Quantitative Coalgebras for Optimal Synthesis

Corina Cîrstea

University of Southampton

17 December 2018 SYCO-2 Workshop, Glasgow

- need for quantitative methods for complex system analysis / design
- challenges:
 - system heterogeneity: multitude of quantitative concerns (probabilistic / resource-aware / non-deterministic behaviour)
 - devise generic, compositional techniques
 - systematic use of abstraction

1. Quantitative systems as coalgebras (joint with I. Hasuo, S. Shimizu)

- behaviour as (quantitative) traces, extents
- quantitative linear-time logics
- verification and synthesis
- 2. Quantitative components as coalgebras
 - trace semantics for components
 - linear-time logics for component-based systems
 - verification and synthesis: from homogeneous to heterogeneous systems

Compositionality at different levels

Quantitative Systems as Coalgebras

- *F*-coalgebra: $X \xrightarrow{\delta} FX$ (*F* : Set \rightarrow Set)
- provides powerful abstraction:
 - labelled transition systems: $X \xrightarrow{\delta} \mathcal{P}_{\omega}(A \times X)$

• *F*-coalgebra:
$$X \xrightarrow{\delta} FX$$

(F : Set \rightarrow Set)

• provides powerful abstraction:

• Markov Chains :
$$X \xrightarrow{\delta} \mathcal{D}X$$

- *F*-coalgebra: $X \xrightarrow{\delta} FX$ (*F* : Set \rightarrow Set)
- provides powerful abstraction:
 - probabilistic transition systems: $X \xrightarrow{\delta} \mathcal{D}(A \times X)$

- *F*-coalgebra: $X \xrightarrow{\delta} FX$ (*F* : Set \rightarrow Set)
- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$

• *F*-coalgebra: $X \xrightarrow{\delta} FX$

$$(F: Set \rightarrow Set)$$

- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - determ. automata: $X \xrightarrow{\delta} \{0, 1\} \times X^A$

- *F*-coalgebra: $X \xrightarrow{\delta} FX$ (*F* : Set \rightarrow Set)
- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - nondet. automata: $X \xrightarrow{\delta} \{0,1\} \times \mathcal{P}(X)^A$

- *F*-coalgebra: $X \xrightarrow{\delta} FX$ (*F* : Set \rightarrow Set)
- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - probabilistic automata: $X \xrightarrow{\delta} \mathcal{P}(\mathcal{D}X)^A$

• *F*-coalgebra: $X \xrightarrow{\delta} FX$

$$(F: Set \rightarrow Set)$$

- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - probabilistic automata: $X \xrightarrow{\delta} \mathcal{P}(\mathcal{D}X)^A$
- observational indistinguishability as bisimilarity
 - instantiates to known equivalences

• *F*-coalgebra: $X \xrightarrow{\delta} FX$

$$(F: Set \rightarrow Set)$$

- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - probabilistic automata: $X \xrightarrow{\delta} \mathcal{P}(\mathcal{D}X)^A$
- observational indistinguishability as bisimilarity
 - instantiates to known equivalences
- abstract behaviours as states in final coalgebra
 - e.g. determ. automata: $\{0,1\}^{A^*}$, behaviour as accepted language

• *F*-coalgebra: $X \xrightarrow{\delta} FX$

(
$$F$$
 : Set \rightarrow Set)

- provides powerful abstraction:
 - weighted transition systems: $X \xrightarrow{\delta} W^{A \times X}$
 - probabilistic automata: $X \xrightarrow{\delta} \mathcal{P}(\mathcal{D}X)^A$
- observational indistinguishability as bisimilarity
 - instantiates to known equivalences
- abstract behaviours as states in final coalgebra
 - e.g. determ. automata: $\{0,1\}^{A^*}$, behaviour as accepted language
- compositionality (at the level of system types):
 - logics, their expressiveness, completeness of proof systems
 - notions of simulation

• ...

