

Compositional Deep Learning

Bruno Gavranović

Faculty of Electrical Engineering and Computing (FER)
University of Zagreb, Croatia

bruno.gavranovic@fer.hr

December 18, 2018

Usage of rudimentary category theory

- Usage of rudimentary category theory
- Neural networks

- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data

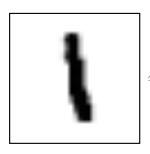
- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data
- Work in Progress

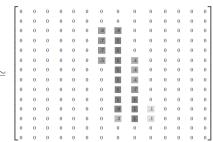
- Usage of rudimentary category theory
- Neural networks
 - They're compositional. You can stack layers and get better results
 - They're discovering (compositional) structures in data
- Work in Progress
- Experiments

Generative modelling - State of the art - 2018

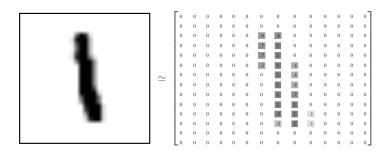
We can generate completely realistic looking images

Space of all possible images



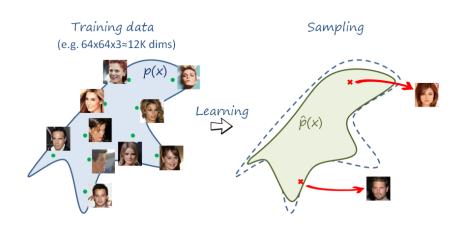


Space of all possible images



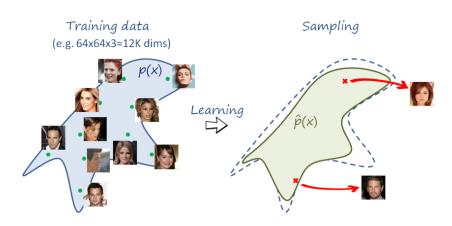
Natural images form a low dimensional manifold in its embedding space

Generative Adversarial Networks



Ohttp://dl-ai.blogspot.com/2017/08/gan-problems.html

Generative Adversarial Networks



But we have minimal control over the network output!

Ohttp://dl-ai.blogspot.com/2017/08/gan-problems.html

Claim

It's possible to assign semantics to the network training procedure using the same schemas from Functorial Data Migration¹

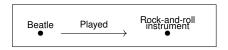
Claim

It's possible to assign semantics to the network training procedure using the same schemas from Functorial Data Migration¹

	Functorial Data Migration	Compositional Deep Learning
$F: \mathcal{C} \rightarrow -$	Set	Para
F is	Fixed	Learned

Functorial data migration

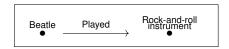
• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$



¹https://arxiv.org/abs/1803.05316

Functorial data migration

• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$



• A database instance is a functor $F: \mathcal{C} \to \mathbf{Set}$

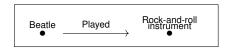
Beatle	Played
George	Lead guitar
John	Rhythm guitar
Paul	Bass guitar
Ringo	Drums

Rock-and-roll instrument		
Bass guitar		
Drums		
Keyboard		
Lead guitar		
Rhythm guitar		

¹https://arxiv.org/abs/1803.05316

Functorial data migration

• Categorical schema generated by a graph G and a path equivalence relation: $\mathcal{C}:=(G,\simeq)$



• A database instance is a functor $F: \mathcal{C} \to \mathbf{Set}$

Beatle	Played	Rock-and-roll instrument
George	Lead guitar	Bass guitar
John	Rhythm guitar	Drums
Paul	Bass guitar	Keyboard
Ringo	Drums	Lead guitar
_		Rhythm guitar

In databases, we have sets of data and clear mappings between them

¹https://arxiv.org/abs/1803.05316

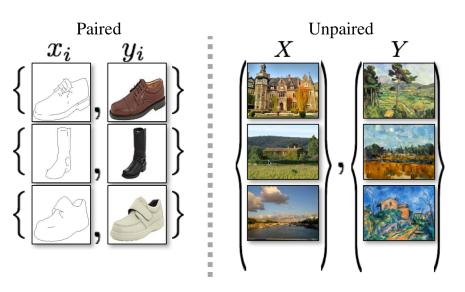
Neural networks

 In machine learning all we have is plenty of data, but no known implementations of functions

Input	Output
DataSample1	ExpectedOutput1
DataSample2	ExpectedOutput2
DataSample3	ExpectedOutput3
DataSample4	ExpectedOutput4

