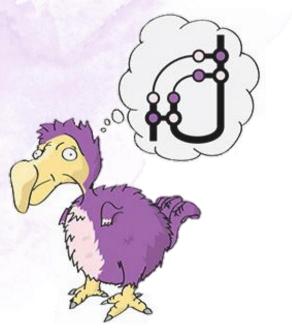
Focked-up ZX Calculus

Picturing continuous-variable quantum computation

Razin A. Shaikh, Lia Yeh and Stefano Gogioso University of Oxford



arxiv: 2406.02905

Plan

1. Background and motivation

2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

Plan

1. Background and motivation

2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

Symmetric monoidal category of finite dimensional Hilbert spaces

Symmetric monoidal category of finite dimensional Hilbert spaces

States Vectors in 2ⁿ dimensional complex Hilbert space

Symmetric monoidal category of finite dimensional Hilbert spaces

States Vectors in 2ⁿ dimensional complex Hilbert space

Operations Linear maps

Symmetric monoidal category of finite dimensional Hilbert spaces

States Vectors in 2ⁿ dimensional complex Hilbert space

Operations Linear maps

Sequential composition Matrix multiplication

Symmetric monoidal category of finite dimensional Hilbert spaces

States Vectors in 2ⁿ dimensional complex Hilbert space

Operations Linear maps

Sequential composition Matrix multiplication

Parallel composition Tensor product

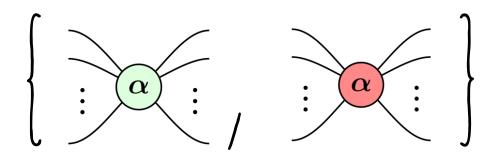
Qubit ZX calculus

$$m : \alpha : n \quad \stackrel{\llbracket \cdot \rrbracket}{\mapsto} \quad |0\rangle^{\otimes n} \langle 0|^{\otimes m} + e^{i\alpha} |1\rangle^{\otimes n} \langle 1|^{\otimes m}$$

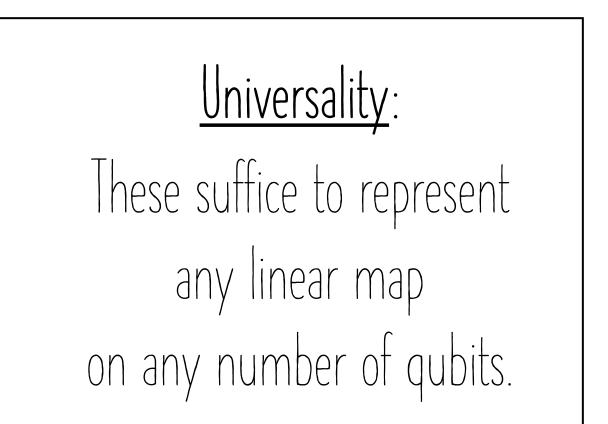
$$n \stackrel{[\![\cdot]\!]}{\longrightarrow} n \stackrel{[\![\cdot]\!]}{\longmapsto} |+\rangle^{\otimes n} \langle +|^{\otimes m} + e^{i\alpha} |-\rangle^{\otimes n} \langle -|^{\otimes m} \rangle^{\otimes n} \rangle^{\otimes n} \langle -|^{\otimes m} \rangle^{\otimes n} \langle -|^{\otimes$$

where
$$|0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
, $|1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$, $|\pm\rangle = |0\rangle \pm |1\rangle$

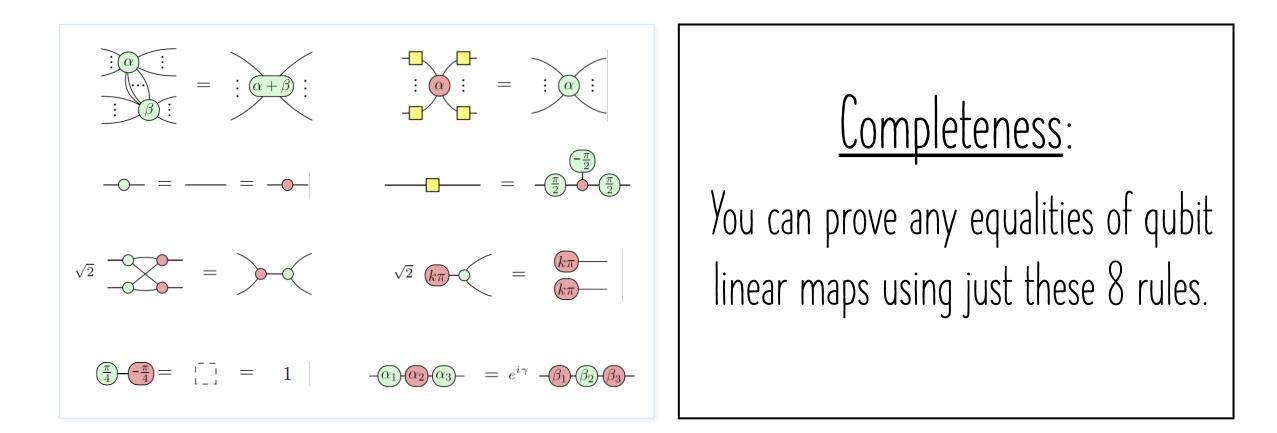
Qubit ZX calculus

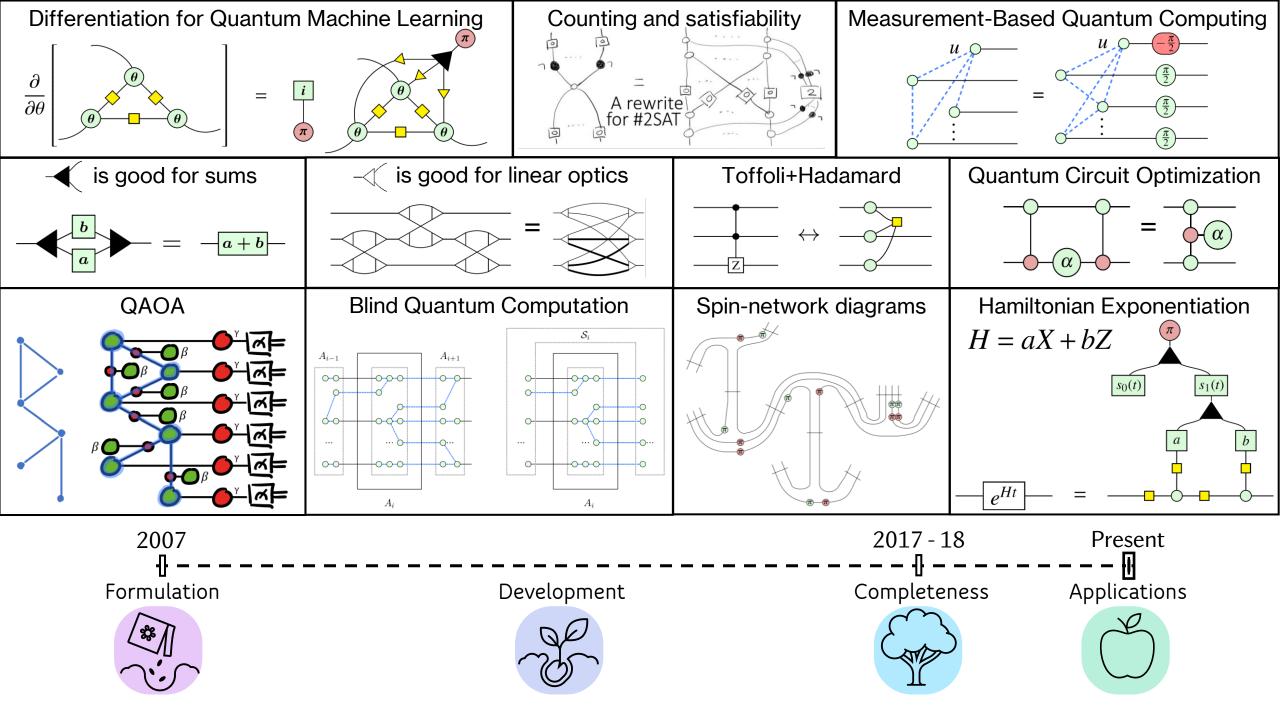


You can draw any quantum circuit using just these two types of spiders.



