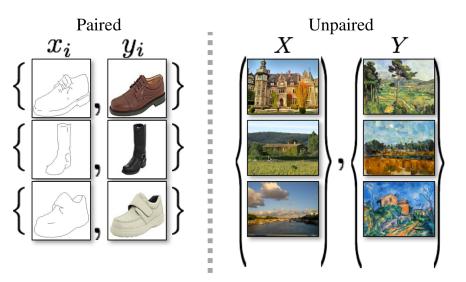
Output

ExpectedOutput1 ExpectedOutput2 ExpectedOutput3 ExpectedOutput4

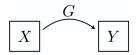


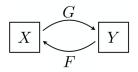
¹https://arxiv.org/abs/1703.10593

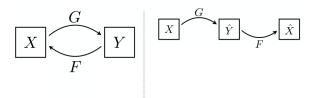
Bruno Gavranović SYCO2

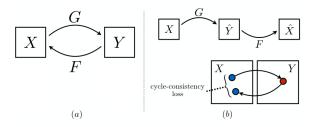


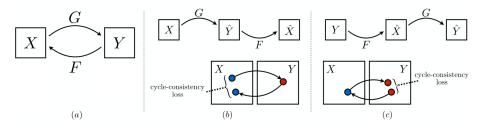
¹https://arxiv.org/abs/1703.10593

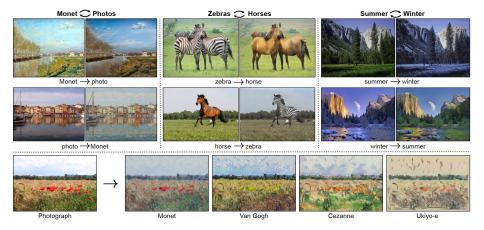












- Backprop as Functor
 - Compositional perspective on supervised learning
 - Category of learners Learn
 - $\bullet\,$ Category of differentiable parametrized functions ${\bf Para}$

- Backprop as Functor
 - Compositional perspective on supervised learning
 - Category of learners Learn
 - $\bullet\,$ Category of differentiable parametrized functions ${\bf Para}$
- The Simple Essence of Automatic Differentiation
 - Compositional, *side-effect free* way of performing mode-independent automatic differentiation

Para:

• Objects *a*, *b*, *c*, ... are Euclidean spaces

- Objects *a*, *b*, *c*, ... are Euclidean spaces
- For each two objects a, b, we specify a set Para(a, b) whose elements are differentiable functions of type $P \times A \rightarrow B$.

- Objects a, b, c, \dots are Euclidean spaces
- For each two objects a, b, we specify a set Para(a, b) whose elements are differentiable functions of type $P \times A \rightarrow B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $\mathbf{1} \times A \to A$, which is just a projection

- Objects *a*, *b*, *c*, ... are Euclidean spaces
- For each two objects a, b, we specify a set $\mathbf{Para}(a, b)$ whose elements are differentiable functions of type $P \times A \rightarrow B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $\mathbf{1} \times A \to A$, which is just a projection
- For every three objects a, b, c and morphisms $f \in \mathbf{Para}(A, B)$ and $g \in \mathbf{Para}(B, C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A, C)$ in the following way:

- Objects a, b, c, \dots are Euclidean spaces
- For each two objects a, b, we specify a set Para(a, b) whose elements are differentiable functions of type $P \times A \rightarrow B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $\mathbf{1} \times A \to A$, which is just a projection
- For every three objects a, b, c and morphisms $f \in \mathbf{Para}(A, B)$ and $g \in \mathbf{Para}(B, C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A, C)$ in the following way:

$$\circ: (Q \times B \to C) \times (P \times A \to B) \to ((P \times Q) \times A \to C) \tag{1}$$

$$\circ(g, f) = \lambda((p, q), a) \to g(q, f(p, a))$$
(2)

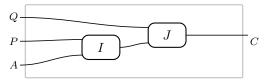
Category of differentiable parametrized functions

Para:

- Objects a, b, c, \dots are Euclidean spaces
- For each two objects a, b, we specify a set Para(a, b) whose elements are differentiable functions of type $P \times A \rightarrow B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $\mathbf{1} \times A \to A$, which is just a projection
- For every three objects a, b, c and morphisms $f \in \mathbf{Para}(A, B)$ and $g \in \mathbf{Para}(B, C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A, C)$ in the following way:

$$\circ: (Q \times B \to C) \times (P \times A \to B) \to ((P \times Q) \times A \to C)$$
(1)

$$\circ(g,f) = \lambda((p,q),a) \to g(q,f(p,a))$$
(2)



• Note: Coherence conditions are valid only up to isomorphism!

