Building models from finite pieces

Morgan Rogers

rogers@lipn.univ-paris13.fr

Laboratoire d'Informatique de Paris Nord (LIPN)

Overview

1 Three perspectives on toposes

Praïssé theory

O Applications

イロト イロト イヨト イヨト 二日

Sketch 1

イロト イポト イヨト イヨト 二日

Geometric logic

In topos theory, we consider theories in the positive fragment of infinitary first-order logic, geometric logic. Formulas are constructed from typed variables, function and relation symbols from a signature Σ and the following connectives:

$$\bigvee_{i\in I}\phi_i \qquad \phi \land \phi' \qquad \exists x.\phi(x)$$

Geometric logic

In topos theory, we consider theories in the positive fragment of infinitary first-order logic, *geometric logic*. Formulas are constructed from typed variables, function and relation symbols from a signature Σ and the following connectives:

$$\bigvee_{i\in I}\phi_i \qquad \phi \land \phi' \qquad \exists x.\phi(x)$$

A theory is a collection of axioms, which are sequents with a context:

 $\phi \vdash_{\vec{x}} \psi.$

Geometric logic

In topos theory, we consider theories in the positive fragment of infinitary first-order logic, geometric logic. Formulas are constructed from typed variables, function and relation symbols from a signature Σ and the following connectives:

$$\bigvee_{i\in I}\phi_i \qquad \phi\wedge\phi' \qquad \exists x.\phi(x)$$

A theory is a collection of axioms, which are sequents with a context:

$$\phi \vdash_{\vec{x}} \psi.$$

Given an interpretation of the types, functions and relations from Σ in a topos \mathcal{E} , each formula defines a subobject. A *model* of \mathbb{T} in \mathcal{E} is an interpretation such that the axioms become inclusions of subobjects.

3 perspectives	Fraïssé theory	Application
OO●OOOOOOO	00000	000000

Classifying toposes

Recall the notion of geometric morphism:

3 perspectives	Fraïssé theory	Applications
00●0000000	00000	000000

Classifying toposes

Recall the notion of geometric morphism:

We consider these theories because they capture representable structure in Grothendieck toposes.

Fundamental theorem of classifying toposes

For a geometric theory $\mathbb T$ there is a topos $\textbf{Set}[\mathbb T]$ (the classifying topos of $\mathbb T)$ such that,

$$\mathbb{T}\operatorname{-mod}(\mathcal{E}) \simeq \operatorname{Geom}(\mathcal{E}, \operatorname{\mathbf{Set}}[\mathbb{T}]),$$
$$M \mapsto \ulcorner M \urcorner$$

naturally in \mathcal{E} . Conversely, any topos \mathcal{F} is equivalent to $Set[\mathbb{T}]$ for some geometric theory \mathbb{T} .

3	perspectives
0	000000000000000000000000000000000000000

Fraïssé theory

Sketch 2

Toposes from monoids

Let L be a topological monoid. A *continuous action* of L on a set X is an action:

$$L \times X \xrightarrow{\alpha} X$$

which is continuous when X is given the discrete topology.

Toposes from monoids

Let L be a topological monoid. A *continuous action* of L on a set X is an action:

$$L \times X \xrightarrow{\alpha} X$$

which is continuous when X is given the discrete topology.

Proposition [R]

The category of continuous actions of L on sets is a Grothendieck topos, Cont(L).

Note that this discards most 'connected' structure in *L*. Interesting examples: ordinary (discrete) monoids; profinite completions $\hat{\mathbb{Z}}$, $\hat{\mathbb{Z}}_p$; prodiscrete monoids; End(\mathbb{N}) with the pointwise convergence topology.

Pointed toposes

A *point* of a topos \mathcal{E} is a geometric morphism $\textbf{Set} \to \mathcal{E}$.

The forgetful functor $Cont(L) \rightarrow Set$ has a right adjoint and preserves finite limits, so determines a point, p.

Pointed toposes

A *point* of a topos \mathcal{E} is a geometric morphism **Set** $\rightarrow \mathcal{E}$.

The forgetful functor $Cont(L) \rightarrow Set$ has a right adjoint and preserves finite limits, so determines a point, p.

Theorem [R]

Pairs of the form (Cont(L), p) are coreflective in the 2-category of pointed toposes.

In particular, given a model L of a geometric theory \mathbb{T} in **Set**, the pointed topos $(\mathbf{Set}[\mathbb{T}], \ulcorner M \urcorner)$ coreflects to End(L) with the 'pointwise convergence' topology. (See previous SYCO talk!)