Quantitative Systems as Coalgebras

- partial commutative semiring for quantitities: $(S, +, 0, \bullet, 1)$
 - Boolean semiring: $(\{0,1\}, \lor, 0, \land, 1)$
 - Probab. semiring: $([0,1],+,0,\times,1)$
 - Tropical semiring: $(\mathbb{N}^{\infty}, \min, \infty, +, 0)$
- natural preorder \sqsubseteq on *S* induced by +:
 - $\bullet \ \le \mbox{ on } \{0,1\}, \quad \le \mbox{ on } [0,1], \quad \ge \mbox{ on } \mathbb{N}^\infty$
- (closed) system with quantitative branching: $X \xrightarrow{\delta} T_S F X$
 - $T_S X = \sum_{i \in \{1, 2, \dots, n\}} s_i \bullet x_i$ for weighted choices
 - $F : Set \rightarrow Set \text{ for "linear" behaviour}$

Systems with Branching and Actions

- actions with associated arities: $(\Lambda, \text{ar}: \Lambda \to \mathbb{N})$

$$FX = \bigsqcup_{\lambda \in \Lambda} X^{\operatorname{ar}(\lambda)}$$

• e.g. finite/infinite words: $\{a \mapsto 1, b \mapsto 1, \checkmark \mapsto 0\}$

$$FX = X + X + 1 \simeq \{a, b\} \times X + 1$$

• e.g. finite/infinite labelled binary trees: $\{a \mapsto 2, b \mapsto 2, \checkmark \mapsto 0\}$

 $FX = X \times X + X \times X + 1 \simeq \{a, b\} \times X \times X + 1$

• more complex behaviour: $\{a \mapsto 2, b \mapsto 1, \checkmark \mapsto 0\}$

 $FX = X \times X + X + 1 \simeq \{a\} \times X \times X + \{b\} \times X + 1$

Example: Non-deterministic and Probabilistic Branching

LTSs with explicit termination

Actions:

$$X \to \{a, b\} \times X + \{\checkmark\} = FX$$

• Nondet. branching: $X \rightarrow \mathcal{P}FX$

Markov chains

- Actions:
 - $X \to \{a, b\} \times X = F'X$
- Probab. branching: $X \rightarrow \mathcal{D}F'X$

Example: Weighted Branching

• weights for resource usage:

- minimise resource usage
- must also model resource gain ...

Goals: trace semantics, logics, verification, synthesis

- different types of branching, uniformly
- systems with several types of branching

Maximal Trace Semantics for Branching Systems [C'17]

- $X \xrightarrow{\delta} \mathsf{T}_{S} \mathsf{F} X$
- why maximal traces ?
- domain for maximal traces: final *F*-coalgebra $Z \xrightarrow{\zeta} FZ$
 - e.g. $Z = \{a, b\}^* \cup \{a, b\}^{\omega}$
- maximal trace semantics maps $(x \in X, t \in Z)$ to $s \in S$
 - obtained as greatest fixpoint of operator:

- non-determ./probab. models: realisability/likelihood of each maximal trace
- resource-aware models: minimal resources needed for each maximal trace

Example: Resource-Aware Models

. . .

Modelling Offsetting

- move to coalgebras of type $S \times (T_S \circ F)$
 - first component models offsetting
 - e.g. $S = (\mathbb{N}^{\infty}, \min, \infty, +, 0)$:
 - weights model resource usage
 - offsets model resource gains
- define $\oslash: S \times S \to S$ by

$$s \oslash t = \inf\{u \mid u \bullet t \sqsupseteq s\}.$$

• e.g. $S = (\mathbb{N}^{\infty}, \min, \infty, +, 0)$: $n \ominus m = \begin{cases} \max(n - m, 0), & \text{if } m \neq \infty \text{ or } n \neq \infty, \\ \infty, & \text{otherwise.} \end{cases}$

Example: Resource-aware Models with Offsetting

. . .

Generalising Non-Emptiness: Extents

$$X \xrightarrow{\delta} S \times T_S F X$$

- extent $ext : X \to S$
 - instantiates to existence/likelihood/minimal resources across all traces
 - defined as greatest fixpoint ...