Bruno Gavranović SYCO2

Compositional Deep Learning

Learn:

Let *A* and *B* be sets. A supervised learning algorithm, or simply learner, $A \rightarrow B$ is a tuple (P, I, U, r) where *P* is a set, and *I*, *U*, and *r* are functions of types:

$$\begin{split} P \colon P, \\ I \colon P \times A \to B, \\ U \colon P \times A \times B \to P, \\ r \colon P \times A \times B \to A. \end{split}$$

Update:

Request

$$U_I(p, a, b) \coloneqq p - \varepsilon \nabla_p E_I(p, a, b)$$

$$r_I(p, a, b) \coloneqq f_a \left(\frac{1}{\alpha_B} \nabla_a E_I(p, a, b) \right),$$

Many overlapping notions

- The update function $U_I(p, a, b) := p \varepsilon \nabla_p E_I(p, a, b)$ is computing *two* different things.
 - It's calcuating the gradient $p_g = \nabla_p E_I(p, a, b)$
 - It's computing the parameter update by the rule of stochastic gradient descent: $(p, p_g) \mapsto p \varepsilon p_g$.
- Request function r in itself encodes the computation of $\nabla_a E_I$.
- Inside both *r* and *U* is embedded a notion of a cost function, which is fixed for all learners.

Many overlapping notions

- The update function $U_I(p, a, b) := p \varepsilon \nabla_p E_I(p, a, b)$ is computing *two* different things.
 - It's calcuating the gradient $p_g = \nabla_p E_I(p, a, b)$
 - It's computing the parameter update by the rule of stochastic gradient descent: $(p, p_g) \mapsto p \varepsilon p_g$.
- Request function r in itself encodes the computation of $\nabla_a E_I$.
- Inside both *r* and *U* is embedded a notion of a cost function, which is fixed for all learners.
- **Problem:** These concepts are not separated into abstractions that reuse and compose well!

The Simple Essence of Automatic Differentiation

 "Category of differentiable functions" is tricky to get right in a computational setting!

The Simple Essence of Automatic Differentiation

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!
- You need to store output of every function you evaluate

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!
- You need to store output of every function you evaluate
- Every deep learning framework has a carefully crafted implementation of side-effects

The Simple Essence of Automatic Differentiation

 $\bullet\,$ Automatic differentiation - category ${\bf D}$ of differentiable functions

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \rightarrow \text{let}(b, f') = f(a), (c, g') = g(b) \text{ in}(c, g' \circ f')$

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \rightarrow \text{let}(b, f') = f(a), (c, g') = g(b) \text{ in}(c, g' \circ f')$
- Structure for splitting and joining wires

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \rightarrow \text{let}(b, f') = f(a), (c, g') = g(b) \text{ in}(c, g' \circ f')$
- Structure for splitting and joining wires
- Generalization to more than just linear maps

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \rightarrow \text{let}(b, f') = f(a), (c, g') = g(b) \text{ in}(c, g' \circ f')$
- Structure for splitting and joining wires
- Generalization to more than just linear maps
 - Forward-mode automatic differentiation
 - Reverse-mode automatic differentiation
 - Backpropagation $\mathbf{D}_{\mathbf{Dual}_{\rightarrow}+}$

BackpropFunctor doesn't mention categorical differentiation

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts

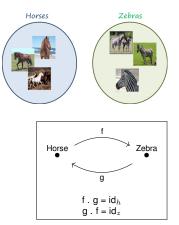
- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each P × A → B in Hom(a, b) in Para, we'd like to specify a set of functions of type P × A → B × ((P × A) → B) instead of just P × A → B

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each P × A → B in Hom(a, b) in Para, we'd like to specify a set of functions of type P × A → B × ((P × A) → B) instead of just P × A → B
- Separate the structure needed for parametricity and structure needed for composable differentiability

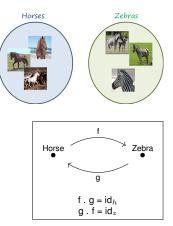
- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each P × A → B in Hom(a, b) in Para, we'd like to specify a set of functions of type P × A → B × ((P × A) → B) instead of just P × A → B
- Separate the structure needed for parametricity and structure needed for composable differentiability
- Solution: ?