Qubit ZX calculus





ZX-calculus is Complete for Finite-Dimensional Hilbert Spaces

Boldizsár Poór¹

Razin A. Shaikh 1,2

Quanlong Wang¹

¹Quantinuum, 17 Beaumont Street, Oxford, OX1 2NA, United Kingdom ²University of Oxford, United Kingdom

The ZX-calculus is a graphical language for reasoning about quantum computing and quantum information theory. As a complete graphical language, it incorporates a set of axioms rich enough to derive any equation of the underlying formalism. While completeness of the ZX-calculus has been established for qubits and the Clifford fragment of prime-dimensional qudits, universal completeness beyond two-level systems has remained unproven until now. In this paper, we present a proof establishing the completeness of finite-dimensional ZX-calculus, incorporating only the mixed-dimensional Z-spider and the qudit X-spider as generators. Our approach builds on the completeness of another graphical language, the finite-dimensional ZW-calculus, with direct translations between these two calculi. By proving its completeness, we lay a solid foundation for the ZX-calculus as a versatile tool not only for quantum computation but also for various fields within finite-dimensional quantum theory.

• Native simulation of Bosonic systems / quantum field theories

• Native simulation of Bosonic systems / quantum field theories

• Quantum error correction with Bosonic codes

• Native simulation of Bosonic systems / quantum field theories

• Quantum error correction with Bosonic codes

- Scalable hardware implementation
 - On photonics, superconducting and trapped-ions platforms

CVQC – what is a qumode?

	Qubit	Qudit	Qumode
Hilbert space	\mathbb{C}^2		
State	$\alpha \left 0 \right\rangle + \beta \left 1 \right\rangle$		

CVQC – what is a qumode?

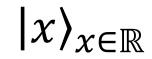
	Qubit	Qudit	Qumode
Hilbert space	\mathbb{C}^2	\mathbb{C}^{d}	
State	$\alpha \left 0 \right\rangle + \beta \left 1 \right\rangle$	$\sum_{n=0}^{d-1} a_n \left n \right\rangle$	

CVQC – what is a qumode?

	Qubit	Qudit	Qumode
Hilbert space	\mathbb{C}^2	\mathbb{C}^{d}	$L^2(\mathbb{R})$
State	$lpha \left 0 \right\rangle + eta \left 1 \right angle$	$\sum_{n=0}^{d-1} a_n \left n \right\rangle$	$\int_{\mathbb{R}} \psi(x) \ket{x} dx$ or $\sum_{n=0}^{\infty} a_n \ket{n}$

CVQC – Orthogonal bases

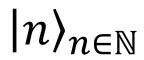
Position basis



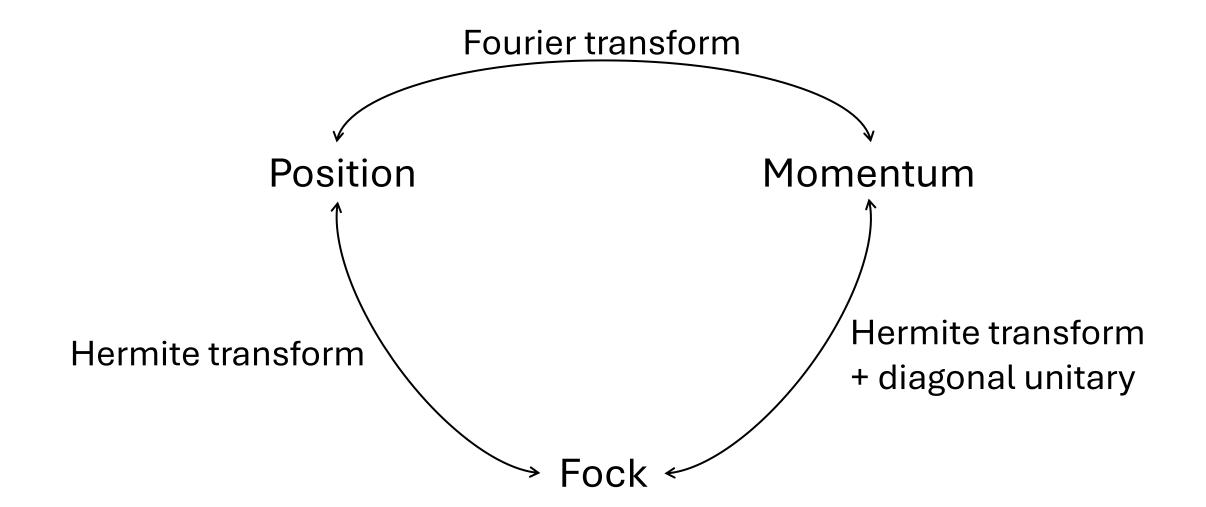
Momentum basis

 $|p\rangle_{p\in\mathbb{R}}$

Fock basis



CVQC – Orthogonal bases



Example of Hermite transform

$$|n\rangle = \int \psi_n(x) \, |x\rangle \, dx$$

where $\psi_n(x)$ is the *n*-th Hermite function.

Example of Hermite transform

$$|n\rangle = \int \psi_n(x) \, |x\rangle \, dx$$

where $\psi_n(x)$ is the *n*-th Hermite function.

$$egin{split} \psi_0(x) &= \pi^{-rac{1}{4}} \; e^{-rac{1}{2}x^2}, \ \psi_1(x) &= \sqrt{2} \, \pi^{-rac{1}{4}} \; x \, e^{-rac{1}{2}x^2}, \ \psi_2(x) &= \left(\sqrt{2} \, \pi^{rac{1}{4}} \,
ight)^{-1} \; (2x^2-1) \; e^{-rac{1}{2}x^2}, \ \psi_3(x) &= \left(\sqrt{3} \, \pi^{rac{1}{4}} \,
ight)^{-1} \; (2x^3-3x) \; e^{-rac{1}{2}x^2}, \ \psi_4(x) &= \left(2\sqrt{6} \, \pi^{rac{1}{4}} \,
ight)^{-1} \; (4x^4-12x^2+3) \; e^{-rac{1}{2}x^2}, \ \psi_5(x) &= \left(2\sqrt{15} \, \pi^{rac{1}{4}} \,
ight)^{-1} \; (4x^5-20x^3+15x) \; e^{-rac{1}{2}x^2} \end{split}$$

