Quantitative Coalgebras for Optimal Synthesis

Corina Cirstea

University of Southampton

17 December 2018
SYCO-2 Workshop, Glasgow

e need for quantitative methods for complex system analysis / design

e challenges:

e system heterogeneity: multitude of quantitative concerns
(probabilistic / resource-aware / non-deterministic behaviour)

e devise generic, compositional techniques

e systematic use of abstraction

Plan of Talk

1. Quantitative systems as coalgebras (joint with |. Hasuo, S. Shimizu)

e behaviour as (quantitative) traces, extents
e quantitative linear-time logics
e verification and synthesis

2. Quantitative as coalgebras

e trace semantics for components
e linear-time logics for component-based systems
e verification and synthesis: from homogeneous to heterogeneous systems

Compositionality at different levels . ..

Quantitative Systems as Coalgebras

Systems as Coalgebras

o F-coalgebra: X —2—FX (F : Set — Set)

e provides powerful abstraction:

o labelled transition systems: X —°— (AxX)

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)

e provides powerful abstraction:

e Markov Chains : XL> X

Systems as Coalgebras

o F-coalgebra: X —2—FX (F : Set — Set)

e provides powerful abstraction:

o transition systems: X —°— (AxX)

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)

e provides powerful abstraction:

e weighted transition systems: X — %y WAxX

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)
e provides powerful abstraction:
e weighted transition systems: X 0, WARX

o automata: X —2— {0,1} x XA

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)
e provides powerful abstraction:
e weighted transition systems: X 0, WARX

° automata: X#{O,l} x P(X)A

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)
e provides powerful abstraction:
e weighted transition systems: X 0, WARX

o automata: XLH?(X)A

Systems as Coalgebras

e F-coalgebra: X —2—FX (F : Set — Set)
e provides powerful abstraction:

e weighted transition systems: X 0, WARX

o automata: XLH?(X)A

e observational indistinguishability as bisimilarity

e instantiates to known equivalences

Systems as Coalgebras

F-coalgebra: X —2— FX (F : Set — Set)

provides powerful abstraction:
e weighted transition systems: X — %y WAxX

o automata: XLH?(X)A

observational indistinguishability as bisimilarity

e instantiates to known equivalences

abstract behaviours as states in final coalgebra

e e.g. determ. automata: {0,1}*", behaviour as

Systems as Coalgebras

e F-coalgebra: X5 FX (F : Set — Set)
e provides powerful abstraction:
e weighted transition systems: X 0, WARX
o automata: XLH?(X)A
e observational indistinguishability as bisimilarity
e instantiates to known equivalences
e abstract behaviours as states in final coalgebra
e e.g. determ. automata: {0,1}*", behaviour as
e compositionality (at the level of system types):

e logics, their expressiveness, completeness of proof systems
e notions of simulation

Systems as Coalgebras

e partial commutative semiring for quantitities: (S, +,0,e,1)
e Boolean semiring: ({0,1},V,0,A,1)
e Probab. semiring: ([0,1],+,0, x,1)
e Tropical semiring: (N°, min, co, +,0)
e natural preorder C on S induced by +:
e <on{0,1}, <on]0,1], >onN%®

e (closed) system with quantitative branching: X L>T5 X

e TsX = > s; @ x; for weighted choices
i€{1,2,...,n}
e [:Set — Set for "linear” behaviour

Systems with and Actions

. with associated arities: (A,ar : A — N)
X — |_|Xar()\)
AEA

e e.g. finite/infinite words: {a— 1,b+— 1,v — 0}
X =X+ X+ 1~{abyxX+1
e e.g. finite/infinite labelled binary trees: {a+— 2,b+— 2, v — 0}
X = + + 1 ~{a,b} x X x X+1
e more complex behaviour: {a+2,b+— 1,v +— 0}

X = + X + 1 ~{a}xXxX+{b} xX+1

Example: Non-deterministic and Probabilistic Branching

LTSs with explicit termination Markov chains
e Actions: e Actions:
X = {a, b} xX+{v}=FX X—={a,b}xX=FX
e Nondet. branching: e Probab. branching:
X = PFX X —-DF'X

Example: Weighted Branching

e weights for resource usage:

® minimise resource usage

e must also model resource gain ...

Goals: trace semantics, logics, verification, synthesis
e different types of branching, uniformly
e systems with several types of branching

for Branching Systems [C’17]

° XL)TS X

e why maximal ?

e domain for maximal traces: final F-coalgebra Z —— FZ
o eg 7 ={a,b}" U{a b}

e maximal trace semantics maps (x € X, Jtose S
e obtained as greatest fixpoint of operator:

XxZ FX x FZ TsFX x FZ XxZ
i Rel J{ Erg l (0xQ)” l
— — —

S S) S

e non-determ./probab. models: realisability/likelihood of each maximal trace

e resource-aware models: minimal resources needed for each maximal trace

Example: Resource-Aware Models

2, i

(s1,t1) | (51, t2) ‘ (s1,t3) ‘ (s2,ta) ‘ (s1,0) ‘ (s2,v)
0 0 0 0 0 0
1 o0 2 1 2 1
2 3 3 3 3

Modelling

e move to coalgebras of type Sx(Tso F)
e first component models offsetting
e eg. S =(N°° min,o0,+,0):
e weights model resource usage
e offsets model resource gains

e define @ : S xS — S by
sot=inf{u|uvetJs}.

e eg. S = (N min,oo,+,0):

max(n — m,0), if m=# oo or n# oo,
nom =
00, otherwise.

