The category of finite dimensional operator spaces

Thea Li

QuaCS, Inria Saclay, LMF

SYCO, 24/04

M2 Intership project, supervised by: Vladimir Zamdzhiev

Two views on quantum operations

Schrödinger view:

 $\mathcal{S} := \left\{ egin{array}{l} \mathsf{ob:} & \mathsf{finite dimensional Hilbert spaces} \\ \mathsf{mor:} & \mathsf{CPTP maps } \varphi : \mathcal{T}(\mathcal{H})
ightarrow \mathcal{T}(\mathcal{K}) \end{array}
ight.$

Maps represents operations on states

Heisenberg view:

 $\begin{array}{l} \mathcal{H} := \\ \left\{ \begin{array}{l} \mathsf{ob:} \text{ finite dimensional Hilbert spaces} \\ \mathsf{mor:} \text{ NCPU maps } \varphi : B(H) \to B(K) \end{array} \right. \end{array}$

Maps represents operations on effects

Heisenberg-Schrödinger duality

Given two Hilbert spaces H_1 and H_2 we have an isomorphism

$\mathsf{CPTP}(T(H_1), T(H_2)) \cong \mathsf{NCPU}(B(H_2), B(H_1))$

This gives an equivalence of categories! $\mathcal{S} \cong \mathcal{H}^{\mathsf{op}}$

Remark

We want one category - The keyword is completely!

Why care... pt. 2

The operator space setting

- Operator space theory non-commutative (quantum) Banach space theory
 - Banach spaces are nice categorically \implies Operator spaces are nice?
- Rich theory with many interesting constructions (tensor products etc)
 - including one non-commutative and self-dual tensor
 - $((A \otimes_h B)^* = A^* \otimes_h B^*)$ for A and B f.d

B(H) and T(H) are operator spaces!

- We also have that $B(H) \cong T(H)^*$ as operator spaces
- $T(H_1) \widehat{\otimes} T(H_2) \cong T(H_1 \otimes H_2)$
- $B(H_1) \bigotimes B(H_2) \cong B(H_1 \otimes H_2)$

Operator Spaces

Definition (Operator Space)

A operator space is a closed linear subspace of $A \subset B(H)$ for some Hilbert space H.

Properties

- $M_n(A) \subset M_n(B(H)) \cong B(H^n)$ determines a norm on $M_n(A)$.
- Main result: fully abstract definition we do not need to point out H

Examples

- $\mathbb{C} \cong B(\mathbb{C})$
- B(H) Space of bounded operators
- T(H) Space of trace class operators
- H_c , given by $H \cong B(\mathbb{C}, H)$ gives O.S structure on any Hilbert space H

Operator Spaces, Effros and Ruan 2000

Maps between operator spaces

Definition (Amplification)

Let A, B be operator spaces, then the nth amplification of a linear map $\varphi: A \to B$ is given by

$$\varphi_n: M_n(A) \rightarrow M_n(B)$$

 $a \mapsto [\varphi(a_{i,j})]$

Definition (completely bounded-ness)

Let $\varphi:A\to B$ be a linear map. We define the cb-norm on such a morphism by

 $\|\varphi\|_{cb} = \sup\{\|[\varphi(a_{i,j})]\|_n \mid n \in \mathbb{N}, a = [a_{i,j}] \in M_n(A), \|[a_{i,j}]\|_n \le 1\}$

- completely bounded (c.b) if $\|\varphi\|_{\mathsf{cb}} < \infty$
- completely contractive (c.c) if $\|\varphi\|_{\mathsf{cb}} \leq 1$

The category in question

Definition

Let **fdOS** denote the category

- objects: finite dimensional operator spaces
- morphisms: completely contractive maps

Properties

- Model of MALL
 - (We focus on the MLL-part here)
- BV-category

Classical MLL

Definition (Multiplicative Linear Logic)

$$A ::= X \mid A^* \mid I \mid A \otimes A' \mid \bot \mid A \Im A'$$
$$A \multimap A' := A^* \Im A'$$

Coherences

- Associativity and Commutativity of \otimes and \mathfrak{N}
- De Morgan: $(A \otimes B)^* = A^* \Im B^* \quad (A \Im B)^* = A^* \otimes B^*$
- Unit : $I \otimes A = A \otimes I = A \perp \mathfrak{N} A = A \mathfrak{N} \perp = A$
- Double dual: $A^{**} = A$

