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Overview

• Every statistical experiment induces a canonical decomposition of a state
• Informativeness of experiments corresponds to algebraic properties of these

decompositions
• Current theory depends on Bayesian inverses, which may not always exist
• Our contribution: Breaking this dependence, enabling purely algebraic study

Prior p

Experiment f

Hypernormalization f̂p
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Key Contributions

• We prove the Giry monad is Beck-Chevalley through:
1. Weakly cartesian multiplication (Theorem 3.1)
2. Weak pullback preservation (Theorem 3.7)

• We establish a universal property of hypernormalizations (Theorem 3.11)
• We provide an alternative definition without Bayesian inverses (Definition 3.12)

A Synthetic Perspective
Our work reveals the compositional nature of statistical experiments through categorical
algebra rather thanmeasure theory.
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1
Quick Recap of Markov Categories



Markov Categories

Definition: Markov Category

AMarkov category is a symmetric monoidal category (C,⊗, I)where:
• Every object has a copy operation copyX : X → X ⊗X

• Every object has a delete operation delX : X → I

• These form a commutative comonoid structure
• Themonoidal unit I is terminal

Intuition
Markov categories provide a synthetic framework for probability theorywheremorphisms
represent stochastic processes. This enables us to abstract away from many measure-
theoretic subtleties.
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Example: Category of Markov Kernels

Example: BorelStoch
• Objects are measurable spaces (X,ΣX)

• Morphisms are Markov kernels k : X → Y where:
• k(B|−) is measurable for allB ∈ ΣY

• k(−|x) is a probability measure for all x ∈ X

• Composition is via the Chapman-Kolmogorov equation:

(h ◦ k)(C|x) =
∫
Y
h(C|y)k(dy|x)

• BorelStoch is the full subcategory of standard Borel spaces
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Deterministic Morphisms

Definition: Deterministic Morphism

Amorphism f : A → X in a Markov category is deterministic if:

f

= f f

The subcategory of Cwith deterministic morphisms is denoted Cdet.
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Conditionals

Definition: Conditional
For a morphism f : A → X ⊗ Y , a conditional of f with respect to X is a morphism
f |X : X ⊗A → Y such that:

f

X Y

A

=

A

f

f |X

YX

A Markov category has conditionals if every morphism admits a conditional with respect
to any of its outputs.
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Representable Markov Categories

Definition: Representable Markov Categories

A distribution object forX is an object PX with a morphism sampX : PX → X such
that:

Cdet(A,PX) ∼= C(A,X)

The inverse of this map is denoted (−)# : C(A,X) → Cdet(A,PX), and we set δX =
(1X)# : X → PX . A Markov category is representable if every object has a distribution
object.
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2
Statistical Experiments and their

Decompositions



Statistical Experiments

Definition: Statistical Experiment

A probability space is a pair (Θ, p)where p : I → Θ. A statistical experiment on (Θ, p)
is a morphism f : Θ → X (up to p-almost sure equality).

p

1

2

3

f

f ◦ p • Θ = real line with normal
distribution p

• X = {1, 2, 3} = observable
outcomes

• f partitionsΘ into three regions
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Canonical Decompositions (Standard Measures)

Definition: Standard Measure (2.34)

Let (Θ, p) be a probability space in a representable Markov category, and f : Θ → X a
statistical experiment. The standardmeasure of f is the state f̂p on PΘ given by:

f̂p = (f †
p)

# ◦ f ◦ p : I → PΘ

where f †
p is the Bayesian inverse of f with respect to p.

Definition: Hypernormalization (2.35)

For an a.s. deterministic experiment f , the hypernormalization of p with respect to f is
the standard measure f̂p.
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Example: Gaussian Decomposition

Example: Gaussian Experiment

Original distribution p:

p

1

2

3

f

Hypernormalization f̂p:

p1

p2

p3

f̂p = w1p1 + w2p2 + w3p3

The hypernormalization f̂p decomposes p into three probability measures
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3
Relating Experiment Informativeness to

Decompositions



The Blackwell Order on Experiments

Definition: Blackwell Order
Let f : Θ → X and g : Θ → Y be statistical experiments on (Θ, p). We say that g ≤ f in
the Blackwell order if there exists a morphism h : X → Y such that h ◦ f =p g.

Θ X

Y

f

g
h

Intuition
f is “more informative” than g if we can recover g by processing the results of f without
further access toΘ. Intuitively: f gives us finer-grained information than g.
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Stochastic Dominance on Decompositions

Definition: Partial Evaluation Relation (2.23)

Given two states π, τ : I → PΘ, we say π ≤ τ in the stochastic dominance order if there
exists κ : I → PPΘ such that samp ◦ κ = π and Psamp ◦ κ = τ

I

PΘ PPΘ PΘ

π τ
κ

samp Psamp

Intuition
• This relation compares how “spread

out” probability measures are.
• π ≤ τ means τ can be obtained

from π by taking “centers of mass”
of pieces of π.
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Example: Mixture of Gaussians