• e.g.
$$S = (\mathbb{N}^{\infty}, \min, \infty, +, 0)$$
, $F = A \times Id$:

Dealing with More Complex Structure, Compositionally

- $X \xrightarrow{\delta} F_1 T_S F_2 T_S \dots T_S F_n X$ or combinations using $+/\times !$
 - e.g. $X \xrightarrow{\delta} A \times T_{S}(X \times X) + B \times T_{S}(1 + X)$
- final $F_1 \circ \ldots \circ F_n$ -coalgebra (Z, ζ) gives linear behaviours
- trace semantics as g.f.p. of operator on S-valued relations:

 Rel_{F_1} ; E_{T_S} ; Rel_{F_2} ; E_{T_S} ; ... E_{T_S} ; Rel_{F_n}

• generalises to coalgebras with offsetting:

$$X \xrightarrow{\delta} S \times \ldots$$

Fixpoint Logics for Quantit. Systems, Compositionally [C'14]

 $X \xrightarrow{\delta} F_1 T_S F_2 T_S \dots T_S F_n X$ or combinations using $+/\times !$

- system structure drives associated *multi-sorted* S-valued logic
 - \top interpreted as extent !
 - modal operators induced by linear type $F_1 \circ F_2 \circ \ldots \circ F_n$
 - fixpoint operators, interpreted over (S, \sqsubseteq)
- e.g. $X \xrightarrow{\delta} GT_SFX$
 - modal operators induced by $G, F \implies$ modal formulas $[\lambda][\lambda']\varphi$
 - semantics of formulas induced by quantitative predicate liftings:

• generalises to coalgebras with offsetting ...

Note: step-wise semantics for the logics !

- $X \xrightarrow{\delta} S \times T_S(\{c, d\} \times X)$
- modalities derived directly from *F*:
 - binary modality $(c, _) \sqcup (d, _)$ makes up for absence of \land / \lor
 - e.g. eventually c: $\mu x.((c, \top) \sqcup (d, x))$
 - e.g. infinitely often c: $\nu x.\mu y.((c, x) \sqcup (d, y))$
- e.g. $S = (\mathbb{N}^{\infty}, \min, \infty, +, 0)$:
 - measures minimal resources required for linear property

Given:

- system: pointed $S \times T_S F$ -coalgebra S
- property: φ

compute $\llbracket \varphi \rrbracket_{\mathcal{S}}$!

We need:

- 1. notion of parity automaton $\ensuremath{\mathcal{A}}$
 - $= \quad \text{``disjunctive''} \ \textit{F}-\text{coalgebra} \ (\textit{A},\alpha) \quad + \quad \text{parity map} \ \Omega:\textit{A} \rightarrow \mathbb{N}$
- 2. translation from formula arphi to parity automaton \mathcal{A}_{arphi}
- 3. product automaton $\mathcal{S}\otimes\mathcal{A}$
- 4. extent of quantitative parity automaton

such that

$$\mathsf{extent}(\mathcal{S}\otimes\mathcal{A}_{\varphi})=\llbracket \varphi \rrbracket_{\mathcal{S}}$$

2. Translation from Formulas to Automata: Example

$$FX = \{c, d\} \times X$$
$$\varphi = \nu x.\mu y.((c, x) \sqcup (d, y))$$
$$\psi = \mu y.((c, \varphi) \sqcup (d, y))$$

• automaton states given by $Cl(\varphi)$:

- "disjunctive" branching in \mathcal{A}_{arphi}
- parity assignment:
 - outer fixpoints have larger priorities; odd for μ , even for ν

3. Product of System and Parity Automaton [CSH'17, C'19]

 $\mathcal{S} \otimes \mathcal{A}$ inherits weights/offsetting from \mathcal{S} and parities from \mathcal{A} :

4. Extent of Parity Automaton [CSH'17], Strategies [C'19]

• extent only measures traces which conform to the parity condition:

- view product as one-player game: objective is to minimise resources
- solution of equational system can be used to synthesise memory-full strategy for satisfying φ with minimal cost !
 - "good for energy" strategy improves resources: $(y, M < 6) \mapsto y_1$
 - "attractor" strategy satisfies parity condition: $(y, M \ge 6) \mapsto x$

Assume: strictly increasing/decreasing chains in S are finite

(e.g. in bounded version of tropical semiring)

- $O(m \times n^{|ran(\Omega)|})$ complexity for basic algorithm
 - large hidden constant !
- improved complexity $O(m \times n^2)$ when $FX = \Sigma \times X + \Delta$
 - translation from parity to Büchi automaton which preserves quantitative language !

