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Structure of the talk

▶ Part 1: Categorical composable cryptography

▶ Part 2: Capturing other frameworks

▶ Part 3: On game-based (not necessarily composable) cryptography
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Overview

▶ motivation: standard cryptography is not composable. Existing approaches to
make it composable are a bit hacky/tedious/very complicated and seem to beg a
categorical formalization

▶ main idea: cryptography as a resource theory — the resources are various
functionalities (e.g. keys, channels etc) and transformations are given by protocols
that build the target resource securely from the starting resources.

▶ categories of correct resource conversions as a Grothendieck construction

▶ correct and secure conversions as a subcategory

▶ example(ish): one-time-pad (OTP) as a transformation
OTP : key ⊗ insecure channel → secure channel
Security & correctness of OTP boil down to axioms of a Hopf algebra with an
integral.
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Real-world ideal-world paradigm

AKA simulation paradigm. Standard meta-approach for composable security.

Usual definition: a real protocol P securely realizes the ideal functionality F from the
resource R if for any attack A on P ◦ R there is a simulator S on F such that
(A,P) ◦ R is indistinguishable from S ◦ F by any (efficient) environment.

“Any bad thing that could happen during the protocol could also happen in the ideal
world.”

Usual ways of making this precise:

▶ Fixing a concrete low-level formalism for interactive computation (e.g.
UC-security)

▶ Abstract cryptography and constructive cryptography — close to our work in
spirit but technically different
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N+1th approach

In this work we formalize the simulation paradigm over an arbitrary category (and a
model of attacks). The main result is that protocols secure against a fixed attack
model can be composed sequentially and in parallel.

Some benefits:

▶ simulation-based security definitions are inherently composable, whether the
model of computation is synchronous or not, classical or quantum etc.

▶ abstract attack models pave way for other kinds of attackers than malicious ones

▶ different notions of security (computational, finite-key regimen etc) fit in

▶ benefits of CT: (i) tools, in particular string diagrams (ii) potential connections to
other fields
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Recap on pictures
Let C be a symmetric monoidal category — concretely, you can think of (finite) sets

and stochastic maps. We will depict a morphism as f , and composition and

monoidal product as

A

C

g ◦ f =

A

C

g

f

A ⊗ C

B ⊗ D

f ⊗ g =

A

B

C

D

f g

Special morphisms get nicer pictures: identities and symmetries are

A

A

A

A

B

B



Resource theories
Roughly: An SMC where you mostly care whether a hom-set is empty or not.
Examples:

▶ Can these noisy channels be used to simulate a (almost) noiseless channel?

▶ Is there a LOCC-protocol that transforms this quantum state to that one?

▶ Any preordered commutative monoid.

In “A mathematical theory of resources” Coecke, Fritz & Spekkens construct many
resource theories starting from an SMC C equipped with a wide sub-SMC CF of free
processes, and show how familiar examples are captured by these. One of the
constructions – the resource theory of states – is defined as follows:

Objects are states of C, i.e. maps out of I , and maps x → y are maps f in CF such
that

x

f

=
y

.
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Grothendieck construction

This is the Grothendieck construction applied to the composite CF ↪→ C
hom(I ,−)−−−−−→ Set.

Recall that, for any functor F : C → Set we can build a category
∫
F : its objects are

pairs (A, r) with A ∈ C and r ∈ F (A), and maps (A, r) → (B, s) are given by maps
f : A → B in C such that F (f )r = s

Whenever F is lax symmetric monoidal,
∫
F is a symmetric monoidal category, see

‘Monoidal Grothendieck construction’

Moeller & Vasilakopoulou, TAC 2020.
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Running example: n-partite states and transformations

If C is symmetric monoidal, let us compute the end result for

Cn
F ↪→ Cn ⊗−→ C

hom(I ,−)−−−−−→ Set.

Its objects are of the form ((Ai )
n
i=1, r : I →

⊗
Ai ). A map (((Ai )

n
i=1, r) → (((Bi )

n
i=1, s)

is then a tuple (fi )
n
i=1 of morphisms of CF that transforms r to s:

r

. . .
f1 fn

=
s

. . .

We think of this as a resource theory with n-parties who try to agree on actions
f1, . . . fn to transform some resource to another one.
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Security in the running example
Such protocols are not necessarily secure—what if some subset of the parties does
something else instead?

Assume the first k parties are honest and the last n − k parties are dishonest. Then
(f1, . . . fn) is secure if for any a there is a b such that

r

[k] (k, n]

f |[k] a

=
s

[k] (k, n]

b

It suffices to check this for the initial attack
⊗n

k+1 id:

r

[k] (k, n]

f |[k]

=
s

[k] (k, n]

b
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Security in the abstract

Usually a resource theory talks only about correct transformations

To add in security:

▶ need an attack model A that gives for each protocol f a collection A(f ) of
attacks on it, satisfying some axioms.