Example: Mixture of Gaussians

Original Mixture π

N(−2, 1) N(0, 1) N(2, 1)

w1 = 1
3

w2 = 1
3

w3 = 1
3

π ≤ τ

Partial Evaluation τ

N(−2, 1) Merged

w1 = 1
3

w2 + w3 = 2
3

π = 1
3
[N(−2, 1)] + 1

3
[N(0, 1)] + 1

3
[N(2, 1)] τ = 1

3
[N(−2, 1)] + 2

3

[
1
2
N(0, 1) + 1

2
N(2, 1)

]
The partial evaluation τ results from grouping the second and third components of π into a single
mixture.
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Blackwell-Sherman-Stein Theorem

Theorem: Blackwell-Sherman-Stein (2.38)
Let C be an a.s.-compatibly representable Markov category. Let f : Θ → X and g : Θ →
Y be statistical experiments on (Θ, p). Then g ≤ f in the Blackwell order if and only if
ĝp ≥ f̂p in the stochastic dominance order.
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Example: Coarser vs. Finer Experiments

Example: Coarse-Graining

Consider Y = {a, b} and h : X → Y with h(1) = a, h(2) = h(3) = b. Then g = h ◦ f is
less informative than f :

1

2

3

f a

b

g

g ≤ f in Blackwell order ⇐⇒ ĝp ≥ f̂p in stochastic dominance
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4
The Problem: Dependence on Bayesian

Inverses



Bayesian Inverses

Definition: Bayesian Inverse

For a statistical experiment f : Θ → X and state p : I → Θ, a Bayesian inverse is a
morphism f †

p : X → Θ such that:

f

p

f †
p

q
=

Y X Y X

where q = f ◦ p. Note that this is a special case of a conditional, i.e., having conditionals
implies that we have Bayesian inverses.
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Example: Bayesian Inverse

Example: Bayesian Updating

p

p(−|x = 1)

1 3

2 7

3 7

f

• f partitionsΘ into 3 regions
• After observing outcome x = 1:

• Regions 2 and 3 get probability
zero

• Region 1 now has probability one
• Within region 1, probability is

proportional to prior p
• Mathematically:

p(A|x = 1) =
p(A ∩ f−1(1))

p(f−1(1))

22/46



Revisiting Standard Measures

• Recall that the standard measure is defined as:

f̂p = (f †
p)

# ◦ f ◦ p : I → PΘ

• This definition depends critically on the existence of the Bayesian inverse f †
p .
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Existence Conditions for Bayesian Inverses

• Bayesian inverses are a special case of conditionals
• In BorelStoch, conditionals exist as regular conditional probability distributions
• But in general categorical settings:

• Not all Markov categories have conditionals
• Some categories have conditionals only in special cases
• Existence can depend onmeasure-theoretic properties

Why This Matters
• The dependence on Bayesian inverses ties our algebraic characterization of

experiment informativeness back to probabilistic notions.
• This undermines our goal of a purely algebraic understanding.
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The Need for a Purely Algebraic Approach

The Core Problem
The Blackwell-Sherman-Stein theorem links:

• Blackwell order on experiments (probabilistic notion)
• Stochastic dominance on standard measures (algebraic notion)

But the definition of standard measures still depends on Bayesian inverses!

Our Goal
• Provide an alternative characterization of standard measures/hypernormalizations
• Remove the dependence on Bayesian inverses and conditionals
• Enable purely algebraic comparisons of experiment informativeness
• Maintain the connection to the traditional probabilistic understanding
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5
Algebraic Foundations



Weak Pullbacks and Beck-Chevalley Condition

Definition: Weak Pullback
A commutative square is aweak pullback if for any compatiblemorphisms, there exists a
morphismmaking all triangles commute:

S

A B

C D

r

q

p

f

g m

n
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Weak Pullbacks and Beck-Chevalley Condition

Definition: Beck-Chevalley Monad (2.24)

Amonad (T, µ, η) is Beck-Chevalley (BC) if:
1. The functor T preserves weak pullbacks
2. The multiplication µ is weakly cartesian (naturality squares are weak pullbacks)
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Connection to Probability Theory

Theorem: Proposition 2.25

For a Beck-Chevalley monad, the partial evaluation relation is transitive.

Why This Matters for Our Goal
• The partial evaluation relation corresponds to stochastic dominance
• Beck-Chevalley condition ensures stochastic dominance is well-behaved
• This provides the mathematical foundation for comparing decompositions
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The Algebraic Path Forward

Current Approach

Statistical Experiment f

Bayesian Inverse f †

Standard Measure f̂p

Experiment Comparison

Our Approach

Statistical Experiment f

Algebraic Properties

Universal Characterization

Experiment Comparison
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6
Breaking the Dependence



Universal Property of Hypernormalizations

Theorem: Universal Property (3.11)

Let (Θ, p) be a probability space, f : Θ → X a p-a.s. deterministic experiment with
Bayesian inverse, and f̂p its standard measure. For every π : I → PΘ such that:
1. sampΘ ◦ π = p (i.e., π is a decomposition of p)
2. Pf ◦ π = δ ◦ q (i.e., π is compatible with the partition f )

we have a partial evaluation from π to f̂p.

