Categorical Algebra of Conditional Probability

Mika Bohinen & Paolo Perrone University of Oxford

SYCO 13, London – Thursday 24th April, 2025

Overview

- Every statistical experiment induces a canonical decomposition of a state
- Informativeness of experiments corresponds to algebraic properties of these decompositions
- Current theory depends on Bayesian inverses, which may not always exist
- Our contribution: Breaking this dependence, enabling purely algebraic study

- We prove the Giry monad is Beck-Chevalley through:
 - 1. Weakly cartesian multiplication (Theorem 3.1)
 - 2. Weak pullback preservation (Theorem 3.7)
- We establish a universal property of hypernormalizations (Theorem 3.11)
- We provide an alternative definition without Bayesian inverses (Definition 3.12)

A Synthetic Perspective

Our work reveals the compositional nature of statistical experiments through categorical algebra rather than measure theory.

Quick Recap of Markov Categories

1

Definition: Markov Category

A **Markov category** is a symmetric monoidal category (\mathbf{C}, \otimes, I) where:

- Every object has a copy operation $\operatorname{copy}_X : X \to X \otimes X$
- Every object has a delete operation $del_X : X \to I$
- These form a commutative comonoid structure
- The monoidal unit *I* is terminal

Intuition

Markov categories provide a synthetic framework for probability theory where morphisms represent stochastic processes. This enables us to abstract away from many measure-theoretic subtleties.

Example: BorelStoch

- Objects are measurable spaces (X, Σ_X)
- Morphisms are Markov kernels $k : X \rightarrow Y$ where:
 - k(B|-) is measurable for all $B \in \Sigma_Y$
 - k(-|x) is a probability measure for all $x \in X$
- Composition is via the Chapman-Kolmogorov equation:

$$(h \circ k)(C|x) = \int_Y h(C|y)k(dy|x)$$

• BorelStoch is the full subcategory of standard Borel spaces

Definition: Deterministic Morphism

A morphism $f: A \to X$ in a Markov category is **deterministic** if:

The subcategory of \mathbf{C} with deterministic morphisms is denoted \mathbf{C}_{det} .

Definition: Conditional

For a morphism $f : A \to X \otimes Y$, a **conditional** of f with respect to X is a morphism $f|_X : X \otimes A \to Y$ such that:

A Markov category **has conditionals** if every morphism admits a conditional with respect to any of its outputs.

Definition: Representable Markov Categories

A **distribution object** for X is an object PX with a morphism samp_X : $PX \rightarrow X$ such that:

$$\mathbf{C}_{\mathsf{det}}(A, PX) \cong \mathbf{C}(A, X)$$

The inverse of this map is denoted $(-)^{\#}$: $C(A, X) \rightarrow C_{det}(A, PX)$, and we set $\delta_X = (1_X)^{\#} : X \rightarrow PX$. A Markov category is **representable** if every object has a distribution object.

2

Statistical Experiments and their Decompositions

Definition: Statistical Experiment

A **probability space** is a pair (Θ, p) where $p : I \to \Theta$. A **statistical experiment** on (Θ, p) is a morphism $f : \Theta \to X$ (up to *p*-almost sure equality).

- Θ = real line with normal distribution p
- X = {1, 2, 3} = observable outcomes
- f partitions Θ into three regions

Definition: Standard Measure (2.34)

Let (Θ, p) be a probability space in a representable Markov category, and $f : \Theta \to X$ a statistical experiment. The **standard measure** of f is the state \hat{f}_p on $P\Theta$ given by:

$$\hat{f}_p = (f_p^{\dagger})^{\#} \circ f \circ p : I \to P\Theta$$

where f_p^{\dagger} is the Bayesian inverse of f with respect to p.

Definition: Hypernormalization (2.35)

For an a.s. deterministic experiment f, the **hypernormalization** of p with respect to f is the standard measure \hat{f}_p .

3

Relating Experiment Informativeness to Decompositions

Definition: Blackwell Order

Let $f: \Theta \to X$ and $g: \Theta \to Y$ be statistical experiments on (Θ, p) . We say that $g \leq f$ in the **Blackwell order** if there exists a morphism $h: X \to Y$ such that $h \circ f =_p g$.

Intuition

f is "more informative" than g if we can recover g by processing the results of f without further access to Θ . Intuitively: f gives us finer-grained information than g.