▶ security against A: for each attack on the protocol there is an attack on the
target with similar end-results

Definition
An attack model on C gives for each f a collection A(f ) of morphisms in C such that
(i) A(gf ) = A(g) ◦ A(f ) and (ii) A(g ⊗ f ) = A(id) ◦ (A(g)⊗A(f )) and ...

Note: If f : A → B, we don’t require A(f ) ⊂ C(A,B) — attackers don’t care about
our type system!
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Security in the abstract II

Definition
An attack model on C gives for each f a collection A(f ) of morphisms in C such that

(i) A(g ◦ f ) = A(g) ◦ A(f ) and

(ii) A(g ⊗ f ) = A(id) ◦ (A(g)⊗A(f )) and ...

For malicious adversaries we can use identities/wires to get the factorizations

r

[k] (k, n]

g |[k]

f |[k]

a

r t

[k] (k, n]

f |[k] g |[k]

a



Composability

Theorem
Protocols secure against an attack model A are closed under composition (◦ and ⊗).

Proof.
⊗ and ◦ inherited form the ambient category—one just needs to check that they work.

Here’s the key steps for ◦ and ⊗ in the n-partite case with the first k parties honest

r

[k] (k, n]

g |[k]

f |[k]
=

s

[k] (k, n]

g |k a

=

t

[k] (k, n]

a

b

r t

[k] (k, n]

f |[k] g |[k]

=
s u

(k, n][k]

ba
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Security against multiple attack models

Corollary

Protocols secure against A1, . . .Ak form a symmetric monoidal category

Proof.
Symmetric monoidal subcategories are closed under intersection

Example

Fix a family of subsets of [n] parties: protocols secure against each of these subsets
behaving maliciously form an SMC. For instance, in MPC one often studies protocols
secure against at most n/2 or n/3 malicious participants.
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Resource theory of maps

We can easily vary the construction to have our resources be arbitrary morphisms
f : A → B ( or f :

⊗n
i=1 Ai →

⊗n
i=1 Bi in the n-partite case) and our resource

conversions be given by (n-tuples of) “combs”

g

h

built out of free processes.



Resource theory of tripartite maps
When n = 3, a resource consists of objects X1,X2,X3,Y1,Y2,Y3 and of a morphism
f : X1 ⊗ X2 ⊗ X3 → Y1 ⊗ Y2 ⊗ Y3 in C:

X1

Y1

X2

Y2

X3

Y3

f

Notational convention: label the three parties as E ,A,B (for Eve, Alice and Bob), and
label each wire just with its owner. Example:

A

BE

instead of
(A,M)

(B,M)(E ,M)

or

(A,M)

(B,M)(E ,M)

(E , I ) (B, I )

(A, I )
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OTP: starting resources
Channel from Alice to Bob that leaks everything to Eve:

A

BE

(Note: if instead the message goes via Eve (who may tamper with it), the analysis is
different)

Shared random key:

$

BA

Target resource: a channel

A

B

Free building blocks: local (efficient) computation
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Local ingredients for OTP

A group structure on the message space: a multiplication with unit satisfying the
following equations.

= = =

Note that copying and deleting satisfy similar equations

= = =
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Rest of the group structure

In addition, multiplication and copying interact:

=

and the map i giving inverses satisfies

i = = i
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Uniform randomness

The key being uniformly random is captured by

$

=
$

=
$

“Adding uniform noise to a channel gives uniform noise”

For the experts: a Hopf algebra with an integral in a symmetric monoidal category.



The protocol

$A

B

B

i

A

E B

Alice adds the key to her message, broadcasts it to Eve and Bob. Eve deletes her part
and Bob adds the inverse of the key to recover the message.



Security of OTP

$A

E
B

i

(1.)
=

E

A
$

B

i
(2.)
=

B

$

E

A

i
(3.)
=

B

$

E

A

(4.)
=

E

$

A

B

(5.)
=

$

E

A

B

(6.)
=

A

B

$

E

1. Bialgebra. 2. Associativity. 3. Antipode 4. Units 5. Random noise 6. Units.
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More on OTP

In other words, anything Eve might learn from the ciphertext she could already
compute without it, so this protocol is indeed a secure transformation against Eve.

Reusing keys is not a secure map key → key ⊗ key . However, a computationally secure
PRNG will give a computationally secure way of constructing a long shared key from a
short one, depicted by

short

BA

PNRGPNRG

≈
long

BA

where ≈ stands for computational indistinguishability.
Composing these two results in the stream cipher, which is secure automatically as a
composite of secure protocols inside our framework.
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Extensions of the simple model

The above captures a very particular cryptographic situation:
There is no set-up, i.e., the parties have no free cryptographic primitives or
communication not given by the starting functionality.

▶ This can be fixed by fixing a class X of free resources and defining general
protocols r → s as those of the form r ⊗ x → s with x ∈ X .

Security is perfect (i.e. information theoretic) instead of computational. This can be
fixed in two ways:

▶ replace = with an equivalence relation ≈ modelling computational
indistinguishability

▶ Work with a pseudometric, and work with approximately or asymptotically secure
protocols
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Further results

Can pass from FinStoch to efficient sequences of stochastic maps, and model
Diffie-Hellman key exchange there.

