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Motivation

• need for quantitative methods for complex system analysis / design

• challenges:

• system heterogeneity: multitude of quantitative concerns

(probabilistic / resource-aware / non-deterministic behaviour)

• devise generic, compositional techniques

• systematic use of abstraction
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Plan of Talk

1. Quantitative systems as coalgebras (joint with I. Hasuo, S. Shimizu)

• behaviour as (quantitative) traces, extents

• quantitative linear-time logics

• verification and synthesis

2. Quantitative components as coalgebras

• trace semantics for components

• linear-time logics for component-based systems

• verification and synthesis: from homogeneous to heterogeneous systems

Compositionality at different levels . . .
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Quantitative Systems as Coalgebras



Systems as Coalgebras

• F -coalgebra: X
δ // FX (F : Set→ Set)

• provides powerful abstraction:

• labelled transition systems: X
δ // Pω(A×X )

• automata: X
δ //

• observational indistinguishability as bisimilarity

• instantiates to known equivalences

• abstract behaviours as states in final coalgebra

• e.g. determ. automata: {0, 1}A∗ , behaviour as accepted language

• compositionality (at the level of system types):

• logics, their expressiveness, completeness of proof systems

• notions of simulation

• . . .
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Quantitative Systems as Coalgebras

• partial commutative semiring for quantitities: (S ,+, 0, •, 1)

• Boolean semiring: ({0, 1},∨, 0,∧, 1)

• Probab. semiring: ([0, 1],+, 0,×, 1)

• Tropical semiring: (N∞,min,∞,+, 0)

• natural preorder v on S induced by +:

• ≤ on {0, 1}, ≤ on [0, 1], ≥ on N∞

• (closed) system with quantitative branching: X
δ // TSFX

• TSX =
∑

i∈{1,2,...,n}
si • xi for weighted choices

• F : Set→ Set for ”linear” behaviour
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Systems with Branching and Actions

• actions with associated arities: (Λ, ar : Λ→ N)

FX =
⊔
λ∈Λ

X ar(λ)

• e.g. finite/infinite words: {a 7→ 1, b 7→ 1,X 7→ 0}

FX = X + X + 1 ' {a, b} × X + 1

• e.g. finite/infinite labelled binary trees: {a 7→ 2, b 7→ 2,X 7→ 0}

FX = X × X + X × X + 1 ' {a, b} × X × X + 1

• more complex behaviour: {a 7→ 2, b 7→ 1,X 7→ 0}

FX = X × X + X + 1 ' {a} × X × X + {b} × X + 1
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Example: Non-deterministic and Probabilistic Branching

s1 s2

s3

X X

a

a

b

a

b

b

s1 s2

s3

(a, 1
3 )

(a, 1
3 )

(b, 1
3 )

(a, 1
3 )

(b, 1
3 )

(b, 1)

LTSs with explicit termination

• Actions:

X → {a, b}×X+{X} = FX

• Nondet. branching:

X → PFX

Markov chains

• Actions:

X → {a, b} × X = F ′X

• Probab. branching:

X → DF ′X
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Example: Weighted Branching

• weights for resource usage:

s2

1,c





s1

2,b

JJ

1,d





s3
1,X
//

• minimise resource usage

• must also model resource gain . . .

Goals: trace semantics, logics, verification, synthesis

• different types of branching, uniformly

• systems with several types of branching
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Maximal Trace Semantics for Branching Systems [C’17]

• X
δ // TSFX

• why maximal traces ?

• domain for maximal traces: final F -coalgebra Z
ζ
// FZ

• e.g. Z = {a, b}∗ ∪ {a, b}ω

• maximal trace semantics maps (x ∈ X , t ∈ Z ) to s ∈ S

• obtained as greatest fixpoint of operator:

X × Z

��

FX × FZ

��

TSFX × FZ

��

X × Z

��

� RelF // � ETS // �(δ×ζ)∗
//

S S S S

• non-determ./probab. models: realisability/likelihood of each maximal trace

• resource-aware models: minimal resources needed for each maximal trace
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Example: Resource-Aware Models

s2

1,c




s1

2,b

JJ

1,d




s3
1,X
//

t1
d // t2

X //

t3
b
// t4

c
__

t5
b
// t6

c
__

u

b
##

v

c
cc

. . .