Definition: Partial Evaluation Relation (2.23)

Given two states $\pi, \tau: I \to P\Theta$, we say $\pi \leq \tau$ in the **stochastic dominance order** if there exists $\kappa: I \to PP\Theta$ such that samp $\circ \kappa = \pi$ and P samp $\circ \kappa = \tau$

Intuition

- This relation compares how "spread out" probability measures are.
- π ≤ τ means τ can be obtained from π by taking "centers of mass" of pieces of π.

Theorem: Blackwell-Sherman-Stein (2.38)

Let **C** be an a.s.-compatibly representable Markov category. Let $f: \Theta \to X$ and $g: \Theta \to Y$ be statistical experiments on (Θ, p) . Then $g \leq f$ in the Blackwell order if and only if $\hat{g}_p \geq \hat{f}_p$ in the stochastic dominance order.

Example: Coarse-Graining

Consider $Y = \{a, b\}$ and $h : X \to Y$ with h(1) = a, h(2) = h(3) = b. Then $g = h \circ f$ is less informative than f:

The Problem: Dependence on Bayesian Inverses

Definition: Bayesian Inverse

For a statistical experiment $f : \Theta \to X$ and state $p : I \to \Theta$, a **Bayesian inverse** is a morphism $f_p^{\dagger} : X \to \Theta$ such that:

where $q = f \circ p$. Note that this is a special case of a conditional, i.e., having conditionals implies that we have Bayesian inverses.

Example: Bayesian Updating

- f partitions Θ into 3 regions
- After observing outcome x = 1:
 - Regions 2 and 3 get probability zero
 - Region 1 now has probability one
 - Within region 1, probability is proportional to prior *p*
- Mathematically:

$$p(A|x=1) = \frac{p(A \cap f^{-1}(1))}{p(f^{-1}(1))}$$

• Recall that the standard measure is defined as:

$$\hat{f}_p = (f_p^{\dagger})^{\#} \circ f \circ p : I \to P\Theta$$

• This definition depends critically on the existence of the Bayesian inverse f_p^{\dagger} .

Existence Conditions for Bayesian Inverses

- Bayesian inverses are a special case of conditionals
- In BorelStoch, conditionals exist as *regular conditional probability distributions*
- But in general categorical settings:
 - Not all Markov categories have conditionals
 - Some categories have conditionals only in special cases
 - Existence can depend on measure-theoretic properties

Why This Matters

- The dependence on Bayesian inverses ties our algebraic characterization of experiment informativeness back to probabilistic notions.
- This undermines our goal of a purely algebraic understanding.

The Need for a Purely Algebraic Approach

The Core Problem

The Blackwell-Sherman-Stein theorem links:

- Blackwell order on experiments (probabilistic notion)
- Stochastic dominance on standard measures (algebraic notion)

But the definition of standard measures still depends on Bayesian inverses!

Our Goal

- Provide an alternative characterization of standard measures/hypernormalizations
- Remove the dependence on Bayesian inverses and conditionals
- Enable purely algebraic comparisons of experiment informativeness
- Maintain the connection to the traditional probabilistic understanding

Algebraic Foundations

5

Definition: Weak Pullback

A commutative square is a **weak pullback** if for any compatible morphisms, there exists a morphism making all triangles commute:

Definition: Beck-Chevalley Monad (2.24)

A monad (T, μ, η) is **Beck-Chevalley** (BC) if:

1. The functor $T \ensuremath{\mathsf{preserves}}$ weak pullbacks

2. The multiplication μ is weakly cartesian (naturality squares are weak pullbacks)

Theorem: Proposition 2.25

For a Beck-Chevalley monad, the partial evaluation relation is transitive.

Why This Matters for Our Goal

- The partial evaluation relation corresponds to stochastic dominance
- Beck-Chevalley condition ensures stochastic dominance is well-behaved
- This provides the mathematical foundation for comparing decompositions

Our Approach

Breaking the Dependence

6

Theorem: Universal Property (3.11)

Let (Θ, p) be a probability space, $f : \Theta \to X$ a *p*-a.s. deterministic experiment with Bayesian inverse, and \hat{f}_p its standard measure. For every $\pi : I \to P\Theta$ such that:

- 1. samp $_{\Theta} \circ \pi = p$ (i.e., π is a decomposition of p)
- 2. $Pf \circ \pi = \delta \circ q$ (i.e., π is compatible with the partition f)

we have a partial evaluation from π to \hat{f}_p .

Intuition

- The hypernormalization \hat{f}_p is the "most refined" decomposition of p that respects the partition structure of f.
- Any other compatible decomposition can be "coarse-grained" to obtain \hat{f}_p .