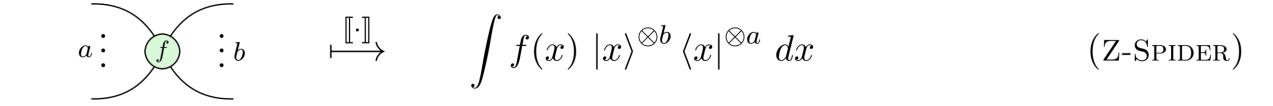
Plan

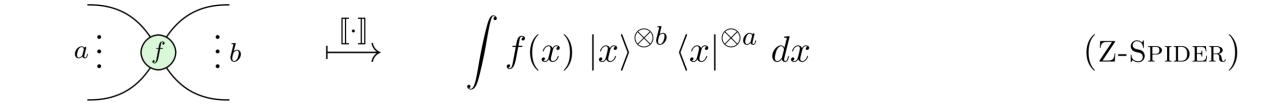
1. Background and motivation

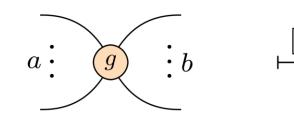
2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

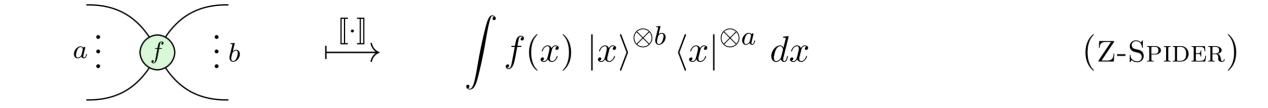


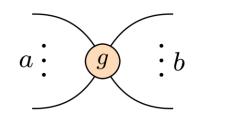




 $\begin{array}{cccc}
g & \vdots b & \stackrel{\llbracket \cdot \rrbracket}{\longrightarrow} & & \sum_{n=0}^{\infty} g(n) \left| n \right\rangle^{\otimes b} \left\langle n \right|^{\otimes a}
\end{array}$

(FOCK-SPIDER)



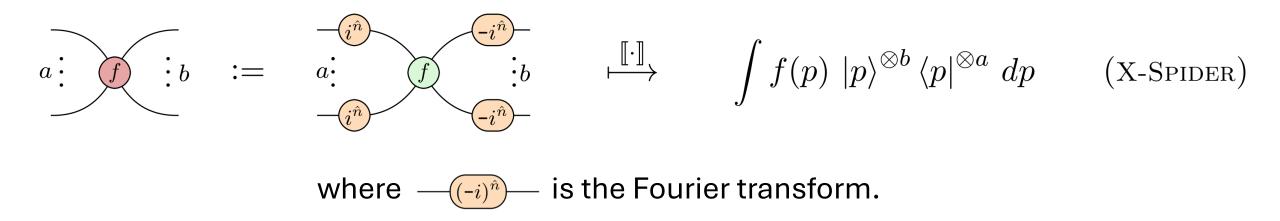


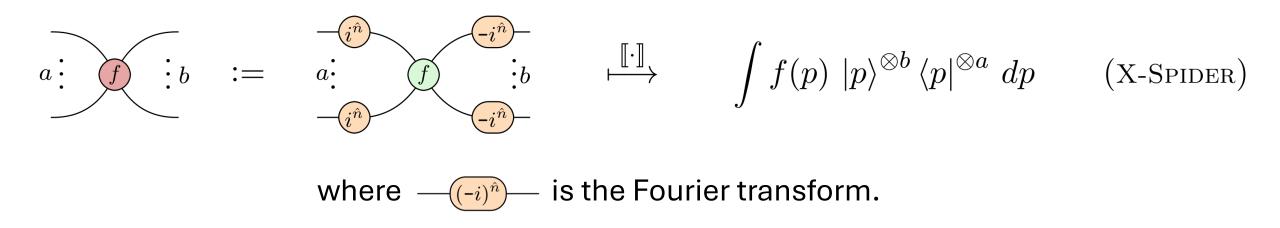
k

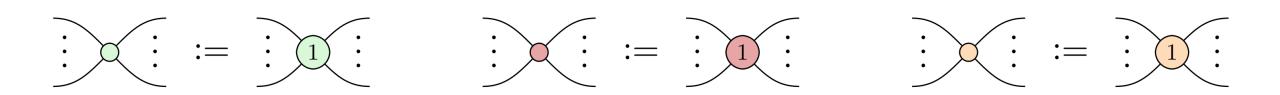
 $\begin{array}{ccc}
g & \vdots b & \stackrel{\llbracket \cdot \rrbracket}{\longrightarrow} & & \sum_{n=0}^{\infty} g(n) \left| n \right\rangle^{\otimes b} \left\langle n \right|^{\otimes a}
\end{array}$

k

(GLOBAL-SCALAR)







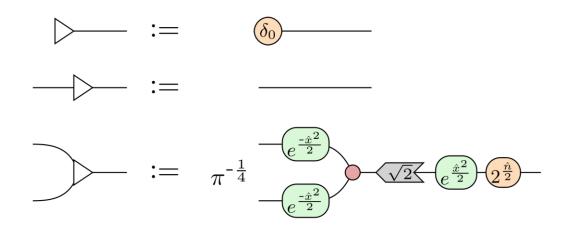
where
$$\chi_x(p) = e^{-i2\pi px}$$
, $\bar{\chi}_p(x) = e^{i2\pi px}$, and δ_n is the Kronecker delta at n .

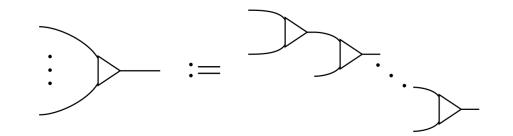
$$\chi_{x} \longrightarrow [x] \quad |x\rangle \qquad \chi_{p} \longrightarrow [p] \quad |p\rangle \qquad \delta_{n} \longrightarrow [n\rangle$$

where $\chi_{x}(p) = e^{-i2\pi px}, \ \bar{\chi}_{p}(x) = e^{i2\pi px}, \ \text{and} \ \delta_{n} \ \text{is the Kronecker delta at } n.$

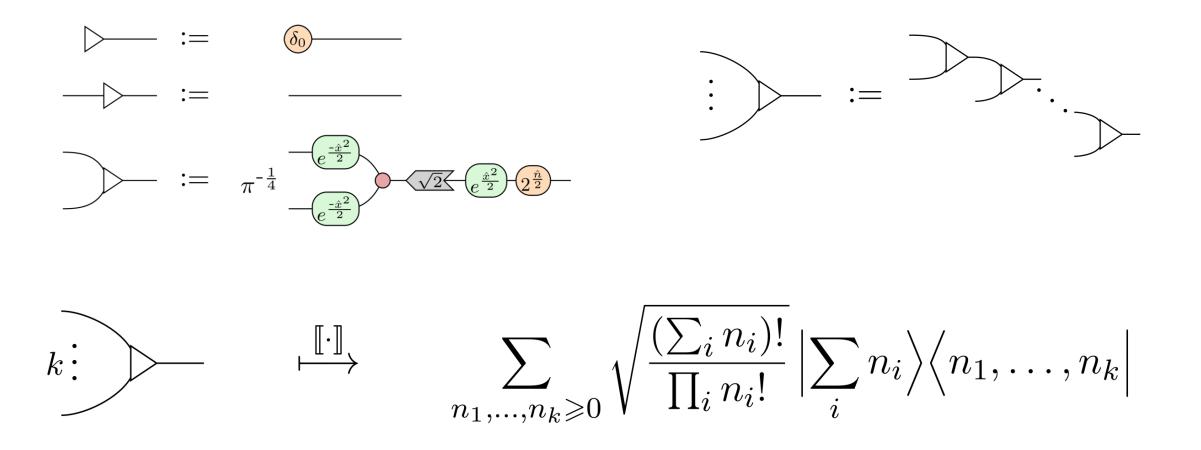
$$\xrightarrow{m} := -i^{\hat{n}} e^{i\pi \frac{\hat{x}^2}{m}} e^{i\pi m\hat{x}^2} e^{i\pi \frac{\hat{x}^2}{m}} \longrightarrow \int |mx\rangle_X \langle x|_X dx \quad (\text{Multiplier})$$