Monoids vs Theories

Q. Which theories \mathbb{T} have $\mathbf{Set}[\mathbb{T}] \simeq \mathrm{Cont}(M)$?

イロト イロト イヨト イヨト 二日

Monoids vs Theories

Q. Which theories \mathbb{T} have $\mathbf{Set}[\mathbb{T}] \simeq \mathrm{Cont}(M)$?

Note that p must correspond to a *special model* of any such theory \mathbb{T} , so another way of asking the question is:

 ${\bf Q}.$ Which theories ${\mathbb T}$ have a special model?

3	perspectives
0	0000000000

Fraïssé theory

Sketch 3

イロト イポト イヨト イヨト 二日

A *site* consists of a small category C and a Grothendieck coverage J. This induces a reflective subcategory (subtopos):

$$\mathsf{Sh}(\mathcal{C},J) \xleftarrow{\perp} \mathsf{PSh}(\mathcal{C})$$

イロト イロト イヨト イヨト 二日

Sites of principal actions

A site consists of a small category C and a Grothendieck coverage J. This induces a reflective subcategory (subtopos):

$$\mathsf{Sh}(\mathcal{C},J) \xleftarrow{\perp} \mathsf{PSh}(\mathcal{C})$$

Example

For a topological monoid *L*, denote by C_s the category of (continuous) *principal* actions of *L*. This has a canonical Grothendieck coverage J_s generated by quotient maps $X \to X/\sim$. One can show that

 $\operatorname{Cont}(L) \simeq \operatorname{Sh}(\mathcal{C}_s, J_s).$

Theories of presheaf type

A theory is said to be *of presheaf type* when $\mathbf{Set}[\mathbb{T}] \simeq \mathsf{PSh}(\mathcal{C})$. These theories are particularly convenient because we have:

 $\mathcal{K} := \mathsf{f.p.}\mathbb{T}\text{-}\mathsf{mod}(\mathbf{Set}) \simeq \mathcal{C}^{\mathrm{op}} \quad \mathsf{and} \quad \mathbb{T}\text{-}\mathsf{mod}(\mathbf{Set}) = \mathsf{Ind}(\mathcal{K}),$

where 'f.p.' stands for *finitely presentable*.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

Theories of presheaf type

A theory is said to be *of presheaf type* when $\mathbf{Set}[\mathbb{T}] \simeq \mathsf{PSh}(\mathcal{C})$. These theories are particularly convenient because we have:

 $\mathcal{K} := \mathsf{f.p.}\mathbb{T}\text{-}\mathsf{mod}(\mathbf{Set}) \simeq \mathcal{C}^{\mathrm{op}} \quad \mathsf{and} \quad \mathbb{T}\text{-}\mathsf{mod}(\mathbf{Set}) = \mathsf{Ind}(\mathcal{K}),$

where 'f.p.' stands for *finitely presentable*.

Meanwhile, a subtopos of $Set[\mathbb{T}]$ classifies a 'quotient' of \mathbb{T} , meaning a theory obtained by adding axioms.

Corollary

If Cont(L) classifies a quotient of any theory \mathbb{T} of presheaf type such that $\mathcal{K} := f.p.\mathbb{T}\text{-mod}(\mathbf{Set}) \simeq \mathcal{C}_s^{\mathrm{op}}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Properties of principal actions

We can derive necessary conditions on the category of f.p. models by considering properties of C_s . For instance K must satisfy:

(OFS) There is an *orthogonal factorization system* $(\mathcal{L}, \mathcal{R})$, where the left class are epimorphisms and the right class are strong monomorphisms.

Properties of principal actions

We can derive necessary conditions on the category of f.p. models by considering properties of C_s . For instance K must satisfy:

- (OFS) There is an *orthogonal factorization system* $(\mathcal{L}, \mathcal{R})$, where the left class are epimorphisms and the right class are strong monomorphisms.
- (JEP) The *joint embedding property* requires that for any pair of objects X, Y, there is an object Z and (strong) monomorphisms,

$$X \rightarrowtail Z \longleftarrow Y.$$

(TP) The transferability property requires that any span with one leg a (strong) monomorphism can be completed to a square where the opposite side is also monic:

Properties of principal actions

We can derive necessary conditions on the category of f.p. models by considering properties of C_s . For instance K must satisfy:

- (OFS) There is an *orthogonal factorization system* $(\mathcal{L}, \mathcal{R})$, where the left class are epimorphisms and the right class are strong monomorphisms.
- (JEP) The *joint embedding property* requires that for any pair of objects X, Y, there is an object Z and (strong) monomorphisms,

$$X \rightarrowtail Z \longleftarrow Y.$$

(TP) The transferability property requires that any span with one leg a (strong) monomorphism can be completed to a square where the opposite side is also monic:

Compare JEP and Amalgamation Property (AP) in Fraissé theory.