Definition: Alternative Definition (3.12)

Let (Θ, p) be a probability space and $f : \Theta \to X$ be a.s. deterministic. The **hypernormal**ization of p with respect to f is the state $\pi : I \to P\Theta$ which:

- 1. satisfies samp $\circ \pi = p$ (i.e., it's a decomposition of p)
- 2. satisfies $Pf \circ \pi = \delta \circ q$ (i.e., it respects the partition of f)
- 3. is maximal in the stochastic dominance order among states satisfying the above

Traditional Approach

- Starts with probability spaces
- Uses measure theory
- Relies on conditional probability
- Requires Bayesian inverses

Our Algebraic Approach

- Starts with Markov categories
- Uses categorical algebra
- Relies on universal properties
- Based on stochastic dominance

Key Technical Results

7

Theorem: Multiplication is Weakly Cartesian (3.1)

Let **C** be an a.s.-compatibly representable Markov category with monad (P, μ, δ) . If **C** has conditionals, then μ is weakly Cartesian.

Corollary: 3.2

The Giry monad on standard Borel spaces has weakly cartesian multiplication.

Proof Idea.

We need to show that for deterministic $f : X \to Y$, the following square is a weak pullback:

Given morphisms $p: A \to X$ and $q: A \to PY$ with samp $_Y \circ q = f \circ p$, we construct:

$$r = P(f_p^{\dagger}) \circ \sigma_{Y,A} \circ q : A \to PX$$

where $\sigma_{Y,A}$ is the strength and f_p^{\dagger} is the Bayesian inverse.

Definition: Equalizer Principle (3.5)

A Markov category satisfies the **equalizer principle** if:

- Equalizers in **C**_{det} exist
- For every equalizer diagram, every morphism p with $f =_p g$ factors uniquely across the equalizer

Theorem: Functor Preserves Weak Pullbacks (3.7)

Let **C** be a representable Markov category with monad (P, μ, δ) . If **C** has conditionals and satisfies the equalizer principle, then P preserves weak pullbacks.

Proof Idea.

- We show that P turns pullbacks into weak pullbacks
- For a pullback in $\mathbf{C}_{\mathrm{det}}$ and compatible morphisms p,q , form their conditional product ρ
- Use the equalizer principle to show ρ factors through the pullback

Corollary: Beck-Chevalley Monad (3.8)

If **C** is a.s.-compatibly representable with conditionals and satisfies the equalizer principle, then the monad $(P, P \text{samp}, \delta)$ is Beck-Chevalley.

Theorem: Giry Monad is Beck-Chevalley (3.9)

The Giry monad on standard Borel spaces is Beck-Chevalley.

Conclusions & Future Work

8

Main Results

1. The Giry Monad is Beck-Chevalley

- Multiplication is weakly cartesian (Theorem 3.1)
- Monad preserves weak pullbacks (Theorem 3.7)

2. Universal Property of Hypernormalizations (Theorem 3.11)

- Hypernormalizations are maximal in the stochastic dominance order
- They are the canonical decompositions respecting a partition
- 3. Alternative Definition (Definition 3.12)
 - Purely algebraic characterization
 - No dependence on Bayesian inverses or conditionals

Open Questions

Immediate Questions

- Suppose we have a representable Markov category without conditionals and whose underlying monad is Beck-Chevalley. Does the Blackwell-Sherman-Stein theorem still hold when we substitute hypernormalization for standard measures?
- Does the existence of hypernormalization imply that the stochastic dominance order is transitive?

Future Directions

Completing the Equivalence

- Prove full equivalence between algebraic and probabilistic approaches
- Establish necessary algebraic conditions for informativeness
- Formalize universality beyond deterministic experiments

Connections to Other Areas

- Explore links to fibrations and descent theory
- Connect partitions to categorical descent
- Develop applications in causal inference

The Big Picture: What other aspects of probability can be algebraicized?

Thank You

Questions?

Key References

- Bohinen & Perrone (2025): Categorical Algebra of Conditional Probability
- Fritz (2020): A synthetic approach to Markov kernels, conditional independence, and theorems on sufficient statistics
- Cho & Jacobs (2019): Disintegration and Bayesian inversion via string diagrams
- Fritz et al. (2023): Representable Markov categories and comparison of statistical experiments in categorical probability
- Constantin et al. (2020): Partial evaluations and the compositional structure of the bar construction