Inference rules

$$\overline{\vdash A^{\perp}, A} \qquad \underline{\vdash \Gamma, A \vdash \Delta, B} \qquad \overline{\vdash \Gamma, A \otimes B} \qquad \overline{\vdash \Gamma, A \otimes B}$$

Models of classical MLL

Definition (*-autonomous category)

A symmetric monoidal closed category $(\mathcal{C}, I, \otimes, -\infty)$ is called *-autonomous if the transpose $\partial_A : A \to ((A \to \bot) \to \bot)$ of the evaluation map $eval_A : A \otimes (A \to \bot) \to \bot$ is an isomorphism.

Proposition

Any *-autonomous category is a model of classical MLL where

$$\begin{split} \llbracket A^* \rrbracket &:= \llbracket A \rrbracket \multimap \bot & \llbracket I \rrbracket &:= I \\ \llbracket A \otimes B \rrbracket &:= \llbracket A \rrbracket \otimes \llbracket B \rrbracket & \llbracket \bot \rrbracket &:= \bot \\ \llbracket A^{\mathcal{B}} B \rrbracket &:= \llbracket A \rrbracket^* \multimap \llbracket B \rrbracket & \end{split}$$

Coherences and inferences are isomorphisms and morphisms resp.

Remark

Coherences and inferences are actually natural!

Constructions on operator spaces

Mapping spaces

CB-space: CB(A, B) (the space of completely bounded maps)
 Norm given by || − ||_{cb}

• Dual space: $A^* := \mathcal{CB}(A, \mathbb{C})$

Properties

- Functorial
- $UP: CB(A, CB(B, C)) \cong \mathcal{JCB}(A, B; C)$
- $A \cong A^{**}$ when A is f.d

Remark

 $\mathcal{JCB}(A, B; C)$ is the space of jointly completely bounded maps.

Operator Spaces, Effros and Ruan 2000

Constructions on operator spaces pt 2

Tensors

- Projective tensor: $A \widehat{\otimes} B$
 - $\mathsf{UP}: \mathcal{CB}(A \mathbin{\widehat{\otimes}} B, C) \cong \mathcal{JCB}(A, B; C) \quad (\cong \mathcal{CB}(A, \mathcal{CB}(B, C)))$
 - Maximal cross matrix tensor (mapping out property)
- Injective tensor: $A \mathop{\otimes} B$
 - norm induced by $A \otimes B \hookrightarrow \mathcal{CB}(A^*, B)$
 - Minimal cross matrix tensor (mapping in property)

Properties

- Functorial wrt c.b and c.c
- Symmetric: $A \otimes B \cong B \otimes A$ $A \otimes B \cong B \otimes A$
- Associative:
 - $(A \widehat{\otimes} B) \widehat{\otimes} C \cong A \widehat{\otimes} (B \widehat{\otimes} C) \qquad (A \widecheck{\otimes} B) \widecheck{\otimes} C \cong A \widecheck{\otimes} (B \widecheck{\otimes} C)$
- Has unitors: $\mathbb{C} \widehat{\otimes} A \cong A \cong A \widehat{\otimes} \mathbb{C}$ $\mathbb{C} \stackrel{\sim}{\otimes} A \cong A \cong A \stackrel{\sim}{\otimes} \mathbb{C}$

fdOS as a model of classical MLL

Proposition

fdOS equipped with the projective tensor product and the CB-space, (**fdOS**, \mathbb{C} , $\widehat{\otimes}$, $\mathcal{CB}(-, -)$), is monoidal closed.

fdOS is a model of MLL

*-autonomous with

- multiplicative conjunction $X \otimes Y := X \widehat{\otimes} Y$
- unit of multiplicative conjunction $I := \mathbb{C}$
- multiplicative disjunction $X \stackrel{\infty}{\to} Y := X \stackrel{\times}{\otimes} Y \quad (\cong \mathcal{CB}(X^*, Y))$
- \bullet unit of multiplicative disjunction $\bot:=\mathbb{C}^*\cong\mathbb{C}$
- dual $X^* := \mathcal{CB}(X, \mathbb{C})$ such that $X \cong X^{**}$

MALL and Models of MALL

Definition

$$A ::= X \mid A^* \mid 1 \mid A \otimes A' \mid \bot \mid A \, \mathfrak{N} \, A' \mid 0 \mid A \oplus A' \mid \top \mid A \, \& \, A'$$