ZX calculus – Notations W – node

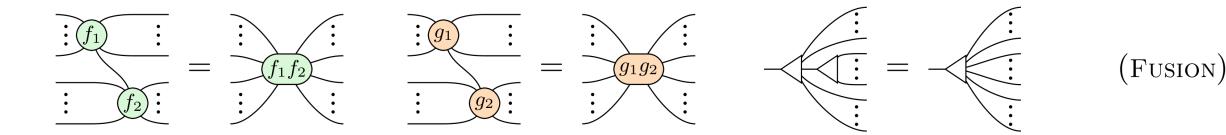


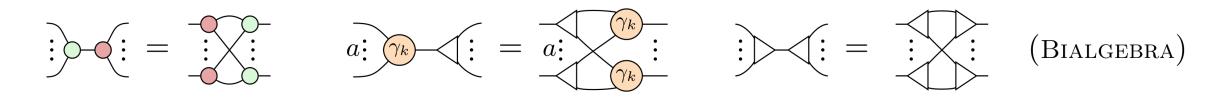


ZX calculus – Notations W – node



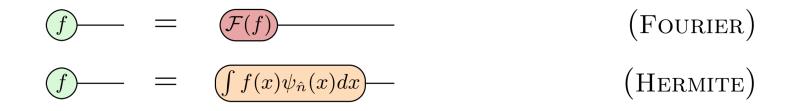
7X calculus – Rules 1





(IDENTITY)

ZX calculus – Rules 2

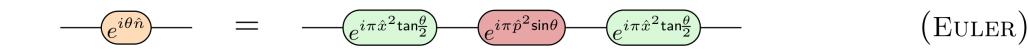


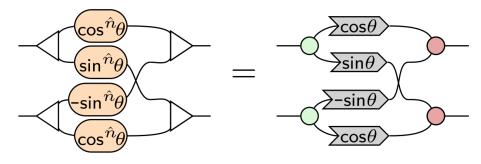
$$\begin{array}{c} \overbrace{r}\\ \vdots\\ \hline f(\hat{x})\\ \hline r\\ \hline \end{array} = \begin{array}{c} \overbrace{f(r\hat{x})}\\ \hline f(r\hat{x})\\ \hline \end{array} \qquad (MULT)$$

$$\xrightarrow{>} s \xrightarrow{>} = \xrightarrow{>} r \cdot s \xrightarrow{>}$$
 (TIMES)

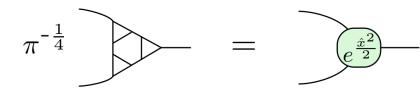
$$1 = \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$$
(ONE)

ZX calculus – Rules 3





(BEAM-SPLITTER)



(TRIFORCE)

Operators

Creation and annihilation operators a^{\dagger}

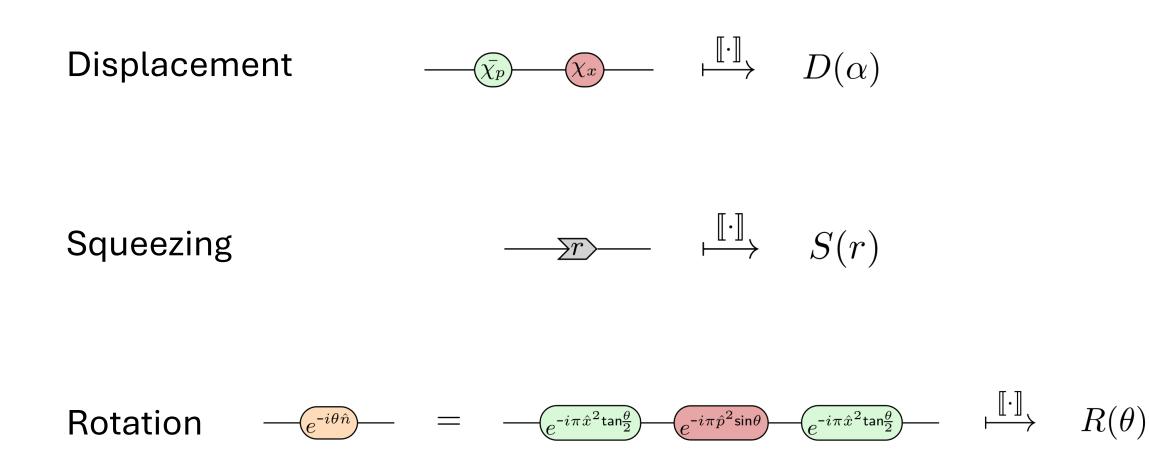
$$|n\rangle = \sqrt{n+1}|n+1\rangle$$
 and $a|n\rangle = \sqrt{n}|n-1\rangle$

$$\overbrace{\delta_1} \qquad \qquad \underset{}{\overset{[\![\cdot]\!]}{\longrightarrow}} \quad a^{\dagger} \quad \text{and} \quad \underbrace{\overbrace{\delta_1}}{\overset{[\![\cdot]\!]}{\longrightarrow}} \quad a$$

Quadrature operators $\hat{x} |x\rangle = x |x\rangle$ and $\hat{p} |p\rangle = p |p\rangle$

Number operator

Gaussian gates – single mode



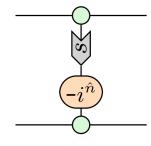
Gaussian gates – two modes

Controlled-X

 $CX(s) |x\rangle |y\rangle = |x\rangle |y + sx\rangle$

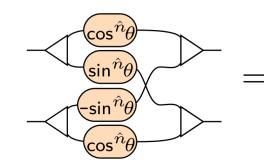
Controlled-phase

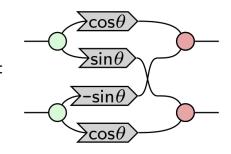
 $CZ(s) \left| x \right\rangle_X \left| y \right\rangle_X = e^{i 2 \pi s x y} \left| x \right\rangle_X \left| y \right\rangle_X$



Beam splitter

$$B(\theta,\phi) = \exp\left(\theta(e^{i\phi}a_1a_2^{\dagger} - e^{-i\phi}a_1^{\dagger}a_2)\right)$$





