Normal forms for planar string diagrams

Antonin Delpeuch, Jamie Vicary

SYCO 2

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Background: word problem in higher categories

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Background: word problem in higher categories

Theorem (Makkai, 2005)

The word problem for cells of a finitely generated strict n-category is decidable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Idea of the proof: the configuration space of a given diagram is finite.

Background: word problem in higher categories

Theorem (Makkai, 2005)

The word problem for cells of a finitely generated strict n-category is decidable.

Idea of the proof: the configuration space of a given diagram is finite.

As an algorithm, this is vastly inefficient.

The planar case

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

The planar case

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

The planar case

Theorem

 \rightarrow_R is convergent (terminating and confluent) on connected diagrams.

Confluence of right exchanges

Lemma

 \rightarrow_R is locally confluent.

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Confluence of right exchanges

Lemma

 \rightarrow_R is locally confluent.

◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○ ○

Termination

Termination fails in general, but:

Theorem

 \rightarrow_R terminates in $O(n^3)$ for connected diagrams of size n.

First, in the case of linear diagrams:

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

First, in the case of linear diagrams:

ヘロト 人間 ト 人 ヨト 人 ヨト

э

First, in the case of linear diagrams:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

First, in the case of linear diagrams:

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

First, in the case of linear diagrams:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

From this decomposition, we obtain inductively the following bound:

Lemma

 \rightarrow_R terminates on linear graphs of length n in $O(n^3)$.

The bound is attained for spiral-shaped diagrams:

(日) (日) (日) (日) (日)

Number of steps for a spiral with *n* vertices:

Connected graph G

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Connected graph G

Spanning tree G'

ヘロト 人間ト 人間ト 人間ト

æ

Connected graph G

Spanning tree G'

Linear envelope

ж

ヘロト 人間ト 人間ト 人間ト

Connected graph G

Spanning tree G'

Linear envelope

(日) (四) (日) (日) (日)

 $O(n^3)$ exchanges, each of them taking O(n) time to perform: word problem solved in $O(n^4)$.

By induction on the number of edges.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First case: the diagram has a leaf.

By induction on the number of edges.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

First case: the diagram has a leaf.

remove this leaf;

By induction on the number of edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First case: the diagram has a leaf.

- remove this leaf;
- normalize the diagram recursively;

By induction on the number of edges.

First case: the diagram has a leaf.

- remove this leaf;
- normalize the diagram recursively;
- add the leaf back at the unique height making the diagram normalized.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

イロト 不得 トイヨト イヨト

æ

Second case: the diagram has a face

Second case: the diagram has a face

Find an *eliminable edge* in the face and remove it;

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

Second case: the diagram has a face

Find an *eliminable edge* in the face and remove it;

イロト 不得 トイヨト イヨト

3

Second case: the diagram has a face

Find an *eliminable edge* in the face and remove it;

normalize the graph recursively;

Second case: the diagram has a face

Find an *eliminable edge* in the face and remove it;

(日) (四) (日) (日) (日)

- normalize the graph recursively;
- add the edge back.

Second case: the diagram has a face

- Find an *eliminable edge* in the face and remove it;
- normalize the graph recursively;
- add the edge back.

Each step removes one edge and requires linear time in the number of vertices, so word problem solved in O(nm).

うつん 川田 マイドマイドマイ 雪マ ろうろ

Linear time solution

Theorem

Isotopy of connected planar maps can be decided in linear time (Hopcroft and Wong, 1974)

Linear time solution

Theorem

Isotopy of connected planar **directed** *maps can be decided in linear time.*

(日) (四) (日) (日) (日)

Linear time solution

Theorem

Isotopy of connected **string diagrams** *can be decided in linear time.*

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Disconnected case

Theorem

Isotopy of string diagrams can be decided in quadratic time.

References

A. Delpeuch and J. Vicary.

Normal forms for planar connected string diagrams. *ArXiv e-prints*, April 2018.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Michael Makkai.

The word problem for computads.

Available on the author's web page http://www.math.mcgill.ca/makkai, 2005.