Quantitative Components as Coalgebras

Components as Coalgebras [Barbosa, Hasuo&Jacobs, ...]

For T commutative monad:

• coalgebraic component:

 $X \times A \xrightarrow{\gamma} T(X \times B) \in \operatorname{Comp}(T, A, B)$

• sequential composition (uses Kleisli composition):

 \gg : Comp $(T, A, B) \times$ Comp $(T, B, C) \rightarrow$ Comp(T, A, C)

• multiplicative parallel composition (uses monad commutativity):

 $\|$: **Comp**(T, A, B) × **Comp**(T, C, D) → **Comp**($T, A \times C, B \times D$)

Take $T := T_S$ above. Some questions:

- 1. Trace semantics for components ? Compositionality w.r.t. >>> and || ?
- 2. Combine heterogeneous components ?
- 3. Verification of component-based systems ?

1. Trace Semantics for Components

- viewing X × A → T(X × B) as coalgebra X → T(X × B)^A yields wrong notion of trace semantics ...
- e.g. $S = (\mathbb{N}^{\infty}, \min, \infty, +, 0)$:
 - final $(Id \times B)^A$ -coalgebra Z: causal stream functions $f : A^{\omega} \to B^{\omega}$
 - trace semantics gives minimal resources needed to exhibit f : A^ω → B^ω from x ∈ X:

$$X imes (B^{\omega})^{A^{\omega}} o S$$

must capture minimal resources for exhibiting b ∈ B^ω from x ∈ X on input a ∈ A^ω:

$$X \times A^{\omega} \times B^{\omega} \to S$$

• can not get this by changing the relation liftings for $(Id \times B)^A$!

Trace Semantics for Components (Cont'd)

$X \times A \xrightarrow{\delta} \mathsf{T}(X \times B)$

- final $\mathsf{Id} \times A$ -coalgebra (A^{ω}, ζ)
- final Id × *B*-coalgebra (B^{ω}, ζ')
- trace semantics

Note: generalises to components with offsetting !

Trace Semantics for Components is Compositional w.r.t.

Thm. For $x \in X$ and $y \in Y$:

 $\operatorname{tr}_{c \parallel d}(x, y, (as, cs), (bs, ds)) = \operatorname{tr}_{c}(x, as, bs) \bullet \operatorname{tr}_{d}(y, cs, ds)$

Trace Semantics for Components is Compositional w.r.t.

Thm. For $x \in X$ and $y \in Y$:

 $\operatorname{tr}_{c \parallel d}(x, y, (as, cs), (bs, ds)) = \operatorname{tr}_{c}(x, as, bs) \bullet \operatorname{tr}_{d}(y, cs, ds)$

To do: generalise to components with offsetting

 $\operatorname{tr}_{c \parallel d}(x, y, (as, cs), (bs, ds)) \sqsupseteq \operatorname{tr}_{c}(x, as, bs) \bullet \operatorname{tr}_{d}(y, cs, ds) ?$

Trace Semantics for Components is Compositional w.r.t. >>>

We would like:

$$\operatorname{tr}_{c \gg d}(x, y, as, cs) = \sum_{bs \in B^{\omega}} \operatorname{tr}_{c}(x, as, bs) \bullet \operatorname{tr}_{d}(y, bs, cs)$$

Lemma

$$\operatorname{tr}_{c}(x, as, bs) = \prod_{n \in \omega} \operatorname{tr}_{c,n}(x, \pi_n(as), \pi_n(bs))$$
$$\operatorname{r}_{c,n} : X \times A^n \times B^n \to S \text{ defined inductively } \dots$$