10

11

(s1.11) | (st,22) | (s1.83) | (s2,ta) | (s1.0) | (s2,v)

=
]
T
o
=
o
P
]
3
©
Q
O
S
S
(=]
(0]
0
(a4
9
o
€
5]
X
1%}

Generalising Non-Emptiness:

X S5xTsFX

e extentext : X — S

e instantiates to existence/likelihood/minimal resources across all traces
e defined as greatest fixpoint ...

e eg. S = (N> min,o0,+,0), F =Ax Id:

e =u e +5
e, =, min(ex, e, +2,6,+1)
&, =v e 65
&, =v e 63

12

Dealing with More Complex Structure,

X2, TsF>Ts...TsF, X or combinations using +/x !

e eg. X2 Ts + Ts

final /- o...0 F,-coalgebra (Z, () gives linear behaviours
e trace semantics as g.f.p. of operator on S-valued relations:
Relr ; Et; Relr,; Et,; ... Ers; Rel

e generalises to coalgebras with offsetting:

X—35x%...

13

Fixpoint Logics for Quantit. Systems, [C'14]

XL> TsF>Ts...TsF, X or combinations using +/x !

e system structure drives associated multi-sorted S-valued logic
e | interpreted as extent !

e modal operators induced by linear type 0/, 0...0
e fixpoint operators, interpreted over (S,C)
eeg X SN TsFX
e modal operators induced by G, = modal formulas

e semantics of formulas induced by quantitative predicate liftings:

X X ek TsFX X
o= Lo | = | & |
S S S S S

e generalises to coalgebras with offsetting ...

Note: step-wise semantics for the logics !

14

Fixpoint Logics for Quantitative Systems: Example

o X—55x Ts(x X)

e modalities derived directly from
e binary modality (c,_)!!(d,_) makes up for absence of A/V
e e.g. eventually c: px.((c, T)LI(d,x))
e e.g. infinitely often c: vx.uy.((c,x) 1 (d,y))

e eg. S=(N*° min, o0, +,0):

e measures minimal resources required for linear property

ii5)

Verification [CSH’17]

Given:

e system: pointed S x Tg/-coalgebra &
® property:

compute s !

We need:

1. notion of parity automaton A
= disjunctive” f-coalgebra (A,a) + parity map Q: A— N
2. translation from formula ¢ to parity automaton A,
3. product automaton S ® A
4. extent of quantitative parity automaton

such that

extent(S ® Ay) = [¢]s
16

from Formulas to Automata: Example

X ={c,d} x X
o =vx.uy.((c,x) 1 (d,y))
¥ =py.((c,p) L1 (d,y))

e automaton states given by Cl(p):

e "disjunctive” branching in A,
e parity assignment:

e outer fixpoints have larger priorities; odd for u, even for v

17

of System and Parity Automaton [CSH’17, C’'19]

18

of [CSH’17], Strategies [C’19]

e extent only measures traces which conform to the parity condition:

e —u e +5
e, =y min(ec, ey, +2,e,+1)
& —u ey 65
S, =u e 03

ext |6 1 0 0

e view product as one-player game: objective is to minimise resources
e solution of equational system can be used to synthesise memory-full
strategy for satisfying ¢ with minimal cost !
e "good for energy” strategy improves resources: (y, M < 6) — y;

e "attractor’ strategy satisfies parity condition: (y, M > 6) — x
19

Computing Extents [CSH’17]

Assume: strictly increasing/decreasing chains in S are finite
(e.g. in bounded version of tropical semiring)

e O(m x nl"(D1) complexity for basic algorithm

e large hidden constant !

e improved complexity O(m x n?) when FX =¥ x X + A

e translation from parity to Biichi automaton which preserves
quantitative language !

20

Quantitative Components as
Coalgebras

Components as Coalgebras [Barbosa, Hasuo&Jacobs, ...

For T commutative monad:

[
XXxA——T(X xB) € Comp(T,A,B)
o (uses Kleisli composition):
: Comp(T,A,B) x Comp(T,B,C)— Comp(T,A,C)
o (uses monad commutativity):

: Comp(T,A,B) x Comp(T,C,D) — Comp(T,Ax C,B x D)

Take T := Ts above. Some questions:

1. Trace semantics for components 7 Compositionality w.r.t. and | 7
2. Combine heterogeneous components ?
3. Verification of component-based systems ?