 Specify the semantics of your datasets with a categorical schema C := (G, ≃)

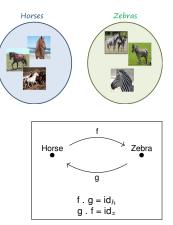
 Specify the semantics of your datasets with a categorical schema C := (G, ≃) Specify the semantics of your datasets with a categorical schema C := (G, ≃)



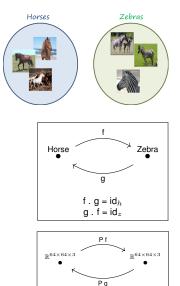
- Specify the semantics of your datasets with a categorical schema C := (G, ≃)
- Learn a functor $P : \mathcal{C} \to \mathbf{Para}$



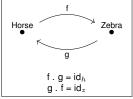
- Specify the semantics of your datasets with a categorical schema C := (G, ≃)
- Learn a functor $P : \mathcal{C} \to \mathbf{Para}$
 - Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$



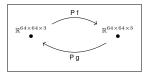
- Specify the semantics of your datasets with a categorical schema C := (G, ≃)
- Learn a functor $P : \mathcal{C} \to \mathbf{Para}$
 - Start with a functor $\mathbf{Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Iteratively update it using samples from your datasets
 - $\bullet\,$ The learned functor will also preserve $\simeq\,$



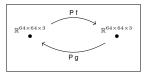
- Specify the semantics of your datasets with a categorical schema C := (G, ≃)
- Learn a functor $P : \mathcal{C} \to \mathbf{Para}$
 - Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Iteratively update it using samples from your datasets
 - $\bullet~$ The learned functor will also preserve $\simeq~$
- Novel regularization mechanism for neural networks.



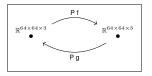




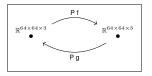
 $\bullet~\mbox{Start}$ with a functor $\mbox{Free}({\bf G}) \rightarrow {\bf Para}$



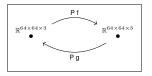
- $\bullet~\mbox{Start}$ with a functor $\mbox{Free}({\bf G}) \rightarrow {\bf Para}$
 - Specify how it acts on objects



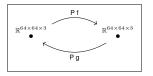
- $\bullet~\mbox{Start}$ with a functor $\mbox{Free}({\bf G}) \rightarrow \mbox{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms



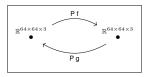
- $\bullet~\mbox{Start}$ with a functor $\mbox{Free}({\bf G}) \rightarrow {\bf Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some *P*



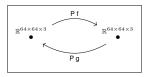
- $\bullet~\mbox{Start}$ with a functor $\mbox{Free}({\bf G}) \rightarrow {\bf Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some P
 - Initializing P randomly => "initializing" a morphism



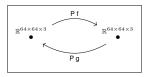
- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some *P*
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples $d_a, d_b, ...$ corresponding to every object in C and in every iteration:



- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some *P*
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples $d_a, d_b, ...$ corresponding to every object in C and in every iteration:
 - For every morphism $(f : A \to B)$ in the transitive reduction of morphisms in C, find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold



- Start with a functor $\mathbf{Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some *P*
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples $d_a, d_b, ...$ corresponding to every object in C and in every iteration:
 - For every morphism $(f : A \to B)$ in the transitive reduction of morphisms in C, find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold
 - For all **path equations** from $A \to B$ where f = g, compute both $f(R_a)$ and $g(R_a)$. Calculate the distance $d = ||f(R_a) g(R_a)||$. Minimize d and update all parameters of f and g.



- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in **Para** is a function parametrized by some *P*
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples $d_a, d_b, ...$ corresponding to every object in C and in every iteration:
 - For every morphism $(f : A \to B)$ in the transitive reduction of morphisms in C, find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold
 - For all **path equations** from $A \to B$ where f = g, compute both $f(R_a)$ and $g(R_a)$. Calculate the distance $d = ||f(R_a) g(R_a)||$. Minimize d and update all parameters of f and g.

The path equation regularization term forces the optimization procedure to select functors which preserve the path equivalence relation and, thus, ${\cal C}$

• This procedure generalizes several existing network architectures

- This procedure generalizes several existing network architectures
- But it also allows us to ask, what other interesting schemas are possible?