Paired x_i y_i

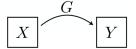
¹https://arxiv.org/abs/1703.10593

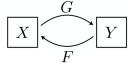


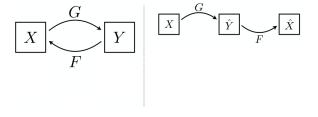
¹https://arxiv.org/abs/1703.10593

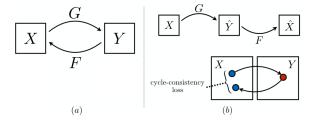
X

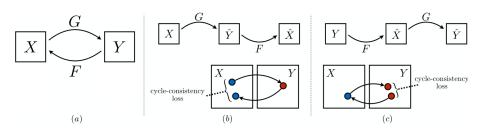
Y



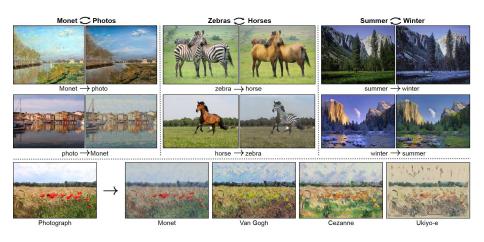








CycleGAN



Previous work

- Backprop as Functor
 - Compositional perspective on supervised learning
 - Category of learners Learn
 - Category of differentiable parametrized functions Para

Previous work

- Backprop as Functor
 - Compositional perspective on supervised learning
 - Category of learners Learn
 - Category of differentiable parametrized functions Para
- The Simple Essence of Automatic Differentiation
 - Compositional, side-effect free way of performing mode-independent automatic differentiation

Para:

• Objects a, b, c, ... are Euclidean spaces

- Objects a, b, c, ... are Euclidean spaces
- For each two objects a, b, we specify a set $\mathbf{Para}(a, b)$ whose elements are differentiable functions of type $P \times A \to B$.

- Objects a, b, c, ... are Euclidean spaces
- For each two objects a, b, we specify a set $\mathbf{Para}(a, b)$ whose elements are differentiable functions of type $P \times A \to B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a,a)$, a function of type $\mathbf{1} \times A \to A$, which is just a projection

- Objects a, b, c, ... are Euclidean spaces
- For each two objects a, b, we specify a set $\mathbf{Para}(a, b)$ whose elements are differentiable functions of type $P \times A \to B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a,a)$, a function of type $1 \times A \to A$, which is just a projection
- For every three objects a,b,c and morphisms $f \in \mathbf{Para}(A,B)$ and $g \in \mathbf{Para}(B,C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A,C)$ in the following way:

- Objects a, b, c, ... are Euclidean spaces
- For each two objects a, b, we specify a set $\mathbf{Para}(a, b)$ whose elements are differentiable functions of type $P \times A \to B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $1 \times A \to A$, which is just a projection
- For every three objects a,b,c and morphisms $f \in \mathbf{Para}(A,B)$ and $g \in \mathbf{Para}(B,C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A,C)$ in the following way:

$$\circ: (Q \times B \to C) \times (P \times A \to B) \to ((P \times Q) \times A \to C) \tag{1}$$

$$\circ(g,f) = \lambda((p,q),a) \to g(q,f(p,a)) \tag{2}$$

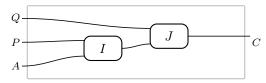
Category of differentiable parametrized functions

Para:

- Objects a, b, c, ... are Euclidean spaces
- For each two objects a,b, we specify a set $\mathbf{Para}(a,b)$ whose elements are differentiable functions of type $P \times A \to B$.
- For every object a, we specify an identity morphism $id_a \in \mathbf{Para}(a, a)$, a function of type $1 \times A \to A$, which is just a projection
- For every three objects a,b,c and morphisms $f \in \mathbf{Para}(A,B)$ and $g \in \mathbf{Para}(B,C)$ one specifies a morphism $g \circ f \in \mathbf{Para}(A,C)$ in the following way:

$$\circ: (Q \times B \to C) \times (P \times A \to B) \to ((P \times Q) \times A \to C) \tag{1}$$

$$\circ(g,f) = \lambda((p,q),a) \to g(q,f(p,a)) \tag{2}$$



Note: Coherence conditions are valid only up to isomorphism!