Abstract no-go results for bipartite and tripartite security

Abstract lifting results: strong monoidal functors preserve (some) security
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Overview

Goal: formally capture other approaches to composability, such as Universal
Composability (UC) or abstract cryptography. Use this to transfer results and ideas
between frameworks.

Today: a sketch of a base category used to discuss UC.
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UC in CCC

An interactive Turing machine (ITMs) has an identity and comes with a
communication set giving the identities of machines it expects input from and sends its
outputs to.

Consider a set P of ITMs with distinct identities and an identity s.

▶ Assume s is the identity of a machine in P. If it expects input from a machine not
in P, then s is an external subroutine identity. Otherwise s is an internal identity.

▶ If s is to be sent output from a machine in P but s is not in P, then s is an
external main identity.

An open protocol ≈ a finite set of ITMs up to renaming internal identities.
Given finite sets S and T of identities, a morphism S → T consists of an open
protocol whose external subroutine identities are in S and external main identities are
in T . Composition by renaming and union. Disjoint union of sets gives rise to a
symmetric monoidal structure.
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UC in CCC

Some further changes needed:

▶ Pass to the Kleisli category of the graded monad C → [C,C] given by
A 7→ A⊗−. An object in this category is a pair of objects of C. A morphism
(X1,X2 → (Y1,Y2) in this category consists of (an equivalence class of) an object
A, and morphisms X1 → A⊗ Y1 and A⊗ X2 → Y2). Idea: the object A and the
second morphism belongs to the adversary.

▶ An n-partite version

▶ Restrict to a subcategory of machines that behave in a particular way wrt.
adversary.
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Goal: Understand game-based (not necessarily-composable) cryptography categorically.
Use string diagrams for this as well.

Today: A picture proof for the 3-round Feistel, which promotes a pseudorandom
function into a pseudorandom permutation.
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Some more generators

A (stateful) map ! checking that the input is new. Also for pairs !

Two relevant properties:
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$

!
and ! =

!
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!

A pseudorandom function (PRF) ≈ a function indistinguishable from a function chosen
uniformly at random. Relevant axiom:

!

f

=

$

!

A pseudorandom permutation (PRP) is a PRF that is a permutation (has an inverse)



Some more generators

A (stateful) map ! checking that the input is new. Also for pairs !

Two relevant properties:

$ =
$

!
and ! =

!

=
!

A pseudorandom function (PRF) ≈ a function indistinguishable from a function chosen
uniformly at random. Relevant axiom:

!

f

=

$

!

A pseudorandom permutation (PRP) is a PRF that is a permutation (has an inverse)



Some more generators

A (stateful) map ! checking that the input is new. Also for pairs !

Two relevant properties:

$ =
$

!
and ! =

!

=
!

A pseudorandom function (PRF) ≈ a function indistinguishable from a function chosen
uniformly at random. Relevant axiom:

!

f

=

$

!

A pseudorandom permutation (PRP) is a PRF that is a permutation (has an inverse)



Some more generators

A (stateful) map ! checking that the input is new. Also for pairs !

Two relevant properties:

$ =
$

!
and ! =

!

=
!

A pseudorandom function (PRF) ≈ a function indistinguishable from a function chosen
uniformly at random. Relevant axiom:

!

f

=

$

!

A pseudorandom permutation (PRP) is a PRF that is a permutation (has an inverse)



3-round Feistel

f3

f2

f1

has the inverse

f1

f2

f3



3-round Feistel

f3

f2

f1

has the inverse

f1

f2

f3



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF 4. Randomness 5. B-Day 6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma.

2. Sliding ! 3. PRF 4. Randomness 5. B-Day 6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding !

3. PRF 4. Randomness 5. B-Day 6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF

4. Randomness 5. B-Day 6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF 4. Randomness

5. B-Day 6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF 4. Randomness 5. B-Day

6. PRF 7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF 4. Randomness 5. B-Day 6. PRF

7. Randomness



3-round Feistel

f3

f2

f1

!

(1.)
≈

f3

!

f2

f1

!

(2.)
=

f3

f2

!

f1

!

(3.)
≈

$

f3

!

f1

!

(4.)
=

$

f3

!

f1

!

(5.)
≈

$

f3

!

!

f1

!

(6.)
≈

$

$

!

f1

!

(7.)
≈

$ $

!

1. Lemma. 2. Sliding ! 3. PRF 4. Randomness 5. B-Day 6. PRF 7. Randomness



Summary

We have a framework where

▶ composability is guaranteed (also for computational security)

▶ attack models are general enough to cover various kinds of adversarial behavior
(e.g. colluding vs independent attackers)

▶ string diagrams can be used to make existing (or new) pictures into rigorous proofs

and we’re using it (and related ideas) to

▶ capture other frameworks

▶ study game-based security
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