Thm.

with t

$$\operatorname{tr}_{c \gg d, n}(x, y, as, cs) = \sum_{bs \in B^n} \operatorname{tr}_{c, n}(x, as, bs) \bullet \operatorname{tr}_{d, n}(y, bs, cs)$$
²⁵

$$X \times A \xrightarrow{\gamma} T(X \times B)$$
 $Y \times B \xrightarrow{\delta} T'(Y \times C)$

• sequential composition $\gamma \gg \delta$:

$$X \times Y \times A \xrightarrow{(\gamma \times \mathrm{id}_Y); \mathrm{st}_{\mathsf{T}}} \mathsf{T}(X \times Y \times B) \xrightarrow{\mathsf{T}(\mathrm{id}_X \times \delta); \mathrm{st}_{\mathsf{T}'}} \mathsf{T}\mathsf{T}'(X \times Y \times C)$$

• multiplicative parallel composition $\gamma \parallel \delta$:

 $X \times Y \times A \times C \xrightarrow{\gamma \times \delta} \mathsf{T}(X \times B) \times \mathsf{T}'(Y \times D) \xrightarrow{\mathsf{st}_{\mathsf{T}};\mathsf{st}_{\mathsf{T}'}} \mathsf{T}\mathsf{T}'(X \times Y \times B \times D)$ Relevance ??

$$X \times Y \times A \xrightarrow{\gamma \gg \delta} \mathsf{T}_{S}\mathsf{T}_{S'}(X \times Y \times C)$$

- unclear how to define trace sematics ...
- ... but can focus on a single type of quantity, e.g. S':
 - consider abstraction: $X \times Y \times A \xrightarrow{\gamma \gg \delta} \mathcal{P}T_{S'}(X \times Y \times C)$
 - T_S-component is cooperative: use max_S in def. of trace semantics
 ⇒ tr(x, y, as, cs) captures best case
 - T_S -component is adversarial: use min_S in def. of trace semantics \implies tr(x, y, as, cs) captures worst case

Fixpoint Logics for Coalgebraic Components, Compositionally

 $X \xrightarrow{\delta} (\mathsf{T}_{\mathcal{S}}(\{c,d\} \times X))^{\{a,b\}}$

• two-sorted logic, nested modalities !

- $FX = \{c, d\} \times X \implies \text{binary modality } (c, _) \sqcup (d, _)$
- $GX = X^{\{a,b\}} \implies \text{binary modality } (a, _) \sqcap (b, _)$

 \sqcap interpreted as min in (S, \sqsubseteq)

• every *a* eventually followed by *c*:

$$\varphi := \nu x.([a](\mu y.(c, x) \sqcup (d, [a]y \sqcap [b]y))$$
$$\sqcap [b]((c, x) \sqcup (d, x)))$$

 e.g. S = (N[∞], min, ∞, +, 0) ⇒ minimal resources needed for φ in the worst case (worst choice of input stream)

$$X \xrightarrow{\delta} (\mathcal{P} \mathsf{T}_{S}(\{c, d\} \times X))^{\{a, b\}}$$

- same logic as before . . .
- use \min_S / \max_S for adversarial / cooperative component

Quantitative Parity Games, Extents, Strategies [C'19]

• quantitative parity game:

$$X \xrightarrow{\delta} S \times \mathcal{P}\mathsf{T}_S X \quad + \quad \Omega : X \to \mathbb{N}$$

- derived from Adversary model >>>> Component space
- extent:

- synthesise memory-full strategy which minimises resources
 - "good for energy" strategy: $(x, z_1, M < 7) \mapsto y_1$
 - "attractor" strategy: $(x, z_1, M \ge 7) \mapsto x$

Conclusions

- handle complexity (e.g. through abstraction)
- more general (e.g. dynamic) components?
- other quantitative monads?
- ...

Ultimate goal: algorithms and tools for quantitative verification and synthesis