Category of learners

Learn:

Let A and B be sets. A *supervised learning algorithm*, or simply *learner*, $A \to B$ is a tuple (P, I, U, r) where P is a set, and I, U, and r are functions of types:

$$\begin{split} P\colon P, \\ I\colon P\times A\to B, \\ U\colon P\times A\times B\to P, \\ r\colon P\times A\times B\to A. \end{split}$$

Update:

$$U_I(p, a, b) := p - \varepsilon \nabla_p E_I(p, a, b)$$

Request

$$r_I(p, a, b) := f_a \left(\frac{1}{\alpha_B} \nabla_a E_I(p, a, b) \right),$$

Many overlapping notions

- The update function $U_I(p,a,b) := p \varepsilon \nabla_p E_I(p,a,b)$ is computing *two* different things.
 - It's calcuating the gradient $p_g = \nabla_p E_I(p, a, b)$
 - It's computing the parameter update by the rule of stochastic gradient descent: $(p,p_q)\mapsto p-\varepsilon p_q$.
- Request function r in itself encodes the computation of $\nabla_a E_I$.
- Inside both r and U is embedded a notion of a cost function, which is fixed for all learners.

Many overlapping notions

- The update function $U_I(p,a,b) := p \varepsilon \nabla_p E_I(p,a,b)$ is computing *two* different things.
 - It's calcuating the gradient $p_g = \nabla_p E_I(p, a, b)$
 - It's computing the parameter update by the rule of stochastic gradient descent: $(p,p_q)\mapsto p-\varepsilon p_q$.
- Request function r in itself encodes the computation of $\nabla_a E_I$.
- Inside both r and U is embedded a notion of a cost function, which is fixed for all learners.
- Problem: These concepts are not separated into abstractions that reuse and compose well!

 "Category of differentiable functions" is tricky to get right in a computational setting!

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!
- You need to store output of every function you evaluate

- "Category of differentiable functions" is tricky to get right in a computational setting!
- Implementing an efficient composable differentiation framework is more art than science
- Chain rule isn't compositional $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$
 - Derivative of the composition can't be expressed only as a composition of derivatives!
- You need to store output of every function you evaluate
- Every deep learning framework has a carefully crafted implementation of side-effects

Automatic differentiation - category D of differentiable functions

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \to \operatorname{let}(b, f') = f(a), (c, g') = g(b) \quad \operatorname{in}(c, g' \circ f')$

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \to \operatorname{let}(b, f') = f(a), (c, g') = g(b) \quad \operatorname{in}(c, g' \circ f')$
- Structure for splitting and joining wires

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \to \operatorname{let}(b, f') = f(a), (c, g') = g(b) \quad \operatorname{in}(c, g' \circ f')$
- Structure for splitting and joining wires
- Generalization to more than just linear maps

- Automatic differentiation category D of differentiable functions
- Morphism $A \to B$ is a function of type $a \to b \times (a \multimap b)$
- Composition: $g \circ f = \lambda a \to \operatorname{let}(b, f') = f(a), (c, g') = g(b) \quad \operatorname{in}(c, g' \circ f')$
- Structure for splitting and joining wires
- Generalization to more than just linear maps
 - Forward-mode automatic differentiation
 - Reverse-mode automatic differentiation
 - Backpropagation $\mathbf{D_{Dual}}_{\perp}$

BackpropFunctor doesn't mention categorical differentiation

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each $P \times A \to B$ in Hom(a,b) in \mathbf{Para} , we'd like to specify a set of functions of type $P \times A \to B \times ((P \times A) \multimap B)$ instead of just $P \times A \to B$

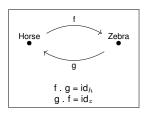
- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each $P \times A \to B$ in Hom(a,b) in \mathbf{Para} , we'd like to specify a set of functions of type $P \times A \to B \times ((P \times A) \multimap B)$ instead of just $P \times A \to B$
- Separate the structure needed for parametricity and structure needed for composable differentiability

- BackpropFunctor doesn't mention categorical differentiation
- SimpleAD doesn't talk about learning itself
- Both are talking about similar concepts
- For each $P \times A \to B$ in Hom(a,b) in \mathbf{Para} , we'd like to specify a set of functions of type $P \times A \to B \times ((P \times A) \multimap B)$ instead of just $P \times A \to B$
- Separate the structure needed for parametricity and structure needed for composable differentiability
- Solution: ?