Coherences

- \bullet Associativity and Commutativity of \oplus and &
- De morgan: $(A \oplus B)^* = A^* \& B^* \quad (A \& B)^* = A^* \oplus B^*$
- Unit : $0 \oplus A = A \oplus 0 = A \perp \Re A = A \Re \bot = A$

Proposition

Any cartesian *-autonomous category (hence also cocartesian) is a model of classical MALL logic where

$$\llbracket A \& B \rrbracket := \llbracket A \rrbracket \times \llbracket B \rrbracket$$

 $\llbracket A \oplus B \rrbracket := \llbracket A \rrbracket + \llbracket B \rrbracket$

Products and coproducts in fdOS

Definition (direct sums)

Let A and B be operator spaces, the ∞ -direct sum and 1-direct sum

- underlying vector space the cartesian product, A imes B
- $\|(a,b)\|_{\infty} := \max(\|a\|,\|b\|)$. The operator space structure is given by

$$M_n(A \oplus^{\infty} B) \cong M_n(A) \oplus^{\infty} M_n(B)$$

• $||(a, b)||_1$ is defined using

$$egin{array}{rcl} A\oplus^1B& o&(A^*\oplus^\infty B^*)^*\ (a,b)&\mapsto&((f,g)\mapsto f(a)+g(b)) \end{array}$$

Proposition

We have that \oplus^{∞} is the product and \oplus^1 is the coproduct in fdOS

BV-logic: an extension of classical MLL

Definition

$$S ::= I \mid X \mid S^* \mid S \otimes S \mid S ?? S \mid S \triangleright S$$

- Associativity of ▷
- Negation: $(A \triangleright B)^* = A^* \triangleright B^*$ $I^* = I$
- Commutativity of \triangleright is not required

Inference rules

$$C \to C\langle I \rangle \quad C\langle (A \rhd B) \otimes (C \rhd D) \rangle \to C\langle (A \otimes C) \rhd (B \otimes D) \rangle$$
$$C\langle I \rangle \to C\langle A \,^{\mathfrak{N}} A^* \rangle \quad C\langle (A \,^{\mathfrak{N}} B) \otimes C \rangle \to C\langle (A \otimes C) \,^{\mathfrak{N}} B \rangle$$

Remark

Deep inference \implies Inference rules/coherences are natural maps?

Guglielmi 1999

Thea Li (QuaCS, Inria Saclay, LMF)

BV-category

Definition (BV-category with negation)

A *-autonomous category $(\mathcal{C}, I, \otimes, -\circ)$ with an additional monoidal structure $(\mathcal{C}, J, \triangleright)$ that is normal duoidal to $(\mathcal{C}, I, \otimes)$.

Remark

•
$$w: (A \rhd B) \otimes (C \rhd D) \rightarrow (A \otimes C) \rhd (B \otimes D)$$

• (Self-duality can be derived from these premises)

What is \triangleright in **fdOS**?

We need yet another tensor, more is more!

Blute, Panangaden, and Slavnov 2010

Haagerup tensor product, finite dimensional case

Definition (matrix inner product)

The matrix inner product of $a \in \mathbb{M}_{n,r}(A)$ and $b \in \mathbb{M}_{r,m}(B)$ is

$$[(a \odot b)_{i,j}] = [\sum_{k=1}^r a_{i,k} \otimes b_{k,j}] \in \mathbb{M}_{n,m}(A \otimes B)$$

Definition (Haagerup norm)

• The Haagerup norm of a $v \in \mathbb{M}_n(A \otimes B)$ is

$$\|v\|_h = \inf\{\|a\|_{n,r}\|b\|_{r,n} \mid a \odot b = v\}$$

The Haagerup tensor product, denoted A ⊗_h B, has as underlying vector space A ⊗ B and matrix norm || − ||_h.