21

1. Trace Semantics for Components

e viewing X x A — T() as coalgebra X LT(A yields
wrong notion of trace semantics . ..

e e.g. S = (N min, o0, +,0):

e final ()*-coalgebra Z: causal stream functions f : A% — BY

e trace semantics gives minimal resources needed to exhibit ¥ : A — B“

from x € X:
X x (B =S
e must capture minimal resources for exhibiting from x € X on
input a € A“:
X xAYx B¥ — S
e can not get this by changing the relation liftings for Al

22

Trace Semantics for Components (Cont’d)

X x A—25T()
e final Id x A-coalgebra (A%, ()
e final -coalgebra (5, (")
e trace semantics
tr: X x A x — S X x AYx B¥
as greatest fixpoint: PG
(X xA)x A¥ x B¥
oxidx ¢’
X X A x B¥ (X<B)x A¥ x (B~<B%) Ts(XxB)xA“x(BxB*)
l Rel J ETS
— —
S S S

Note: generalises to components with offsetting ! 23

Trace Semantics for Components is Compositional w.r.t. ||

X x A—<—T() Y x € —25T()
\
X><Y><A><CC—d>T()

Thm. Forxe X andy € Y:

troig(x, y, (as, cs), (bs, ds)) = tro(x, as, bs) e try(y, cs, ds)

24

Trace Semantics for Components is Compositional w.r.t. ||

X x A——T() Y x € —2T()
\
X><Y><A><CC—d>T()

Thm. Forxe X andy € Y:

troig(x, y, (as, cs), (bs, ds)) = tro(x, as, bs) e try(y, cs, ds)

To do: generalise to components with offsetting

trea(x,y, (as, cs), (bs,ds)) 3 trc(x, as, bs)e try(y,cs,ds) ?

24

Trace Semantics for Components is Compositional w.r.t. >>

X x A—5T() Y x B—45T()
y
XxYxA—"2 57)
We would like:

tresd(x,y,as, cs) = Z tre(x, as, bs) e try(y, bs, cs)
bsc B

Lemma
trc(x, as, bS) = |_| trCJ7(X7 7Tn(85), 7Tn(b5))

new

with tr. , : X X A" x B" — S defined inductively ...
Thm.

tresq.n(x,y, as, cs) Z tre.n(x, as, bs) e try n(y, bs, cs)
bscB"

25

2. Combining Components ?

X xA—T(X x B) Y xB—T/(Y x ()

e sequential composition v = 4:

(Xidy);StT T(idxX);StT/
—

XXYxA T(X x Y x B) TT(X x Y x C)

e multiplicative parallel composition 7 || d:

stT;stqs

XxYxAxCEST(X x B)x T(Y x DY —FTT/(X x Y x B x D)

Relevance 77

26

Trace Semantics for Systems of Components

XXYxA—"2 iTeTo(X x Y x C)

e unclear how to define trace sematics . ..
e ...but can focus on a single type of quantity, e.g. S’

e consider abstraction: X X Y x A%’PTS/(X xY x C)

e Ts-component is cooperative: use maxs in def. of trace semantics
= tr(x,y, as, cs) captures best case

e Tgs-component is adversarial: use ming in def. of trace semantics
= tr(x,y, as, cs) captures worst case

27

Fixpoint Logics for Coalgebraic Components, Compositionally

X —25 (T x X)){a:b}

e two-sorted logic, nested modalities !

o = binary modality (¢,_)L/(d,.)
e GX = X126} — binary modality (a,)M (b,)
M interpreted as min in (S,0C)

e every a eventually followed by

¢ = vx.([a](puy-(c,x) L1 (d, [a]ly T [b]y))
N [B]((c,x) L (d, x)))

e eg. S = (N> min, oo, +,0) = minimal resources needed for ¢
in the worst case (worst choice of input stream)

28

Fixpoint Logics for Systems, Compositionally

X — (PTs({c.d} x X)){b}

e same logic as before ...

e use ming / maxs for adversarial / cooperative component

29

Quantitative Parity Games, Extents, Strategies [C'19]

e quantitative parity game:

X—2435xPTsX + Q:X->N

e derived from Adversary model 3> Component space

e extent:

2
SCDIN

5

max(min(ex + 5, e, + 2),
min(ex + 5, ey, + 1))

min(ex + 5,6, +2)©5

min(ex + 5,e, +1)©3

e synthesise memory-full strategy which minimises resources

e "good for energy” strategy: (x,z1, M <7)+— y;
e "attractor’ strategy: (x,z, M >7) — x 30

Conclusions

Further Challenges

handle complexity (e.g. through abstraction)

more general (e.g. dynamic) components?

other quantitative monads?

Ultimate goal: algorithms and tools for quantitative verification
and synthesis

31

	Quantitative Systems as Coalgebras
	From Branching Semantics to Linear Time Semantics

	Quantitative Components as Coalgebras
	Conclusions