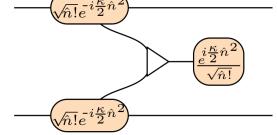
Non-Gaussian gates

Cubic phase
$$V(\gamma) = e^{i\gamma\hat{x}^3} = -e^{i\gamma\hat{x}^3}$$

Kerr $K(\kappa) = e^{i\kappa\hat{n}^2} = -e^{i\kappa\hat{n}^2}$

Cross-Kerr

$$CK(\kappa) = e^{i\kappa\hat{n}_1\hat{n}_2} =$$



Plan

1. Background and motivation

2. Focked-up ZX calculus

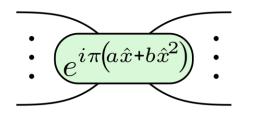
- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

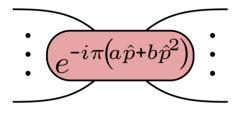
4. Conclusion and future work

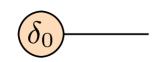
Universal CV gate set: Gaussian gates + 1 non-Gaussian gate

Universal CV gate set: Gaussian gates + 1 non-Gaussian gate

ZX Gaussian fragment:

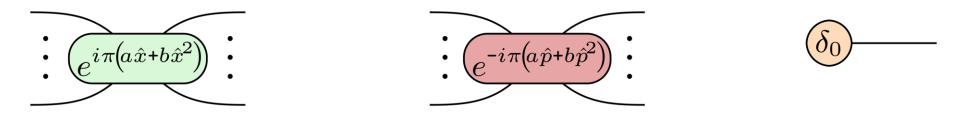






Universal CV gate set: Gaussian gates + 1 non-Gaussian gate

ZX Gaussian fragment:

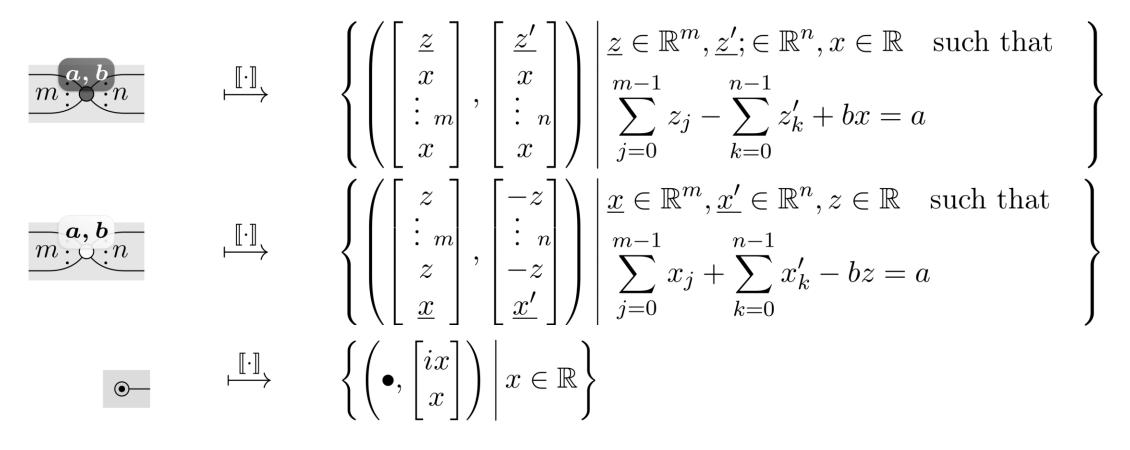


Theorem 4.6. ZX_G is complete for the Gaussian fragment of CVQC: For any two diagrams D_1 and D_2 in ZX_G , if $[D_1] = [D_2]$, then $ZX_G \vdash D_1 = D_2$.

Graphical symplectic algebra – (Booth, Carette, Comfort 2024)

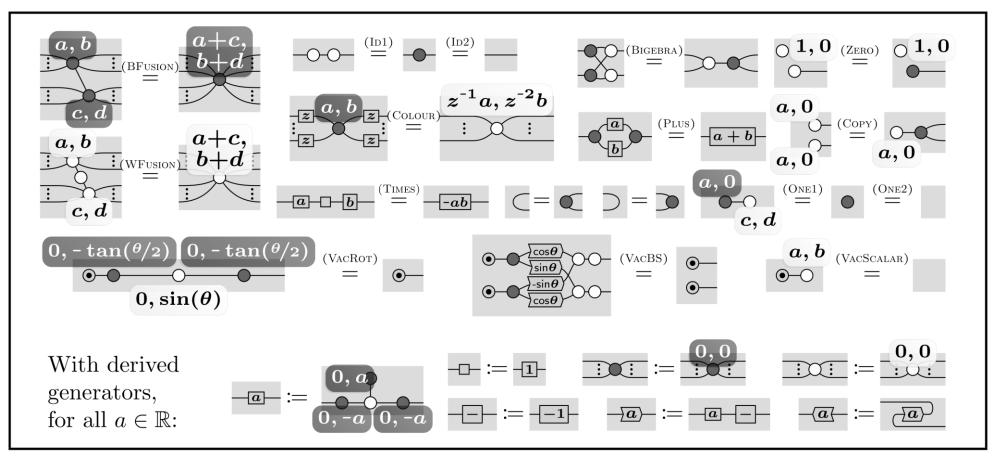
Graphical symplectic algebra – (Booth, Carette, Comfort 2024)

GSA generators:

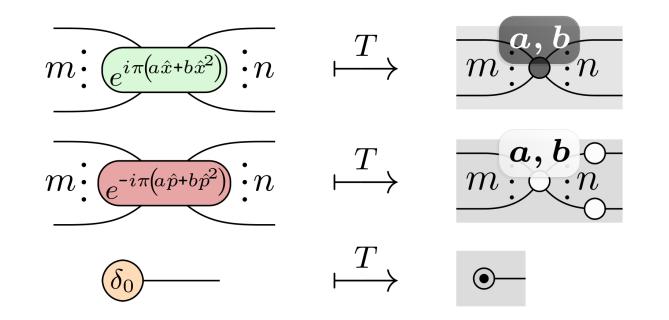


Graphical symplectic algebra – (Booth, Carette, Comfort 2024)

GSA rules:



Invertible translation functor $T : ZX_G \rightarrow GSA$



All GSA rules are derivable

Proposition 4.5. For diagrams D_1 and D_2 in GSA, if GSA $\vdash D_1 = D_2$, then $ZX_G \vdash T^{-1}(D_1) = T^{-1}(D_2)$.

Proof. By the functoriality of T^{-1} , it is sufficient to show that all the axioms of GSA (Figure 3) are derivable in ZX_G. The table below summarizes the proofs for each rule.

GSA rule	Follows from
(BFusion)	(FUSION)
(WFusion)	(FUSION)
(ld)	(IDENTITY)
(Bialgebra)	(BIALGEBRA)
(Zero)	Lemma C.1 & 2.2
(Colour)	(X-SPIDER) & (MULT)
(Plus)	(PLUS)
(Copy)	(Copy)
(Times)	Lemma C.2
(One)	Lemma C.3 & C.4
(VacRot)	Lemma C.5
(VacBS)	Lemma C.6
(VacScalar)	Lemma C.7

Theorem 4.6. ZX_G is complete for the Gaussian fragment of CVQC: For any two diagrams D_1 and D_2 in ZX_G , if $[D_1] = [D_2]$, then $ZX_G \vdash D_1 = D_2$.

