
Normal forms for planar string diagrams

Antonin Delpeuch, Jamie Vicary

SYCO 2



Background: word problem in higher categories

=
?



Background: word problem in higher categories

=
?

Theorem (Makkai, 2005)

The word problem for cells of a finitely generated strict n-category
is decidable.

Idea of the proof: the configuration space of a given diagram is
finite.



Background: word problem in higher categories

=
?

Theorem (Makkai, 2005)

The word problem for cells of a finitely generated strict n-category
is decidable.

Idea of the proof: the configuration space of a given diagram is
finite.

As an algorithm, this is vastly inefficient.



The planar case

u

v

. . .

. . .
. . .

. . .

. . .
u

v
. . .

. . .

. . .

. . .

. . .
'



The planar case

u

v

. . .

. . .
. . .

. . .

. . .
u

v
. . .

. . .

. . .

. . .

. . .→R

L←



The planar case

u

v

. . .

. . .
. . .

. . .

. . .
u

v
. . .

. . .

. . .

. . .

. . .→R

L←

Theorem
→R is convergent (terminating and confluent) on connected
diagrams.



Confluence of right exchanges

Lemma
→R is locally confluent.

u

v

w

u

v

w

u

v

w

u

v

w u

v

wu

v

w

R R

RR

R R



Confluence of right exchanges

Lemma
→R is locally confluent.

u

v

w

u

v

w

u

v

w

u

v

w u

v

wu

v

w

R R

RR

R R
=



Termination

u

v

v

u

u

v

v

u

u

v

Termination fails in general, but:

Theorem
→R terminates in O(n3) for connected diagrams of size n.



Proof of termination

First, in the case of linear diagrams:



Proof of termination

First, in the case of linear diagrams:



Proof of termination

First, in the case of linear diagrams:



Proof of termination

First, in the case of linear diagrams:



Proof of termination

First, in the case of linear diagrams:

collapsible funnel



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:



Upper bound on derivation length

From this decomposition, we obtain inductively the following
bound:

Lemma
→R terminates on linear graphs of length n in O(n3).

The bound is attained for spiral-shaped diagrams:

Number of steps for a spiral with n vertices:
(n
3

)



General case

Connected graph G



General case

Connected graph G Spanning tree G ′



General case

Connected graph G Spanning tree G ′ Linear envelope



General case

Connected graph G Spanning tree G ′ Linear envelope

O(n3) exchanges, each of them taking O(n) time to perform: word
problem solved in O(n4).



Direct algorithm to compute normal forms

By induction on the number of edges.

First case: the diagram has a leaf.

I remove this leaf;

I normalize the diagram recursively;

I add the leaf back at the unique height making the diagram
normalized.



Direct algorithm to compute normal forms

By induction on the number of edges.

First case: the diagram has a leaf.

I remove this leaf;

I normalize the diagram recursively;

I add the leaf back at the unique height making the diagram
normalized.



Direct algorithm to compute normal forms

By induction on the number of edges.

First case: the diagram has a leaf.

I remove this leaf;

I normalize the diagram recursively;

I add the leaf back at the unique height making the diagram
normalized.



Direct algorithm to compute normal forms

By induction on the number of edges.

First case: the diagram has a leaf.

I remove this leaf;

I normalize the diagram recursively;

I add the leaf back at the unique height making the diagram
normalized.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.



Direct algorithm to compute normal forms

Second case: the diagram has a face

I Find an eliminable edge in the face and remove it;

I normalize the graph recursively;

I add the edge back.

Each step removes one edge and requires linear time in the number
of vertices, so word problem solved in O(nm).



Linear time solution

Theorem
Isotopy of connected planar maps can be decided in linear time
(Hopcroft and Wong, 1974)

?
=



Linear time solution

Theorem
Isotopy of connected planar directed maps can be decided in
linear time.

?
=



Linear time solution

Theorem
Isotopy of connected string diagrams can be decided in linear
time.

?
=



Disconnected case

Theorem
Isotopy of string diagrams can be decided in quadratic time.



References

A. Delpeuch and J. Vicary.
Normal forms for planar connected string diagrams.
ArXiv e-prints, April 2018.

Michael Makkai.
The word problem for computads.
Available on the author’s web page
http://www.math.mcgill.ca/makkai, 2005.