3 perspectives 000000000	Fraïssé theory O●000	
-----------------------------	-------------------------	--

The special model with respect to the OFS

The OFS $(\mathcal{L}, \mathcal{R})$ on \mathcal{K} extends to an OFS $(\overline{\mathcal{L}}, \overline{\mathcal{R}})$ on \mathbb{T} -mod(**Set**) = Ind(\mathcal{K}) by the usual small object argument.

Applications

The special model with respect to the OFS

The OFS $(\mathcal{L}, \mathcal{R})$ on \mathcal{K} extends to an OFS $(\overline{\mathcal{L}}, \overline{\mathcal{R}})$ on \mathbb{T} -mod(**Set**) = Ind(\mathcal{K}) by the usual small object argument.

A special model M of \mathbb{T} , if it exists, satisfies:

(inj) *M* is *injective* with respect to \mathcal{R} , so any span in $Ind(\mathcal{K})$ as follows (with left leg in \mathcal{R}) extends (non-uniquely) to a triangle:

(univ) *M* is *universal* for $\overline{\mathcal{R}}$, so any object *X* of \mathcal{K} admits an $\overline{\mathcal{R}}$ -morphism to *M* in Ind(\mathcal{K}):

 $X \rightarrowtail M.$

(dir) M is the directed colimit of a diagram of \mathcal{R} -morphisms.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The special model with respect to the OFS

The OFS $(\mathcal{L}, \mathcal{R})$ on \mathcal{K} extends to an OFS $(\overline{\mathcal{L}}, \overline{\mathcal{R}})$ on \mathbb{T} -mod(**Set**) = Ind(\mathcal{K}) by the usual small object argument.

A special model M of \mathbb{T} , if it exists, satisfies:

(inj) *M* is *injective* with respect to \mathcal{R} , so any span in $Ind(\mathcal{K})$ as follows (with left leg in \mathcal{R}) extends (non-uniquely) to a triangle:

(univ) M is universal for $\overline{\mathcal{R}}$, so any object X of \mathcal{K} admits an $\overline{\mathcal{R}}$ -morphism to M in $Ind(\mathcal{K})$:

 $X \rightarrowtail M.$

(dir) M is the directed colimit of a diagram of \mathcal{R} -morphisms. These conditions are necessary *and sufficient*.

イロト イヨト イヨト イヨト ヨー のへで

Proposition

Let \mathcal{K} be a *countable* category satisfying OFS, JEP and TP. Then there exists an object of Ind(\mathcal{K}) satisfying (inj), (univ) and (dir).

Proposition

Let \mathcal{K} be a *countable* category satisfying OFS, JEP and TP. Then there exists an object of $Ind(\mathcal{K})$ satisfying (inj), (univ) and (dir).

Proof. We inductively construct a chain of objects U_i of \mathcal{K} whose colimit has the desired properties.

Let $\pi : \omega \times \omega \times \omega \to \omega$ be a bijection such that $\pi(i, j, k) \ge k$. Enumerate \mathcal{L} as $\{I_i : X_i \to Y_i\}_{i < \omega}$. Base case. Let $U_0 = A_0$. (We use the enumeration for objects too.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

perspectives	Fraïssé theory 000€0	Applications 000000

Induction step. Given U_k , we can enumerate spans of the following form,

$$\left\{ \begin{array}{c|c} X_i & \xrightarrow{f_{i,j,k}} & U_k \\ I_i & & \\ Y_i & & \\ \end{array} \right| j < \omega \left\}.$$

Induction step. Given U_k , we can enumerate spans of the following form,

$$\left(\begin{array}{c|c} X_i \xrightarrow{f_{i,j,k}} U_k \\ \downarrow \\ \downarrow \\ Y_i \end{array} \middle| j < \omega \right\}.$$

Let $(i', j', k') = \pi^{-1}(k)$. We use TP to define an intermediate object U'_k and then the JEP to define U_{k+1} :

Induction step. Given U_k , we can enumerate spans of the following form,

$$\left(\begin{array}{c|c} X_i \xrightarrow{f_{i,j,k}} U_k \\ \downarrow \\ \downarrow \\ Y_i \end{array} \middle| j < \omega \right\}.$$

Let $(i', j', k') = \pi^{-1}(k)$. We use TP to define an intermediate object U'_k and then the JEP to define U_{k+1} :

The colimit satisfies (dir) by construction. For (inj), any span must factorize through an enumerated one. Lastly, $A_k \rightarrow U_k \rightarrow M$ is in $\overline{\mathcal{R}}$, giving (univ).