Intuition
• The hypernormalization f̂p is the “most refined” decomposition of p that respects

the partition structure of f .
• Any other compatible decomposition can be “coarse-grained” to obtain f̂p.

32/46



Alternative Definition Without Bayesian Inverses

Definition: Alternative Definition (3.12)

Let (Θ, p) be a probability space and f : Θ → X be a.s. deterministic. The hypernormal-
ization of pwith respect to f is the state π : I → PΘwhich:
1. satisfies samp ◦ π = p (i.e., it’s a decomposition of p)
2. satisfies Pf ◦ π = δ ◦ q (i.e., it respects the partition of f )
3. is maximal in the stochastic dominance order among states satisfying the above
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From Probability to Algebra

Traditional Approach

• Starts with probability spaces
• Uses measure theory
• Relies on conditional probability
• Requires Bayesian inverses

Our Algebraic Approach

• Starts with Markov categories
• Uses categorical algebra
• Relies on universal properties
• Based on stochastic dominance

Statistical
Experiments

Bayesian
Inverses

Universal
Characterization

Experiment
Comparison

Traditional Path

Our Path

connects to

Theorem 3.11
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7
Key Technical Results



Theorem 1: Weakly Cartesian Multiplication

Theorem: Multiplication is Weakly Cartesian (3.1)

Let C be an a.s.-compatibly representable Markov category with monad (P, µ, δ). If C has
conditionals, then µ is weakly Cartesian.

Corollary: 3.2

The Giry monad on standard Borel spaces has weakly cartesian multiplication.
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Theorem 1: Weakly Cartesian Multiplication

Proof Idea.
We need to show that for deterministic f : X → Y , the following square is a weak pullback:

PX PY

X Y

Pf

samp samp

f

Givenmorphisms p : A → X and q : A → PY with sampY ◦ q = f ◦ p, we construct:

r = P (f †
p) ◦ σY,A ◦ q : A → PX

where σY,A is the strength and f †
p is the Bayesian inverse.
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Theorem 2: Preservation of Weak Pullbacks

Definition: Equalizer Principle (3.5)

A Markov category satisfies the equalizer principle if:
• Equalizers in Cdet exist
• For every equalizer diagram, every morphism pwith f =p g factors uniquely across

the equalizer

Theorem: Functor Preserves Weak Pullbacks (3.7)

Let C be a representable Markov category with monad (P, µ, δ). If C has conditionals and
satisfies the equalizer principle, then P preserves weak pullbacks.
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Theorem 2: Preservation of Weak Pullbacks

Proof Idea.
• We show that P turns pullbacks into weak pullbacks
• For a pullback in Cdet and compatible morphisms p, q, form their conditional product ρ
• Use the equalizer principle to show ρ factors through the pullback
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The Giry Monad is Beck-Chevalley

Corollary: Beck-Chevalley Monad (3.8)

IfC is a.s.-compatibly representablewith conditionals and satisfies the equalizer principle,
then the monad (P, Psamp, δ) is Beck-Chevalley.

Theorem: Giry Monad is Beck-Chevalley (3.9)

The Giry monad on standard Borel spaces is Beck-Chevalley.
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Connecting the Pieces

Beck-Chevalley
Property

Universal Property
of Hypernor-
malizations

Bayesian-Free
Definition

enables justifies

Weakly cartesian
multiplication

Canonical decompositions
of a state

Pure algebraic
characterization

Breaking the Dependence!
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8
Conclusions & Future Work



Summary of Contributions

Main Results
1. The Giry Monad is Beck-Chevalley

• Multiplication is weakly cartesian (Theorem 3.1)
• Monad preserves weak pullbacks (Theorem 3.7)

2. Universal Property of Hypernormalizations (Theorem 3.11)
• Hypernormalizations are maximal in the stochastic dominance order
• They are the canonical decompositions respecting a partition

3. Alternative Definition (Definition 3.12)
• Purely algebraic characterization
• No dependence on Bayesian inverses or conditionals
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Open Questions

Immediate Questions

• Suppose we have a representable Markov category without conditionals and whose underlying
monad is Beck-Chevalley. Does the Blackwell-Sherman-Stein theorem still hold when we substitute
hypernormalization for standard measures?

• Does the existence of hypernormalization imply that the stochastic dominance order is transitive?

Probabilistic
Approach

Algebraic
Approach

Our results

?
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Future Directions

Completing the Equivalence

• Prove full equivalence between algebraic
and probabilistic approaches

• Establish necessary algebraic conditions for
informativeness

• Formalize universality beyond deterministic
experiments

Connections to Other Areas

• Explore links to fibrations and descent
theory

• Connect partitions to categorical descent
• Develop applications in causal inference

The Big Picture: What other aspects of probability can be algebraicized?

De Finetti Conditionals ?
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Thank You

Thank You
Questions?
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