(s1, t1) (s1, t2) (s1, t3) (s2, t4) (s1, u) (s2, v)

0 0 0 0 0 0

1 ∞ 2 1 2 1

2 3 3 3 3

. . .

2 ∞ 5 3 ∞ ∞
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Modelling Offsetting

• move to coalgebras of type S×(TS ◦ F )

• first component models offsetting

• e.g. S = (N∞,min,∞,+, 0):

• weights model resource usage

• offsets model resource gains

• define � : S × S → S by

s�t = inf{u | u • t w s} .

• e.g. S = (N∞,min,∞,+, 0):

n�m =

{
max(n −m, 0), if m 6=∞ or n 6=∞,
∞, otherwise.
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Example: Resource-aware Models with Offsetting

s2, 3

1,c




s1

2,b

KK

1,d




s3
1,X
//

t1
d // t2

X //

t3
b
// t4

c
__

t5
b
// t6

c
__

u

b
##

v

c
cc

. . .

(s1, t1) (s1, t2) (s1, t3) (s2, t4) (s1, u) (s2, v)

0 0 0 0 0 0

1 ∞ 2 0 2 0

2 2 0 2 0

. . .

2 ∞ 2 0 2 0
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Generalising Non-Emptiness: Extents

X
δ // S × TSFX

• extent ext : X → S
• instantiates to existence/likelihood/minimal resources across all traces

• defined as greatest fixpoint . . .

• e.g. S = (N∞,min,∞,+, 0), F = A× Id:

y1; 5

0,d
��

x ; 0
5,a

,,
y ; 0

2,c

JJ

0,b

ll

1,c
��

y2; 3

0,d

JJ


ex =ν ey + 5

ey =ν min(ex , ey1 + 2, ey2 + 1)

ey1 =ν ey � 5

ey2 =ν ey � 3



ex ey ey1 ey2

ext 6 1 0 0
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Dealing with More Complex Structure, Compositionally

• X
δ // F1 TS F2 TS . . .TS Fn X or combinations using +/× !

• e.g. X
δ // A× TS(X × X ) + B × TS(1 + X )

• final F1 ◦ . . . ◦ Fn-coalgebra (Z , ζ) gives linear behaviours

• trace semantics as g.f.p. of operator on S-valued relations:

RelF1 ; ETS
; RelF2 ; ETS

; . . .ETS
; RelFn

• generalises to coalgebras with offsetting:

X
δ // S × . . .
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Fixpoint Logics for Quantit. Systems, Compositionally [C’14]

X
δ // F1 TS F2 TS . . .TS Fn X or combinations using +/× !

• system structure drives associated multi-sorted S-valued logic
• > interpreted as extent !

• modal operators induced by linear type F1 ◦ F2 ◦ . . . ◦ Fn

• fixpoint operators, interpreted over (S ,v)

• e.g. X
δ // GTSFX

• modal operators induced by G ,F =⇒ modal formulas [λ][λ′]ϕ

• semantics of formulas induced by quantitative predicate liftings:

X

��

FX

��

TSFX

��

GTSFX

��

X

��

� JλK
// � ext // � Jλ

′K
// � δ∗ //

S S S S S
• generalises to coalgebras with offsetting . . .

Note: step-wise semantics for the logics !
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Fixpoint Logics for Quantitative Systems: Example (more later!)

• X
δ // S × TS({c , d} × X )

• modalities derived directly from F :

• binary modality (c , )t (d , ) makes up for absence of ∧/∨
• e.g. eventually c : µx .((c ,>)t (d , x))

• e.g. infinitely often c : νx .µy .((c , x)t (d , y))

• e.g. S = (N∞,min,∞,+, 0):

• measures minimal resources required for linear property
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Quantitative, Automata-Based Verification [CSH’17]

Given:

• system: pointed S × TSF -coalgebra S
• property: ϕ

compute JϕKS !