Plan

1. Background and motivation

2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

 $\mathbf{\Lambda}$

 $\mathbf{\Lambda}$

 $\wedge \wedge \wedge$

Encoding a qubit in an oscillator:

 $\wedge \wedge \wedge \wedge \wedge$

Encoding a qubit in an oscillator:

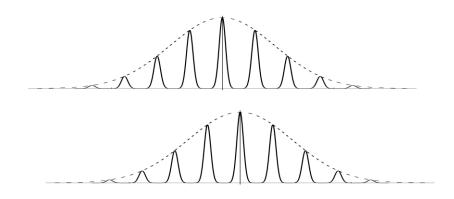
where $0_L(x) = \sum_{k \in \mathbb{Z}} \delta(x - 2k\sqrt{\pi})$ and $1_L(x) = \sum_{k \in \mathbb{Z}} \delta(x - (2k+1)\sqrt{\pi})$.

Encoding a qubit in an oscillator – finite squeezing

Encoding a qubit in an oscillator – finite squeezing

$$\begin{split} |\tilde{0}_L\rangle &= \int \sum_{k \in \mathbb{Z}} e^{-2\pi\Delta^2 k^2} e^{-\frac{x^2}{2\Delta^2}} \left| x + 2k\sqrt{\pi} \right\rangle \, dx \\ |\tilde{1}_L\rangle &= \int \sum_{k \in \mathbb{Z}} e^{-2\pi\Delta^2 k^2} e^{-\frac{x^2}{2\Delta^2}} \left| x + (2k+1)\sqrt{\pi} \right\rangle \, dx \end{split}$$

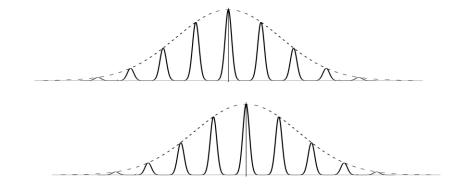
where Δ is the width of the Gaussian



Encoding a qubit in an oscillator – finite squeezing

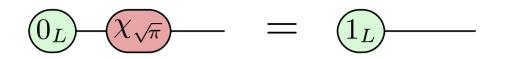
$$\begin{split} |\tilde{0}_L\rangle &= \int \sum_{k \in \mathbb{Z}} e^{-2\pi\Delta^2 k^2} e^{-\frac{x^2}{2\Delta^2}} \left| x + 2k\sqrt{\pi} \right\rangle \, dx \\ |\tilde{1}_L\rangle &= \int \sum_{k \in \mathbb{Z}} e^{-2\pi\Delta^2 k^2} e^{-\frac{x^2}{2\Delta^2}} \left| x + (2k+1)\sqrt{\pi} \right\rangle \, dx \end{split}$$

where Δ is the width of the Gaussian

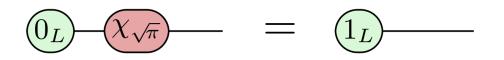


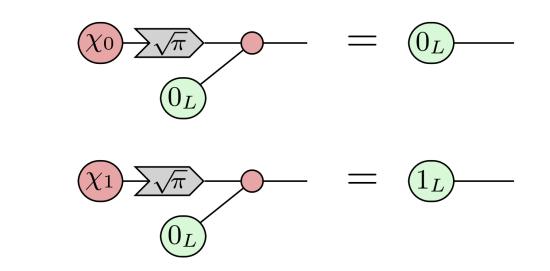
Proposition 5.1.

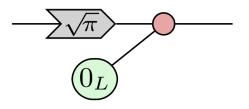
GKP Encoder



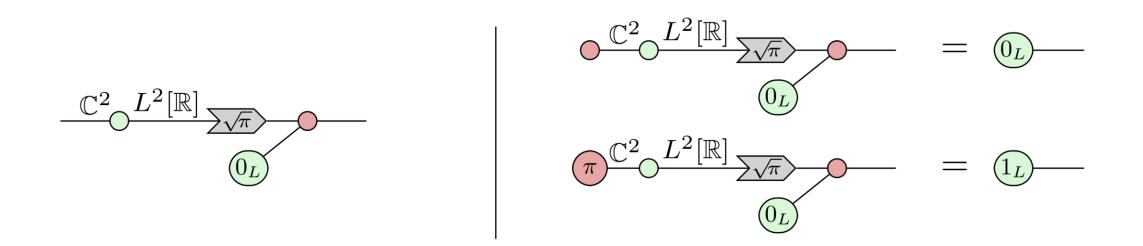
GKP Encoder







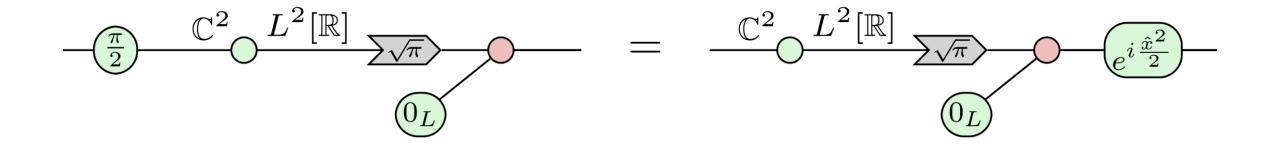
GKP Encoder



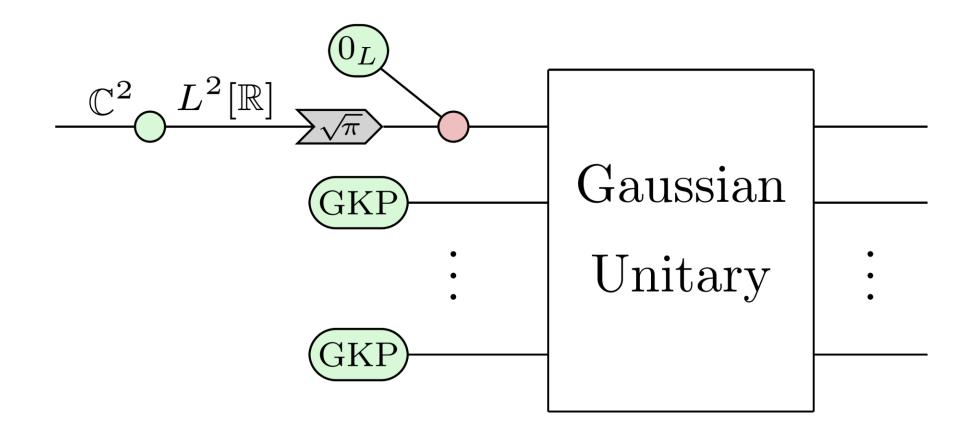
Mixed-dimensional Z spider sends $|0\rangle$ to $|0\rangle_X$ and $|1\rangle$ to $|1\rangle_X$

Logical operators by pushing-through-the-encoder

Example:
$$\frac{\pi}{2}$$
 Z rotation (or S gate)