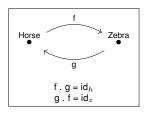
• Specify the semantics of your datasets with a categorical schema $\mathcal{C}:=(G,\simeq)$

• Specify the semantics of your datasets with a categorical schema $\mathcal{C}:=(G,\simeq)$

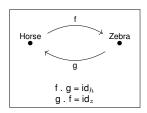
• Specify the semantics of your datasets with a categorical schema $\mathcal{C}:=(G,\simeq)$



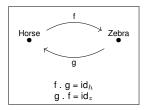
- Specify the semantics of your datasets with a categorical schema $\mathcal{C}:=(G,\simeq)$
- Learn a functor $P: \mathcal{C} \to \mathbf{Para}$

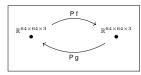


- Specify the semantics of your datasets with a categorical schema $\mathcal{C}:=(G,\simeq)$
- Learn a functor $P: \mathcal{C} \to \mathbf{Para}$
 - $\bullet \ \, \text{Start with a functor } \mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$

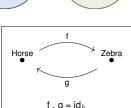


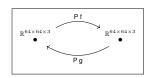
- Specify the semantics of your datasets with a categorical schema $\mathcal{C} := (G, \simeq)$
- Learn a functor $P: \mathcal{C} \to \mathbf{Para}$
 - ullet Start with a functor $\mathbf{Free}(\mathbf{G}) o \mathbf{Para}$
 - Iteratively update it using samples from your datasets
 - ullet The learned functor will also preserve \simeq



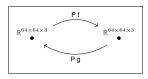


- Specify the semantics of your datasets with a categorical schema $\mathcal{C} := (G, \simeq)$
- Learn a functor $P: \mathcal{C} \to \mathbf{Para}$
 - Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Iteratively update it using samples from your datasets
 - ullet The learned functor will also preserve \simeq
- Novel regularization mechanism for neural networks.

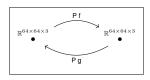




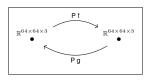
 $a \cdot f = id_{z}$



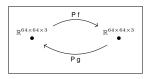
 $\bullet \; \mbox{Start} \; \mbox{with a functor} \; \mbox{\bf Free}({\bf G}) \rightarrow {\bf Para}$



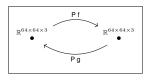
- $\bullet \ \, \textbf{Start with a functor Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Specify how it acts on objects



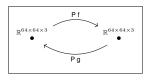
- $\bullet \ \, \textbf{Start with a functor Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms



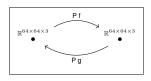
- $\bullet \ \, \textbf{Start with a functor Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P



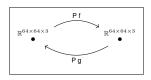
- $\bullet \ \, \textbf{Start with a functor Free}(\mathbf{G}) \rightarrow \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P
 - Initializing *P* randomly => "initializing" a morphism



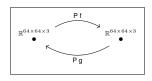
- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples $d_a, d_b, ...$ corresponding to every object in $\mathcal C$ and in every iteration:



- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples d_a, d_b, \dots corresponding to every object in $\mathcal C$ and in every iteration:
 - For every morphism $(f:A \to B)$ in the transitive reduction of morphisms in \mathcal{C} , find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold



- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P
 - Initializing *P* randomly => "initializing" a morphism
- Get data samples d_a, d_b, \dots corresponding to every object in $\mathcal C$ and in every iteration:
 - For every morphism $(f:A\to B)$ in the transitive reduction of morphisms in $\mathcal C$, find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold
 - For all **path equations** from $A \to B$ where f = g, compute both $f(R_a)$ and $g(R_a)$. Calculate the distance $d = ||f(R_a) g(R_a)||$. Minimize d and update all parameters of f and g.



- Start with a functor $\mathbf{Free}(\mathbf{G}) \to \mathbf{Para}$
 - Specify how it acts on objects
 - Start with randomly initialized morphisms
 - Every morphism in Para is a function parametrized by some P
 - Initializing P randomly => "initializing" a morphism
- Get data samples d_a, d_b, \dots corresponding to every object in $\mathcal C$ and in every iteration:
 - For every morphism $(f:A\to B)$ in the transitive reduction of morphisms in $\mathcal C$, find Pf and minimize the distance between $(Pf)(d_a)$ and the corresponding image manifold
 - For all **path equations** from $A \to B$ where f = g, compute both $f(R_a)$ and $g(R_a)$. Calculate the distance $d = ||f(R_a) g(R_a)||$. Minimize d and update all parameters of f and g.

The path equation regularization term forces the optimization procedure to select functors which preserve the path equivalence relation and, thus, C

This procedure generalizes several existing network architectures

- This procedure generalizes several existing network architectures
- But it also allows us to ask, what other interesting schemas are possible?

