

Tape Diagrams for Monoidal Monads Alessandro Di Giorgio

j.w.w. Filippo Bonchi, Cipriano Junior Cioffo, Elena Di Lavore

London, UK

Tape Diagrams are...

string diagrams of string diagrams

Bonchi, Di Giorgio, Santamaria, 2023 🖹 Di Giorgio, 2024

There are two monoidal products

- \otimes inside tapes
- \oplus outside tapes

Tape Diagrams are...

a universal language for rig categories with finite biproducts

biproduct A category C with two monoidal structures $(C, \otimes, 1)$ and $(C, \oplus, 0)$ and natural isomorphisms $\lambda_X^{\bullet}: 0 \otimes X \to 0$ $\delta_{X,Y,Z}^{l} \colon X \otimes (Y \oplus Z) \to (X \otimes Y) \oplus (X \otimes Z)$ $\rho_X^{\bullet}: X \otimes 0 \to 0$

 $\delta_{X,Y,Z}^r \colon (X \oplus Y) \otimes Z \to (X \otimes Z) \oplus (Y \otimes Z)$

satisfying certain coherence conditions.

🖹 Laplaza, 1971

Tape Diagrams are...

the free sesquistrict fb-rig category generated by a monoidal signature (\mathcal{S}, Γ)

Example: Quantum Control

Takes semantics in the fb-rig category FdHilb with

$|00\rangle\langle 00| + |01\rangle\langle 01| + (|1\rangle\otimes U|0\rangle)\langle 10| + (|1\rangle\otimes U|1\rangle)\langle 11|$

 \otimes tensor product direct sum (+)

Example: Control Flow

Takes semantics in the fb-rig category Rel with

while (x>0) { x:=x-1; y:=y+1 }; return y

tegory Rel with \bigoplus disjoint union

Quasi-example: Probabilistic Control

is only a coproduct \oplus

$x \wedge y +_p x \vee y$

Takes semantics in $Kl(D_{<})$ (substochastic matrices) which is not quite a fb-rig category

$+_n$ is an additional operation on tapes

Objects are sets. Morphisms $f: X \to Y$ are functions $X \to D_{\leq}(Y)$. Composition is $f; g(z \mid x) = \sum_{y \in Y} f(y \mid x) \cdot f(z \mid y)$

Objects are sets. Morphisms $f: X \to Y$ are functions $X \to D_{\langle Y \rangle}$. Composition is $f; g(z \mid x) = \sum_{y \in Y} f(y \mid x) \cdot f(z \mid y)$

There are **two monoidal structures**:

 $(Kl(\mathsf{D}_{<}), \bigoplus, \{\})$

 $f \oplus g(v \mid u) \stackrel{\text{def}}{=} \begin{cases} f(y \mid x) & \text{if } u = (x, 0) \text{ and } v = (y, 0) \\ g(y' \mid x') & \text{if } u = (x', 1) \text{ and } v = (y', 1) \end{cases}$ otherwise

Natural commutative monoids

Objects are sets. Morphisms $f: X \to Y$ are functions $X \to D_{\leq}(Y)$. Composition is $f; g(z \mid x) = \sum_{y \in Y} f(y \mid x) \cdot f(z \mid y)$

There are **two monoidal structures**:

There is additional structure given by

 $(+_p)_X : X \to X + X$ mapping x into $(x,0) \mapsto p$, $(x,1) \mapsto$ $(\star)_X : X \to 0$ mapping x into the null subdistribut mapping x into the null subdistribut

 $(Kl(D_{<}), \bigoplus, \{\})$

 $f \oplus g(v \mid u) \stackrel{\text{def}}{=} \begin{cases} f(y \mid x) & \text{if } u = (x, 0) \text{ and } v = (y, 0) \\ g(y' \mid x') & \text{if } u = (x', 1) \text{ and } v = (y', 1) \end{cases}$ otherwise

Natural commutative monoids

$$1 - p$$
tion

Objects are sets. Morphisms $f: X \to Y$ are functions $X \to D_{\langle Y \rangle}$. Composition is $f; g(z \mid x) = \sum_{y \in Y} f(y \mid x) \cdot f(z \mid y)$