We need:

1. notion of parity automaton A
= ”disjunctive” F -coalgebra (A, α) + parity map Ω : A→ N

2. translation from formula ϕ to parity automaton Aϕ
3. product automaton S ⊗A
4. extent of quantitative parity automaton

such that

extent(S ⊗Aϕ) = JϕKS
16



2. Translation from Formulas to Automata: Example

FX = {c , d} × X

ϕ = νx .µy .((c , x)t (d , y))

ψ = µy .((c , ϕ)t (d , y))

• automaton states given by Cl(ϕ):

ϕ
d

++
c
55

ψ d
jj

c
kk

• ”disjunctive” branching in Aϕ
• parity assignment:

• outer fixpoints have larger priorities; odd for µ, even for ν
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3. Product of System and Parity Automaton [CSH’17, C’19]

y1; 5

0,d
��

x ; 0
5,d

,,
y ; 0

2,d
KK

0,c
ll

1,d
��

y2; 3

0,d
KK

ϕ
d

++
c
55

ψ d
jj

c
kk

S ⊗A inherits weights/offsetting from S and parities from A:

y1; 5;ψ

0,d
��

x ; 0;ϕ
5,d

--
y ; 0;ψ

2,d
KK

0,c
mm

1,d
��

y2; 3;ψ

0,d
KK
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4. Extent of Parity Automaton [CSH’17], Strategies [C’19]

• extent only measures traces which conform to the parity condition:

y1; 5;ψ

0,d
��

x ; 0;ϕ
5,d

--
y ; 0;ψ

2,d

KK

0,c
mm

1,d
��

y2; 3;ψ

0,d

KK


ex =ν ey + 5

ey =µ min(ex , ey1 + 2, ey2 + 1)

ey1 =µ ey � 5

ey2 =µ ey � 3


ex ey ey1 ey2

ext 6 1 0 0

• view product as one-player game: objective is to minimise resources

• solution of equational system can be used to synthesise memory-full
strategy for satisfying ϕ with minimal cost !

• ”good for energy” strategy improves resources: (y ,M < 6) 7→ y1

• ”attractor” strategy satisfies parity condition: (y ,M ≥ 6) 7→ x
19



Computing Extents [CSH’17]

Assume: strictly increasing/decreasing chains in S are finite

(e.g. in bounded version of tropical semiring)

• O(m × n|ran(Ω)|) complexity for basic algorithm

• large hidden constant !

• improved complexity O(m × n2) when FX = Σ× X + ∆

• translation from parity to Büchi automaton which preserves

quantitative language !

20



Quantitative Components as

Coalgebras



Components as Coalgebras [Barbosa, Hasuo&Jacobs, . . . ]

For T commutative monad:

• coalgebraic component:

X × A
γ
// T (X × B) ∈ Comp(T ,A,B)

• sequential composition (uses Kleisli composition):

≫ : Comp(T ,A,B)× Comp(T ,B,C )→ Comp(T ,A,C )

• multiplicative parallel composition (uses monad commutativity):

‖ : Comp(T ,A,B)×Comp(T ,C ,D)→ Comp(T ,A×C ,B ×D)

Take T := TS above. Some questions:

1. Trace semantics for components ? Compositionality w.r.t. ≫ and ‖ ?

2. Combine heterogeneous components ?

3. Verification of component-based systems ?
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1. Trace Semantics for Components

• viewing X × A → T(X × B) as coalgebra X
δ // T(X × B)A yields

wrong notion of trace semantics . . .

• e.g. S = (N∞,min,∞,+, 0):

• final (Id× B)A-coalgebra Z : causal stream functions f : Aω → Bω

• trace semantics gives minimal resources needed to exhibit f : Aω → Bω

from x ∈ X :

X × (Bω)A
ω

→ S

• must capture minimal resources for exhibiting b ∈ Bω from x ∈ X on

input a ∈ Aω:

X × Aω × Bω → S

• can not get this by changing the relation liftings for (Id× B)A !
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Trace Semantics for Components (Cont’d)

X × A
δ // T(X × B)

• final Id× A-coalgebra (Aω, ζ)

• final Id× B-coalgebra (Bω, ζ ′)

• trace semantics

tr : X × Aω × Bω → S

as greatest fixpoint:

X×Aω×Bω

id×ζ×id

��

(X×A)×Aω×Bω

δ×id×ζ′

��

X×Aω×Bω

��

(X×B)×Aω×(B×Bω)

��

TS(X×B)×Aω×(B×Bω)