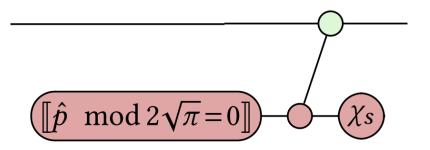


General GKP encoder

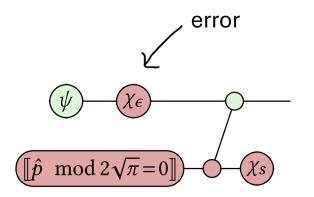


Error detection and correction

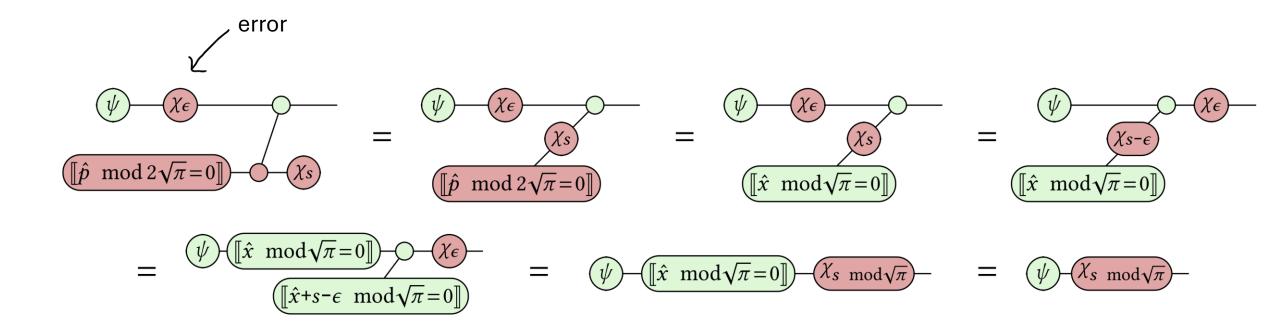
Syndrome measurement circuit:



Error detection and correction



Error detection and correction



Plan

1. Background and motivation

2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

Gaussian boson sampling

- Non-universal model of quantum computation
- Samples from #P-hard problem
- Experimental demonstrations of quantum advantage

We prove hardness of gaussian boson sampling diagrammatically

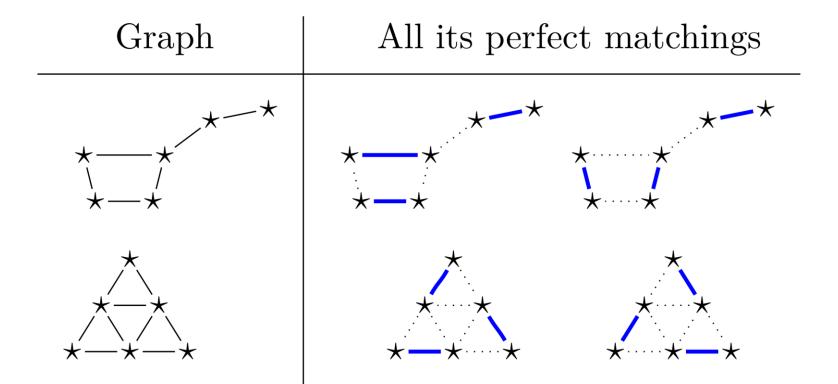
Gaussian boson sampling

$$\langle n_1, \dots, n_s | \psi \rangle \propto \operatorname{Haf}\left(U \bigoplus_{i=1}^s \operatorname{tanh}(r_i) U^T \right)_{\operatorname{sub}}$$

where Haf - hafnian function

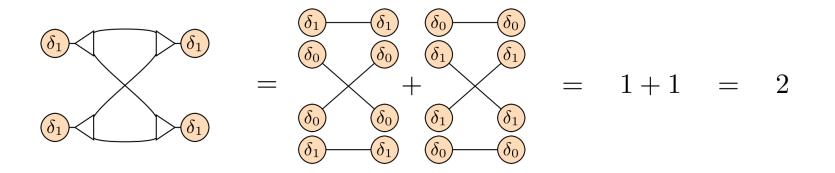
- \boldsymbol{U} interferometer matrix
- r_i squeezing parameters

