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Tape Diagrams are…

string diagrams of string diagrams

There are two monoidal products

 inside tapes⊗
 outside tapes⊕

Bonchi, Di Giorgio, Santamaria, 2023 Di Giorgio, 2024



Tape Diagrams are…

a universal language for rig categories with finite biproducts

A category  with two monoidal structures  and  and natural isomorphisms𝖢 (𝖢, ⊗ ,1) (𝖢, ⊕ ,0)

δl
X,Y,Z : X ⊗ (Y ⊕ Z) → (X ⊗ Y) ⊕ (X ⊗ Z)

δr
X,Y,Z : (X ⊕ Y) ⊗ Z → (X ⊗ Z) ⊕ (Y ⊗ Z)

λ∙
X : 0 ⊗ X → 0

ρ∙
X : X ⊗ 0 → 0

satisfying certain coherence conditions.

biproduct

Laplaza, 1971



Tape Diagrams are…

the free sesquistrict fb-rig category generated by a monoidal signature  (𝒮, Γ)

cocommutative comonoids commutative monoids natural transformations

biproducts [Fox’s Theorem]



Example: Quantum Control

Takes semantics in the fb-rig category  with𝖥𝖽𝖧𝗂𝗅𝖻
 tensor product⊗
 direct sum⊕



Example: Control Flow

Takes semantics in the fb-rig category  with𝖱𝖾𝗅
 cartesian product⊗
 disjoint union⊕

Bonchi, Di Giorgio, Di Lavore, 2025



Quasi-example: Probabilistic Control

x ∧ y +p x ∨ y

Takes semantics in  (substochastic matrices) 

which is not quite a fb-rig category

Kl(𝖣≤)

 is only a coproduct⊕  is an additional operation on tapes+p



A Closer Look to Kl(𝖣≤)
Objects are sets.   Morphisms  are functions .   Composition is  


There are two monoidal structures:

f : X → Y X → 𝖣≤(Y) f; g(z ∣ x) = Σy∈Y f(y ∣ x) ⋅ f(z ∣ y)
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X ⊗ Y = X × Y X ⊕ Y = X + Y

mapping  into  x (x,0) ↦ p, (x,1) ↦ 1 − p

mapping  into the null subdistributionx

symmetric 

monoidal 

monad

presented by an algebraic theory

(ℙℂ𝔸)



Finite Coproduct-Copy Discard Rig Categories
A rig category  such that (𝖢, ⊗ ,1, ⊕ ,0)

 is a copy-discard category(𝖢, ⊗ ,1)  is a finite coproduct category(𝖢, ⊕ ,0)

and the monoids and comonoids interact according to the following coherence conditions

( ◀ X , !X) ( ◀ X , !X)



Finite Coproduct-Copy Discard Rig Categories
A rig category  such that (𝖢, ⊗ ,1, ⊕ ,0)

 is a copy-discard category(𝖢, ⊗ ,1)  is a finite coproduct category(𝖢, ⊕ ,0)

and the monoids and comonoids interact according to the following coherence conditions

( ◀ X , !X) ( ◀ X , !X)

Let  be a fc-cd rig category and  a symmetric monoidal monad over .

Then the Kliesli category  is a fc-cd rig category.

(𝖢, ⊗ ,1, ⊕ ,0) T (𝖢, ⊗ ,1)
Kl(T)



Adding the Algebraic Structure:  -CD Rig Categories𝕋
Let  be an algebraic theory. A -cd rig category is a 𝕋 = (Σ, E) 𝕋

fc-cd rig category  𝖢 together with a functor of fc categories i : 𝖫op
𝕋 → 𝖢

such that commutes.



Adding the Algebraic Structure:  -CD Rig Categories𝕋
Let  be an algebraic theory. A -cd rig category is a 𝕋 = (Σ, E) 𝕋

fc-cd rig category  𝖢 together with a functor of fc categories i : 𝖫op
𝕋 → 𝖢

such that commutes.

For each , there are natural transformationst : n → 1 ∈ Σ



Tape Diagrams for -CD Rig Categories𝕋
A A A

A

natural commutative monoids  is a natural transformationf

(t, t′￼) ∈ 𝕋

cocommutative comonoids
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Compositional Semantics

string diagrams

tape diagrams

-cd rig category𝕋
[ ⋅ ]

[ ⋅ ]♯

i

-tapes are the free sesquistrict -cd rig category 

generated by a monoidal signature  

𝕋 𝕋
(𝒮, Γ)



Back to Kl(𝖣≤)

[ ] [ ] [ ]

[ ][ ][ ]

[ ]

Boolean Circuits

Embedded in -tapesℙℂ𝔸

:=

[ ] [ ] [ ]

[ ][ ][ ]

[ ]

[ ] #

{



Back to Kl(𝖣≤) Probabilistic Control

:=

multiplexer ( )⊗ convex sum ( )⊕

where

vs.

Piedeleu, Torres-Ruiz, Silva, Zanasi, 2025



Back to Kl(𝖣≤) Probabilistic Control

:=

multiplexer ( )⊗ convex sum ( )⊕

where

vs.

when  (or ) =               the multiplexer always failsc d =

Different behaviours w.r.t failure

Piedeleu, Torres-Ruiz, Silva, Zanasi, 2025



Future Work
- Complete axiomatisation for  ? 


      Possibly exploiting existing completeness theorems

Kl(𝖣≤)

- Traces?

- Other interesting examples?

Probabilistic diagrammatic program logic?



Thank you!