��
�RelId×B
// �ETS //

S S S S

Note: generalises to components with offsetting ! 23



Trace Semantics for Components is Compositional w.r.t. ‖

X × A
c // T(X × B) Y × C

d // T(Y × D)

⇓

X × Y × A× C
c‖d

// T(X × Y × B × D)

Thm. For x ∈ X and y ∈ Y :

trc‖d(x , y , (as, cs), (bs, ds)) = trc(x , as, bs) • trd(y , cs, ds)

To do: generalise to components with offsetting

trc‖d(x , y , (as, cs), (bs, ds)) w trc(x , as, bs) • trd(y , cs, ds) ?
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Trace Semantics for Components is Compositional w.r.t. ≫

X × A
c // T(X × B) Y × B

d // T(Y × C )

⇓

X × Y × A
c≫d // T(X × Y × B)

We would like:

trc≫d(x , y , as, cs) =
∑

bs∈Bω

trc(x , as, bs) • trd(y , bs, cs)

Lemma

trc(x , as, bs) =
l

n∈ω
trc,n(x , πn(as), πn(bs))

with trc,n : X × An × Bn → S defined inductively . . .

Thm.

trc≫d ,n(x , y , as, cs) =
∑

bs∈Bn

trc,n(x , as, bs) • trd ,n(y , bs, cs)
25



2. Combining Heterogeneous Components ?

X × A
γ
// T(X × B) Y × B

δ // T′(Y × C )

• sequential composition γ ≫ δ:

X × Y × A
(γ×idY );stT

// T(X × Y × B)
T(idX×δ);stT′

// TT′(X × Y × C )

• multiplicative parallel composition γ ‖ δ:

X × Y × A× C
γ×δ
// T(X × B)× T′(Y × D)

stT;stT′
// TT′(X × Y × B × D)

Relevance ??
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Trace Semantics for Heterogeneous Systems of Components ??

X × Y × A
γ≫δ

// TSTS ′(X × Y × C )

• unclear how to define trace sematics . . .

• . . . but can focus on a single type of quantity, e.g. S ′:

• consider abstraction: X × Y × A
γ≫δ

// PTS′(X × Y × C )

• TS -component is cooperative: use maxS in def. of trace semantics

=⇒ tr(x , y , as, cs) captures best case

• TS -component is adversarial: use minS in def. of trace semantics

=⇒ tr(x , y , as, cs) captures worst case
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Fixpoint Logics for Coalgebraic Components, Compositionally

X
δ // (TS({c , d} × X )){a,b}

• two-sorted logic, nested modalities !

• FX = {c , d} × X =⇒ binary modality (c , )t (d , )

• GX = X {a,b} =⇒ binary modality (a, )u (b, )

u interpreted as min in (S ,v)

• every a eventually followed by c :

ϕ := νx .( [a](µy .(c , x)t (d , [a]y u [b]y))

u [b]((c , x)t (d , x)) )

• e.g. S = (N∞,min,∞,+, 0) =⇒ minimal resources needed for ϕ

in the worst case (worst choice of input stream)

28



Fixpoint Logics for Heterogeneous Systems, Compositionally

X
δ // (P TS({c , d} × X )){a,b}

• same logic as before . . .

• use minS / maxS for adversarial / cooperative component

29



Quantitative Parity Games, Extents, Strategies [C’19]

• quantitative parity game:

X
δ // S × PTSX + Ω : X → N

• derived from Adversary model ≫ Component space

• extent:

z1

2
,,

5




y1; 5kk

x ; 0

JJ

��

z2

5

TT

1
22 y2; 3

ss


ex =ν max(min(ex + 5, ey1 + 2),

min(ex + 5, ey2 + 1))

ey1 =µ min(ex + 5, ey1 + 2) � 5

ey2 =µ min(ex + 5, ey2 + 1) � 3


ex ey1 ey2

ext 2 0 0

• synthesise memory-full strategy which minimises resources
• ”good for energy” strategy: (x , z1,M < 7) 7→ y1

• ”attractor” strategy: (x , z1,M ≥ 7) 7→ x 30
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Further Challenges

• handle complexity (e.g. through abstraction)

• more general (e.g. dynamic) components?

• other quantitative monads?

• . . .

Ultimate goal: algorithms and tools for quantitative verification

and synthesis
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