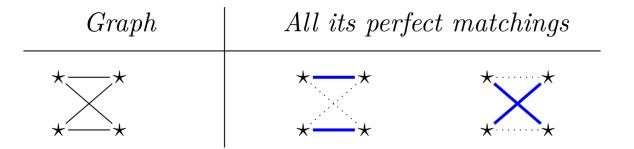
Perfect matchings of graphs

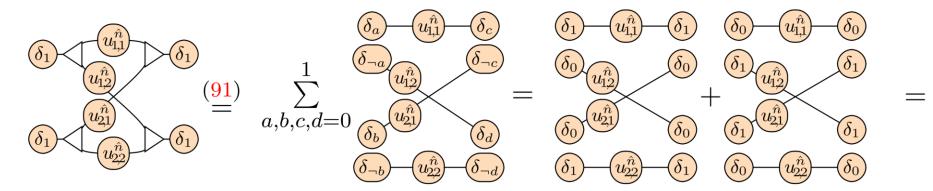


Hafnian is the (weighted) sum of perfect matchings of a graph

Perfect matchings using W-node $6 - = \frac{6}{6} + \frac{6}{6}$







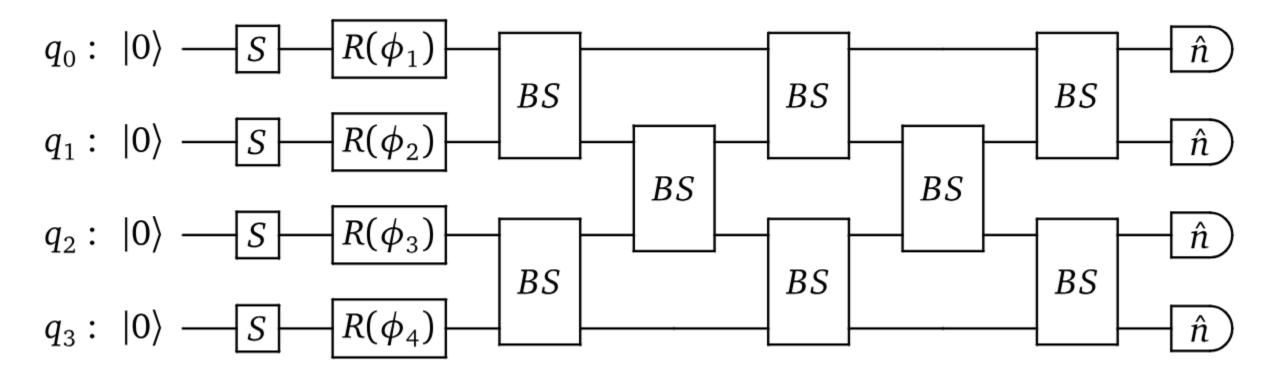
 $u_{1,1}u_{2,2} + u_{1,2}u_{2,1}$

Perfect matchings using W-node

Proposition 6.2. For a weighted adjacency matrix A of a graph with s vertices,

Proof is by induction

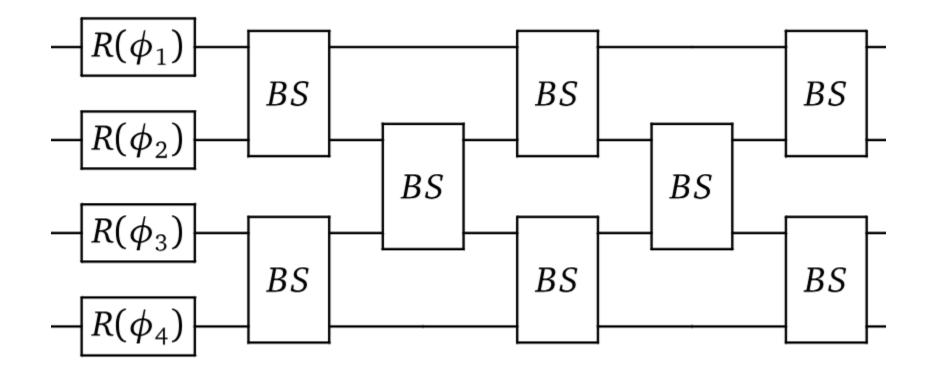
Gaussian boson sampling



An example 4-mode Gaussian boson sampling circuit

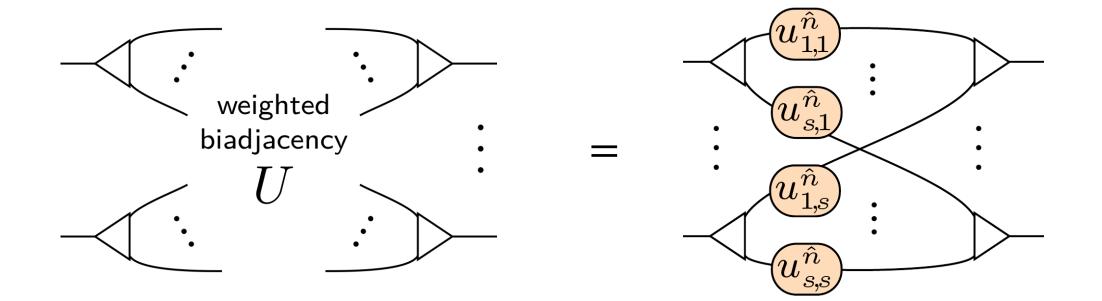
Figure taken from: https://strawberryfields.ai/photonics/demos/run_gaussian_boson_sampling.html

Gaussian boson sampling



An example 4-mode interferometer

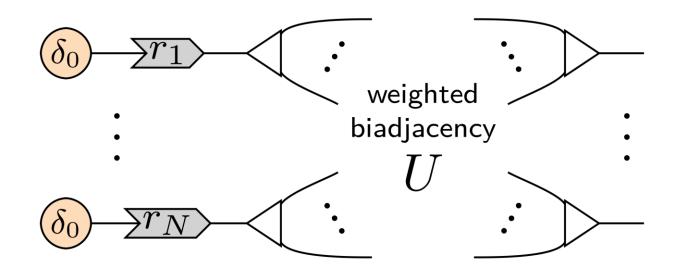
Gaussian boson sampling



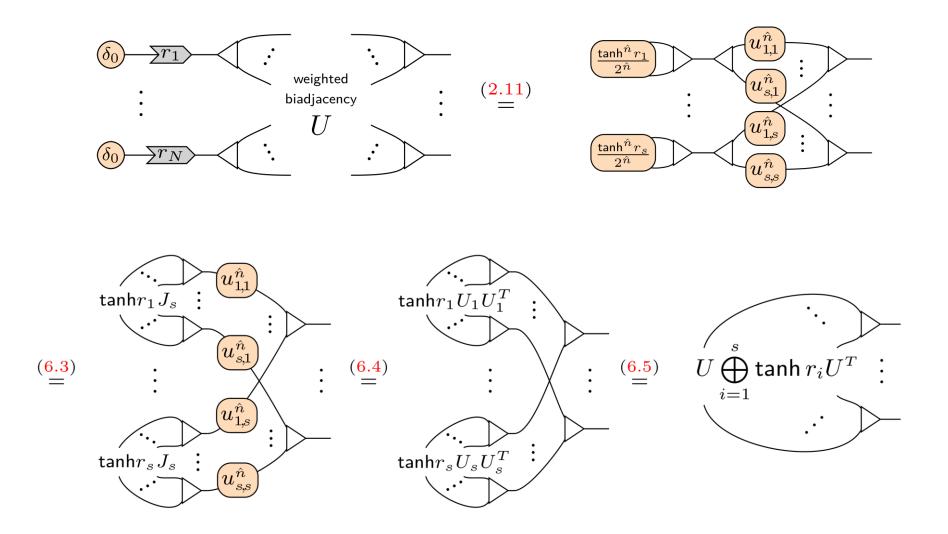
Interferometer normal form

(de Felice et. al 2022), (Bonchi et. al. 2014)

Normal form for Gaussian boson sampling

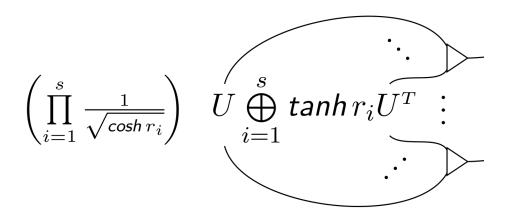


Normal form for Gaussian boson sampling



Normal form for Gaussian boson sampling

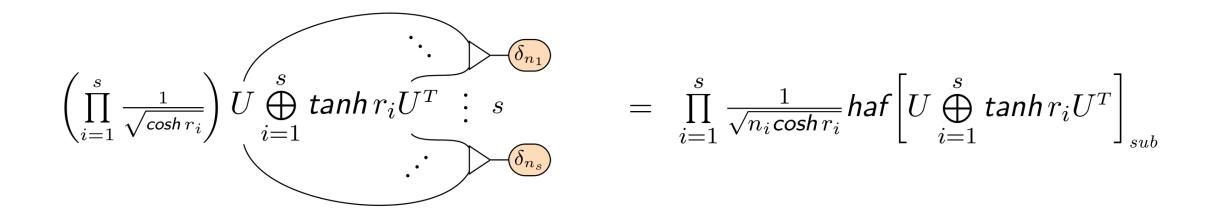
Theorem 6.6. The circuit of Gaussian boson sampling can be reduced to the following normal form:



where U is the matrix of the interferometer, r_i represents the amount of squeezing

Sampling amplitude

Theorem 6.12. The amplitude of observing $n_1, \ldots, n_s \in \mathbb{N}$ photons in the Gaussian boson sampling circuit is



Plan

1. Background and motivation

2. Focked-up ZX calculus

- Generators, rules and common gates
- Gaussian completeness
- 3. Applications
 - Quantum Error Correction with the GKP code
 - Gaussian Boson sampling

4. Conclusion and future work

Conclusion

Conclusion

Generalized ZX calculus to infinite dimensions

- With continuous and discrete generators
- Complete for the Gaussian fragment

Conclusion

Generalized ZX calculus to infinite dimensions

- With continuous and discrete generators
- Complete for the Gaussian fragment

Graphical analysis of

- GKP quantum error correction
- Gaussian Boson sampling

ZX-based algorithms for

- Compiling and circuit optimization
- Classical simulation
- MBQC with hybrid-CV cluster states

ZX-based algorithms for

- Compiling and circuit optimization
- Classical simulation
- MBQC with hybrid-CV cluster states

Completeness

- Gaussian completeness for the Fock-W fragment
- Completeness for the approximately universal fragment

ZX-based algorithms for

- Compiling and circuit optimization
- Classical simulation
- MBQC with hybrid-CV cluster states

Completeness

- Gaussian completeness for the Fock-W fragment
- Completeness for the approximately universal fragment

Quantum error correction

- Pauli-webs and floquetification for GKP
- Multi-mode GKP code and concatenated GKP code
- Cat codes and binomial codes