Let $\mathbb T$ be a theory whose finitely presentable models form a countable category $\mathcal K$ satisfying OFS, JEP and TP, we obtain a special model M of an extension $\mathbb T'$ of $\mathbb T$ such that,

 $\mathbf{Set}[\mathbb{T}'] \simeq \mathsf{Cont}(\mathsf{End}(M)) \simeq \mathsf{Sh}(\mathcal{K}^{\mathrm{op}}, J_{\mathcal{R}^{\mathrm{op}}}).$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● のへで

Let $\mathbb T$ be a theory whose finitely presentable models form a countable category $\mathcal K$ satisfying OFS, JEP and TP, we obtain a special model M of an extension $\mathbb T'$ of $\mathbb T$ such that,

$$\operatorname{Set}[\mathbb{T}'] \simeq \operatorname{Cont}(\operatorname{End}(M)) \simeq \operatorname{Sh}(\mathcal{K}^{\operatorname{op}}, J_{\mathcal{R}^{\operatorname{op}}}).$$

Specifically, the extension \mathbb{T}' requires each monomorphism $X \rightarrow Y$ in \mathcal{K} to induce an epimorphism $\operatorname{Hom}(Y, M) \rightarrow \operatorname{Hom}(X, M)$.

We can add torsion axioms in $\mathbb T$ to force f.p. models to be finite models.

The classic Fraissé construction is recovered in the case that the orthogonal factorization system on \mathcal{K} is trivial, so all morphisms are (strict) monomorphisms.

The classic Fraïssé construction is recovered in the case that the orthogonal factorization system on \mathcal{K} is trivial, so *all morphisms are (strict) monomorphisms*. Examples where finitely presented models are finite include (with homogeneous model in parentheses):

The classic Fraïssé construction is recovered in the case that the orthogonal factorization system on \mathcal{K} is trivial, so *all morphisms are (strict) monomorphisms*. Examples where finitely presented models are finite include (with homogeneous model in parentheses):

• Dense linear orderings (\mathbb{Q})

The classic Fraïssé construction is recovered in the case that the orthogonal factorization system on \mathcal{K} is trivial, so *all morphisms are (strict) monomorphisms*. Examples where finitely presented models are finite include (with homogeneous model in parentheses):

- Dense linear orderings (\mathbb{Q})
- Simple graphs (Rado graph)

The classic Fraïssé construction is recovered in the case that the orthogonal factorization system on \mathcal{K} is trivial, so *all morphisms are (strict) monomorphisms*. Examples where finitely presented models are finite include (with homogeneous model in parentheses):

- Dense linear orderings (\mathbb{Q})
- Simple graphs (Rado graph)
- Fields of characteristic $p(\overline{\mathbb{F}}_p)$
- Groups (Hall's universal group)
- Boolean algebras (countable atomless Boolean algebra)

Caramello covered these cases.

Let $L = \langle \mathcal{A} \mid \mathcal{R} \rangle$ be a finitely generated monoid. Let \mathbb{T} be the theory of finite Boolean algebras equipped with a right action of *L*. Explicitly, this is based on a signature Σ containing:

Let $L = \langle \mathcal{A} \mid \mathcal{R} \rangle$ be a finitely generated monoid. Let \mathbb{T} be the theory of finite Boolean algebras equipped with a right action of *L*. Explicitly, this is based on a signature Σ containing:

• One sort *B*;

Let $L = \langle \mathcal{A} \mid \mathcal{R} \rangle$ be a finitely generated monoid. Let \mathbb{T} be the theory of finite Boolean algebras equipped with a right action of *L*. Explicitly, this is based on a signature Σ containing:

- One sort *B*;
- Function symbols on *B* for:
 - Constants 0, 1;
 - Binary operations ∪, ∩;
 - A unary operation ¬;
 - A unary operation a^* for each $a \in \mathcal{A}$;

Let $L = \langle \mathcal{A} \mid \mathcal{R} \rangle$ be a finitely generated monoid. Let \mathbb{T} be the theory of finite Boolean algebras equipped with a right action of *L*. Explicitly, this is based on a signature Σ containing:

- One sort *B*;
- Function symbols on *B* for:
 - Constants 0, 1;
 - Binary operations ∪, ∩;
 - A unary operation ¬;
 - A unary operation a^* for each $a \in \mathcal{A}$;

These satisfy axioms making:

- $(B,0,1,\cup,\cap,\neg)$ a Boolean algebra,
- Each *m*^{*} commute with each of the Boolean algebra operations and the ordering,
- $m^*n^*(x) = (nm)^*(x)$ for $m, n \in L$ (it is a *right* action),

In addition to ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In addition to ...

