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3 perspectives Fräıssé theory Applications

Geometric logic

In topos theory, we consider theories in the positive fragment of infinitary
first-order logic, geometric logic. Formulas are constructed from typed variables,
function and relation symbols from a signature Σ and the following connectives:∨

i∈I

ϕi ϕ ∧ ϕ′ ∃x .ϕ(x)

A theory is a collection of axioms, which are sequents with a context:

ϕ ⊢x⃗ ψ.

Given an interpretation of the types, functions and relations from Σ in a topos E ,
each formula defines a subobject. A model of T in E is an interpretation such that
the axioms become inclusions of subobjects.
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Classifying toposes

Recall the notion of geometric morphism:

F E
f∗

f ∗

⊣

We consider these theories because they capture representable structure in
Grothendieck toposes.

Fundamental theorem of classifying toposes

For a geometric theory T there is a topos Set[T] (the classifying topos of T)
such that,

T-mod(E) ≃ Geom(E ,Set[T]),
M 7→ ⌜M⌝

naturally in E . Conversely, any topos F is equivalent to Set[T] for some
geometric theory T.
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3 perspectives Fräıssé theory Applications

Classifying toposes

Recall the notion of geometric morphism:

F E
f∗

f ∗

⊣

We consider these theories because they capture representable structure in
Grothendieck toposes.

Fundamental theorem of classifying toposes

For a geometric theory T there is a topos Set[T] (the classifying topos of T)
such that,

T-mod(E) ≃ Geom(E ,Set[T]),
M 7→ ⌜M⌝

naturally in E . Conversely, any topos F is equivalent to Set[T] for some
geometric theory T.

Morgan Rogers (LIPN) Building models 5 / 23
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Toposes from monoids

Let L be a topological monoid. A continuous action of L on a set X is an action:

L× X
α−→ X

which is continuous when X is given the discrete topology.

Proposition [R]

The category of continuous actions of L on sets is a Grothendieck topos, Cont(L).

Note that this discards most ‘connected’ structure in L.
Interesting examples: ordinary (discrete) monoids; profinite completions Ẑ, Ẑp;
prodiscrete monoids; End(N) with the pointwise convergence topology.
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Pointed toposes

A point of a topos E is a geometric morphism Set → E .

The forgetful functor Cont(L) → Set has a right adjoint and preserves finite
limits, so determines a point, p.

Theorem [R]

Pairs of the form (Cont(L), p) are coreflective in the 2-category of pointed toposes.

In particular, given a model L of a geometric theory T in Set, the pointed topos
(Set[T], ⌜M⌝) coreflects to End(L) with the ‘pointwise convergence’ topology.
(See previous SYCO talk!)
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Monoids vs Theories

Q. Which theories T have Set[T] ≃ Cont(M)?

Note that p must correspond to a special model of any such theory T, so another
way of asking the question is:

Q. Which theories T have a special model?
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Sites of principal actions

A site consists of a small category C and a Grothendieck coverage J. This induces
a reflective subcategory (subtopos):

Sh(C, J) PSh(C)⊣

Example

For a topological monoid L, denote by Cs the category of (continuous) principal
actions of L. This has a canonical Grothendieck coverage Js generated by
quotient maps X → X/∼. One can show that

Cont(L) ≃ Sh(Cs , Js).
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3 perspectives Fräıssé theory Applications

Sites of principal actions

A site consists of a small category C and a Grothendieck coverage J. This induces
a reflective subcategory (subtopos):

Sh(C, J) PSh(C)⊣

Example

For a topological monoid L, denote by Cs the category of (continuous) principal
actions of L. This has a canonical Grothendieck coverage Js generated by
quotient maps X → X/∼. One can show that

Cont(L) ≃ Sh(Cs , Js).

Morgan Rogers (LIPN) Building models 11 / 23



3 perspectives Fräıssé theory Applications

Theories of presheaf type

A theory is said to be of presheaf type when Set[T] ≃ PSh(C). These theories are
particularly convenient because we have:

K := f.p.T-mod(Set) ≃ Cop and T-mod(Set) = Ind(K),

where ‘f.p.’ stands for finitely presentable.

Meanwhile, a subtopos of Set[T] classifies a ‘quotient’ of T, meaning a theory
obtained by adding axioms.

Corollary

If Cont(L) classifies a quotient of any theory T of presheaf type such that
K := f.p.T-mod(Set) ≃ Cop

s .
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Properties of principal actions

We can derive necessary conditions on the category of f.p. models by considering
properties of Cs . For instance K must satisfy:

(OFS) There is an orthogonal factorization system (L,R), where the left class are
epimorphisms and the right class are strong monomorphisms.

(JEP) The joint embedding property requires that for any pair of objects X , Y ,
there is an object Z and (strong) monomorphisms,

X ↣ Z ↢ Y .

(TP) The transferability property requires that any span with one leg a (strong)
monomorphism can be completed to a square where the opposite side is also
monic:

X Z

Y W

∃

∃

Compare JEP and Amalgamation Property (AP) in Fräıssé theory.
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The special model with respect to the OFS

The OFS (L,R) on K extends to an OFS (L,R) on T-mod(Set) = Ind(K) by the
usual small object argument.