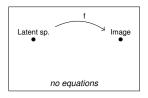


Figure: GAN

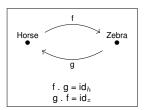


Figure: CycleGAN

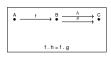


Figure: Equalizer

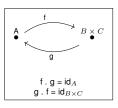
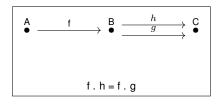


Figure: Product

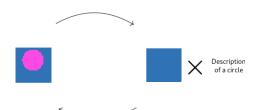
Equalizer schema

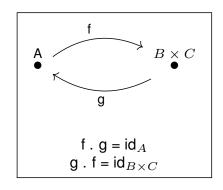


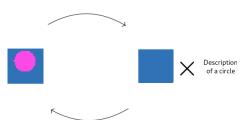
• Given two networks $h,g:B\to C$, find a subset $B'\subseteq B$ such that $B'=\{b\in B\mid h(b)=g(b)\}$

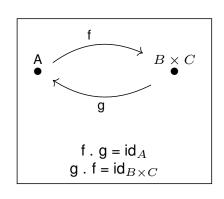
Consider two sets of images

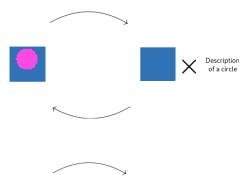
- Left: Background of color X with a circle with fixed size and position of color Y
- Right: Background of color Z

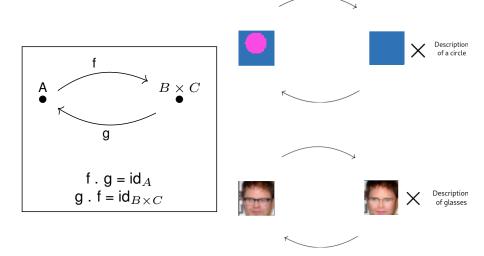










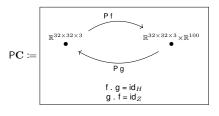


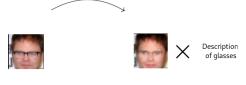
Same learning algorithm can learn to remove both types of objects

CelebA dataset of 200K images of human faces

CelebA dataset of 200K images of human faces

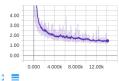
Conveniently, there is a "glasses" annotation





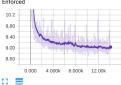
- Collection of neural networks with total 40m parameters
- 7h training on a GeForce GTX 1080
- Successful results

ADJUNCTION/PathEquations/id_cbllf.g--Enforced

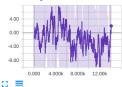


ADJUNCTION/discriminators/ LATGlassesxFace

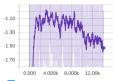
ADJUNCTION/PathEquations/id_lprodllg.f---Enforced



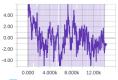
ADJUNCTION/generators/f



ADJUNCTION/discriminators/GlassesFace



ADJUNCTION/generators/g



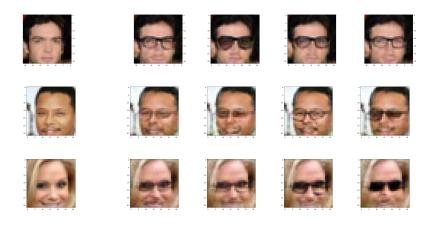


Figure: Same image, different Z vector

Figure: Same Z vector, different image

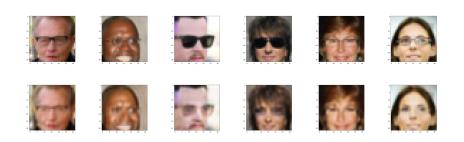


Figure: Top row: original image, bottom row: Removed glasses

 Specify a collection of neural networks which are closed under composition

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants
- Given the right data and parametrized functions of sufficient complexity, it's possible to train them with the right inductive bias

- Specify a collection of neural networks which are closed under composition
- Specify composition invariants
- Given the right data and parametrized functions of sufficient complexity, it's possible to train them with the right inductive bias
- Common language to talk about semantics of data and training procedure

• This is still rough around the edges

- This is still rough around the edges
- What other schemas can we think of?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of information we're giving to the network using these schemas?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of information we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of information we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?
- Can game-theoretic properties of Generative Adversarial Networks be expressed categorically?

- This is still rough around the edges
- What other schemas can we think of?
- Can we quantify type of information we're giving to the network using these schemas?
- Do data migration functors make sense in the context of neural networks?
- Can game-theoretic properties of Generative Adversarial Networks be expressed categorically?
- Coding these ideas in Idris

Thank you!

Bruno Gavranović
Faculty of Electrical Engineering and Computing
University of Zagreb
bruno.gavranovic@fer.hr

Feel free to drop me an email with any questions!