イロト イロト イヨト イヨト 二日

3 perspectives 000000000	Fraïssé theory 00000	
-----------------------------	-------------------------	--

In addition to ...

Writing
$$D_n(x)$$
 for $\bigcup_{\substack{w \in \mathcal{A}^* \\ |w| \le n}} w^*(x)$, and $\phi_n(x)$ for $D_n(x) = D_{n+1}(x)$, we have:

イロト イロト イヨト イヨト 二日

Applications

In addition to ...

Writing $D_n(x)$ for $\bigcup_{\substack{w \in \mathcal{A}^* \\ |w| \leq n}} w^*(x)$, and $\phi_n(x)$ for $D_n(x) = D_{n+1}(x)$, we have:

• A 'local finiteness' condition:

$$\top \vdash_{\mathsf{x}} \bigvee_{\mathsf{n} \in \mathbb{N}} \phi_{\mathsf{n}}(\mathsf{x})$$

This says that the action eventually stabilizes.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ○○○

In addition to ...

Writing $D_n(x)$ for $\bigcup_{\substack{w \in \mathcal{A}^* \\ |w| \leq n}} w^*(x)$, and $\phi_n(x)$ for $D_n(x) = D_{n+1}(x)$, we have:

• A 'local finiteness' condition:

$$\top \vdash_{\mathsf{x}} \bigvee_{\mathsf{n} \in \mathbb{N}} \phi_{\mathsf{n}}(\mathsf{x})$$

This says that the action eventually stabilizes.

• A 'connectedness' condition:

$$\phi_n(x) \land \phi_n(y) \land (D_n(x) \cap D_n(y) = 0) \vdash_{x,y} (x = 0) \lor (y = 0)$$

This says that any pair of non-zero elements generate eventually intersecting subsets.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ○○○

In addition to ...

Writing $D_n(x)$ for $\bigcup_{\substack{w \in \mathcal{A}^* \\ |w| \leq n}} w^*(x)$, and $\phi_n(x)$ for $D_n(x) = D_{n+1}(x)$, we have:

• A 'local finiteness' condition:

$$\top \vdash_{\mathsf{x}} \bigvee_{\mathsf{n} \in \mathbb{N}} \phi_{\mathsf{n}}(\mathsf{x})$$

This says that the action eventually stabilizes.

• A 'connectedness' condition:

$$\phi_n(x) \land \phi_n(y) \land (D_n(x) \cap D_n(y) = 0) \vdash_{x,y} (x = 0) \lor (y = 0)$$

This says that any pair of non-zero elements generate eventually intersecting subsets.

If I have constructed this correctly, the finitely presentable models \mathcal{K} are finite and we have a duality with finite principal *left L*-sets (by analogy with Stone duality).

イロト イヨト イヨト イヨト ヨー のへで

A free example

The theorem applies: there exists a universal, injective Boolean algebra B equipped with a (locally finite, connected) right *L*-action into which all of the finite ones embed, and such that,

$$\mathbf{Set}[\mathbb{T}']\simeq\mathsf{Cont}(\mathsf{End}(B))\simeq\mathsf{Sh}(\mathcal{K},J_{\mathrm{mono^{op}}})$$

In fact, End(B) is exactly the profinite completion of L with respect to its left actions.

A free example

The theorem applies: there exists a universal, injective Boolean algebra B equipped with a (locally finite, connected) right *L*-action into which all of the finite ones embed, and such that,

$$\mathbf{Set}[\mathbb{T}']\simeq\mathsf{Cont}(\mathsf{End}(B))\simeq\mathsf{Sh}(\mathcal{K},J_{\mathrm{mono^{op}}})$$

In fact, End(B) is exactly the profinite completion of L with respect to its left actions.

Concrete example

Let $L = A^*$ for some finite alphabet A. A left *L*-set 'is' a set of states Q equipped with a transition function $A \times Q \rightarrow Q$. [Almost an automaton.]

The theory of Boolean algebras with a (locally finite, connected) right action of *L* is classified by the topos of transition functions in which every state generates a finite subset. [*Almost finite automata; the corresponding languages are regular*]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Why so complicated?

This class of examples was constructed in reverse (starting from Cont(L)). Couldn't simpler theories give examples?

Why so complicated?

This class of examples was constructed in reverse (starting from Cont(L)). Couldn't simpler theories give examples?

Algebraic theories can't work: if \mathcal{K} has products, (TP) implies (AP), so the subcategory of monos is enough for classical Fraïssé theory!

Fin

イロト イポト イヨト イヨト 二日