A special model M of T, if it exists, satisfies:
(inj) M is injective with respect to R, so any span in Ind(K) as follows (with left

leg in R) extends (non-uniquely) to a triangle:

X M

Y
∃

(univ) M is universal for R, so any object X of K admits an R-morphism to M
in Ind(K):

X ↣ M.

(dir) M is the directed colimit of a diagram of R-morphisms.

These conditions are necessary and sufficient.
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When are the properties enough?

Proposition

Let K be a countable category satisfying OFS, JEP and TP. Then there exists an
object of Ind(K) satisfying (inj), (univ) and (dir).

Proof. We inductively construct a chain of objects Ui of K whose colimit has the
desired properties.
Let π : ω × ω × ω → ω be a bijection such that π(i , j , k) ≥ k.
Enumerate L as {li : Xi → Yi}i<ω.
Base case. Let U0 = A0. (We use the enumeration for objects too.)

Morgan Rogers (LIPN) Building models 15 / 23
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When are the properties enough?

Induction step. Given Uk , we can enumerate spans of the following form,
Xi Uk

Yi

fi,j,k

li

∣∣∣∣∣∣∣∣∣ j < ω

 .

Let (i ′, j ′, k ′) = π−1(k). We use TP to define an intermediate object U ′
k and then

the JEP to define Uk+1:

Xi ′ Uk′ Uk Ak

Yi ′ U ′
k Uk+1

fi′,j′,k′

li′

uk′,k

∃ uk,k+1 ∃

∃
∃

The colimit satisfies (dir) by construction. For (inj), any span must factorize
through an enumerated one. Lastly, Ak ↣ Uk ↣ M is in R, giving (univ).
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Recap

Let T be a theory whose finitely presentable models form a countable category K
satisfying OFS, JEP and TP, we obtain a special model M of an extension T′ of T
such that,

Set[T′] ≃ Cont(End(M)) ≃ Sh(Kop, JRop).

Specifically, the extension T′ requires each monomorphism X ↣ Y in K to induce
an epimorphism Hom(Y ,M) ↠ Hom(X ,M).
We can add torsion axioms in T to force f.p. models to be finite models.
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Classical cases

The classic Fräıssé construction is recovered in the case that the orthogonal
factorization system on K is trivial, so all morphisms are (strict) monomorphisms.

Examples where finitely presented models are finite include (with homogeneous
model in parentheses):

• Dense linear orderings (Q)

• Simple graphs (Rado graph)

• Fields of characteristic p (Fp)

• Groups (Hall’s universal group)

• Boolean algebras (countable atomless Boolean algebra)

Caramello covered these cases.
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3 perspectives Fräıssé theory Applications

Actions on Boolean algebras

Let L = ⟨A | R⟩ be a finitely generated monoid. Let T be the theory of finite
Boolean algebras equipped with a right action of L. Explicitly, this is based on a
signature Σ containing:

• One sort B;

• Function symbols on B for:
• Constants 0, 1;
• Binary operations ∪, ∩;
• A unary operation ¬;
• A unary operation a∗ for each a ∈ A;

These satisfy axioms making:

• (B, 0, 1,∪,∩,¬) a Boolean algebra,

• Each m∗ commute with each of the Boolean algebra operations and the
ordering,

• m∗n∗(x) = (nm)∗(x) for m, n ∈ L (it is a right action),

In addition to...

Morgan Rogers (LIPN) Building models 19 / 23
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Locally finite, connected actions on Boolean algebras

In addition to...

Writing Dn(x) for
⋃

w∈A∗

|w |≤n
w∗(x), and ϕn(x) for Dn(x) = Dn+1(x), we have:

• A ‘local finiteness’ condition:

⊤ ⊢x

∨
n∈N

ϕn(x)

This says that the action eventually stabilizes.

• A ‘connectedness’ condition:

ϕn(x) ∧ ϕn(y) ∧ (Dn(x) ∩ Dn(y) = 0) ⊢x,y (x = 0) ∨ (y = 0)

This says that any pair of non-zero elements generate eventually intersecting
subsets.

If I have constructed this correctly, the finitely presentable models K are finite and
we have a duality with finite principal left L-sets (by analogy with Stone duality).

Morgan Rogers (LIPN) Building models 20 / 23
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A free example

The theorem applies: there exists a universal, injective Boolean algebra B
equipped with a (locally finite, connected) right L-action into which all of the
finite ones embed, and such that,

Set[T′] ≃ Cont(End(B)) ≃ Sh(K, Jmonoop)

In fact, End(B) is exactly the profinite completion of L with respect to its left
actions.

Concrete example

Let L = A∗ for some finite alphabet A. A left L-set ‘is’ a set of states Q equipped
with a transition function A× Q → Q. [Almost an automaton.]

The theory of Boolean algebras with a (locally finite, connected) right action of L
is classified by the topos of transition functions in which every state generates a
finite subset. [Almost finite automata; the corresponding languages are regular!]
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Why so complicated?

This class of examples was constructed in reverse (starting from Cont(L)).
Couldn’t simpler theories give examples?

Algebraic theories can’t work: if K has products, (TP) implies (AP), so the
subcategory of monos is enough for classical Fräıssé theory!
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Fin

Thank you! Questions?
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