There are **two monoidal structures**:

There is additional structure given by

 $(+_p)_X \colon X \to X + X$ $(\star)_X \colon X \to 0$ mapping x into $(x,0) \mapsto p$, $(x,1) \mapsto 1-p$ mapping x into the null subdistribution

$$(Kl(\mathsf{D}_{\leq}), \bigoplus, \{\})$$

 $f \oplus g(v \mid u) \stackrel{\text{def}}{=} \begin{cases} f(y \mid x) & \text{if } u = (x, 0) \text{ and } v = (y, 0) \\ g(y' \mid x') & \text{if } u = (x', 1) \text{ and } v = (y', 1) \end{cases}$ otherwise

Natural commutative monoids

symmetric monoidal monad

Objects are sets. Morphisms $f: X \to Y$ are functions $X \to D_{\leq}(Y)$. Composition is $f; g(z \mid x) = \sum_{y \in Y} f(y \mid x) \cdot f(z \mid y)$

There are **two monoidal structures**:

There is additional structure given by

 $(+_p)_X : X \to X + X$ mapping x into $(x,0) \mapsto p$, $(x,1) \mapsto 1 - p$ $(\star)_X : X \to 0$ mapping x into the null subdistribution

$$(\mathit{Kl}(\mathsf{D}_{\leq}), \bigoplus, \{\})$$

 $f \oplus g(v \mid u) \stackrel{\text{def}}{=} \begin{cases} f(y \mid x) & \text{if } u = (x, 0) \text{ and } v = (y, 0) \\ g(y' \mid x') & \text{if } u = (x', 1) \text{ and } v = (y', 1) \end{cases}$ otherwise

Natural commutative monoids

symmetric monoidal monad

Finite Coproduct-Copy Discard Rig Categories

A rig category $(C, \otimes, 1, \oplus, 0)$ such that

and the monoids and comonoids interact according to the following coherence conditions

Finite Coproduct-Copy Discard Rig Categories

A rig category $(C, \otimes, 1, \oplus, 0)$ such that

and the monoids and comonoids interact according to the following coherence conditions

Let $(C, \otimes, 1, \oplus, 0)$ be a fc-cd rig category and T a symmetric monoidal monad over $(C, \otimes, 1)$. Then the Kliesli category Kl(T) is a fc-cd rig category.

Adding the Algebraic Structure: U-CD Rig Categories

Let $\mathbb{T} = (\Sigma, E)$ be an algebraic theory. A \mathbb{T} -cd rig category is a

fc-cd rig category C

commutes.

Adding the Algebraic Structure: U-CD Rig Categories

Let $\mathbb{T} = (\Sigma, E)$ be an algebraic theory. A \mathbb{T} -cd rig category is a

fc-cd rig category C

Tape Diagrams for T-CD Rig Categories

Compositional Semantics

string diagrams i tape diagrams

T-tapes are the free sesquistrict T-cd rig category generated by a monoidal signature (\mathcal{S}, Γ)

Back to $Kl(D_{\leq})$

Boolean Circuits

$$\begin{bmatrix} \Box \Box - \end{bmatrix} : 2 \times 2 \quad \rightarrow \quad 2$$
$$(x, y) \quad \mapsto \quad \delta_{x \wedge y}$$
$$\begin{bmatrix} \bullet - \end{bmatrix} : 1 \quad \rightarrow \quad 2$$
$$\bullet \quad \mapsto \quad \delta_{0}$$

Embedded in \mathbb{PCA} -tapes

$$p$$
:= p := p

$$\begin{bmatrix} p \end{bmatrix}^{\#} : 1 \rightarrow 2$$

• $\mapsto \begin{cases} 1 \mapsto p \\ 0 \mapsto (1-p) \end{cases}$

Back to $Kl(D_{<})$

Back to $Kl(D_{<})$

Different behaviours w.r.t failure when c (or d) = the multiplexer always fails

Future Work

- Complete axiomatisation for $Kl(D_{<})$?
 - Possibly exploiting existing completeness theorems

- Traces? Probabilistic diagrammatic program logic?

- Other interesting examples?

Thank you!