Operator Spaces, Effros and Ruan 2000

Properties of the Haagerup tensor

Proposition (U.P of the Haagerup tensor)

Let $\varphi : A \otimes_h B \to B(H, K)$ be a linear map, then TFAE

- φ is c.b (c.c)
- there are c.b (c.c) maps $\varphi_1 : A \rightarrow B(H,L)$ and $\varphi_2 : B \rightarrow B(L,K)$ s.t

$$arphi(\mathsf{a}\otimes \mathsf{b})=arphi_1(\mathsf{a})\circarphi_2(\mathsf{b})$$

Properties

• Let A and B be two f.d operator spaces we have

$$A^* \otimes_h B^* \cong (A \otimes_h B)^*$$

• The Haagerup tensor is non-symmetric

▶ Pf. Given a finite dimensional Hilbert space H we have isomorphisms

 $H_c \otimes_h (H_c)^* \cong B(H) \qquad (H_c)^* \otimes_h H_c \cong T(H)$

fdOS is a BV-category

Haagerup tensor

- Functorial wrt c.b and c.c maps
- Associative
- Unitors: $\mathbb{C} \otimes_h A \cong A \cong A \otimes_h \mathbb{C}$

NB: These make $(\mathbf{fdOS}, \mathbb{C}, \otimes_h)$ into a monoidal category

fdOS is a BV-category with negation

- *-autonomous
- Duoidality for free, as \otimes_h is functorial wrt completely bounded maps

 $w^* := (A \stackrel{\scriptstyle{\leftrightarrow}}{\otimes} B) \otimes_h (C \stackrel{\scriptstyle{\leftrightarrow}}{\otimes} B) \cong \mathcal{CB}(A^*, B) \otimes_h \mathcal{CB}(C^*, D) \longrightarrow \mathcal{CB}(A^* \otimes_h C^*, B \otimes_h D)$

 $\cong \mathcal{CB}((A \otimes_h C)^*, B \otimes_h D) \cong (A \otimes_h c) \,\check{\otimes} (B \otimes_h D)$

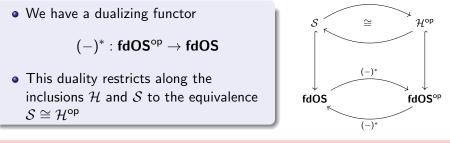
 $\bullet\,$ Has the same unit as $\widehat{\otimes}\,$

What do we have?

Organizing ${\mathcal H}$ and ${\mathcal S}$ in the same category

We have non-full embeddings of \mathcal{H} and \mathcal{S} into **fdOS**.

$$\mathcal{S} \xrightarrow{\mathcal{T}(-)} \mathsf{fdOS} \xleftarrow{\mathcal{B}(-)} \mathcal{H}$$



Limitations

The embeddings of \mathcal{H} and \mathcal{S} are not full, consequently there are morphisms in **fdOS** that do not correspond to quantum operations

Thea Li (QuaCS, Inria Saclay, LMF)

What do we want? - a PhD!

Build a "category of operator spaces" E such that

- ${\small \textcircled{0}} \ \ {\small There are } \textit{full and faithful embeddings of \mathcal{H} and \mathcal{S}}$
- 2 Images of \mathcal{H} and \mathcal{S} are dual
- S E "inherits" the MALL-structure from fdOS
- Preserve the non-commutative structure

Small sketch

- Double gluing [Hyland and Schalk 2003]
- Homset-double gluing is not sufficient! (see 4. above)
- The new category
 - (A, S) with A an operator space
 - f:(A,S)
 ightarrow (B,R) s.t f:A
 ightarrow B and $f^*S \hookrightarrow R$
- S needs to be closed
- Choosing the right closedness conditions is non-trivial

PhD project supervised by: Vladimir Zamdzhiev and Benoît Valiron

Summary: fdOS is...

... a model of MLL

*-autonomous with

- dual $X^* := \mathcal{CB}(X, \mathbb{C})$ such that $X \cong X^{**}$
- multiplicative conjunction $X \otimes Y := X \widehat{\otimes} Y$ (the projective tensor)
- multiplicative disjunction $X \stackrel{\mathcal{R}}{\to} Y := X \stackrel{\times}{\otimes} Y$ (injective tensor)
- unit $I := \mathbb{C}$

... a BV-category

- dual $X^* := \mathcal{CB}(X, \mathbb{C})$ such that $X \cong X^{**}$
- multiplicative conjunction $X \otimes Y := X \widehat{\otimes} Y$ (the projective tensor)
- multiplicative disjunction $X \stackrel{\mathcal{D}}{\to} Y := X \stackrel{\times}{\otimes} Y$ (injective tensor)
- sequential $X \vartriangleright Y := X \otimes_h Y$
- unit $I := \mathbb{C}$