Some possible schemas

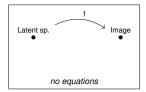


Figure: Equalizer

Figure: GAN

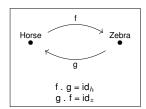


Figure: CycleGAN

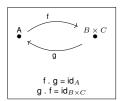
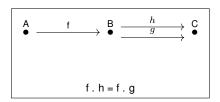


Figure: Product

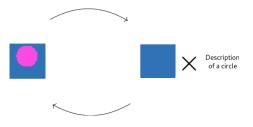
Bruno Gavranović SYCO2

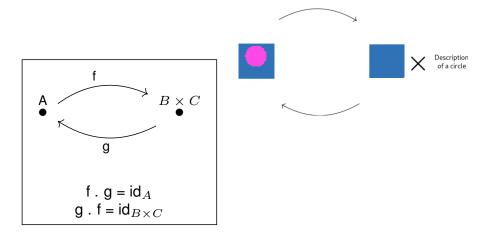


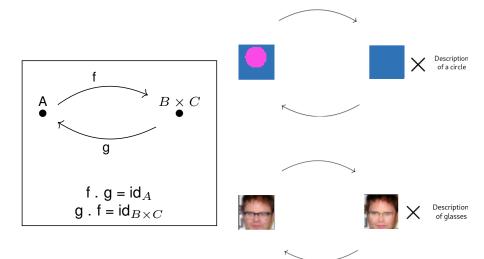
• Given two networks $h, g : B \to C$, find a subset $B' \subseteq B$ such that $B' = \{b \in B \mid h(b) = g(b)\}$

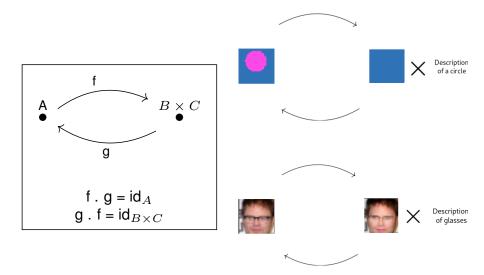
Consider two sets of images

- Left: Background of color X with a circle with fixed size and position of color Y
- Right: Background of color Z









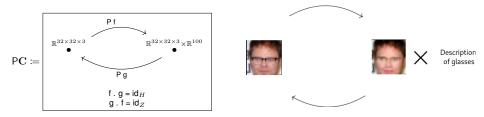
• Same learning algorithm can learn to remove both types of objects

CelebA dataset of 200K images of human faces

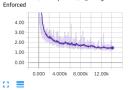
Bruno Gavranović SYCO2

CelebA dataset of 200K images of human faces

Conveniently, there is a "glasses" annotation

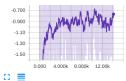


- Collection of neural networks with total 40m parameters
- 7h training on a GeForce GTX 1080
- Successful results

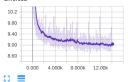


ADJUNCTION/PathEquations/id_cbllf.g----

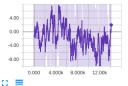
ADJUNCTION/discriminators/ LATGlassesxFace



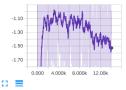
ADJUNCTION/PathEquations/id_lprodllg.f----Enforced



ADJUNCTION/generators/f



ADJUNCTION/discriminators/GlassesFace



ADJUNCTION/generators/g

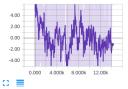


Figure: Same image, different Z vector

Figure: Same Z vector, different image

Figure: Top row: original image, bottom row: Removed glasses

Specify a collection of neural networks which are closed under composition

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants
- Given the right data and parametrized functions of sufficient complexity, it's possible to train them with the right inductive bias

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants
- Given the right data and parametrized functions of sufficient complexity, it's possible to train them with the right inductive bias
- Common language to talk about semantics of data and training procedure

• This is still rough around the edges

- This is still rough around the edges
- What other schemas can we think of?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of informaton we're giving to the network using these schemas?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of informaton we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of informaton we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?
- Can game-theoretic properties of Generative Adversarial Networks be expressed categorically?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of informaton we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?
- Can game-theoretic properties of Generative Adversarial Networks be expressed categorically?
- Coding these ideas in Idris

Thank you!

Bruno Gavranović Faculty of Electrical Engineering and Computing University of Zagreb bruno.gavranovic@fer.hr

Feel free to drop me an email with any questions!