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Overview of the talk

Background on Signal Processing:
1. Linear Time-Invariant (LTl) systems
2. Introduction to Volterra series

Categorification

3. The base category, S'(R)
4. Functoriality of Volterra series

5. Morphisms of Volterra series

6. The category Volt

/. If time: Time-Frequency Analysis

What | will not cover: nonlinear system identification; Volterra Neural Networks



Background: (Linear) Signal Processing



Linear Time-Invariant (LTl) systems

LTI systems obeys superposition and scaling, and commute with translations. They are in bijection
with convolution-type operators.

They’re defined by their impulse response, v. The Fourier transform of v, V, is called the frequency
response.

LTI systems don’t add new frequencies - they just scale and impart a phase shift to each existing one.



Fourier transform
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Convolution and Modulation’

(u*v)(t) = /u(t — 7)v(T)dT
(u© v)(§) = u()v(§)

m (5) — ’&,(g) ’(/} (g) (Convolution Thm.)
F A
u ¥ U
*V 3

UXV+—U- D

“Modulation’ is a synonym for point-wise multiplication.



the Volterra series

A universal model™ that generalizes the LTI concept to the nonlinear regime

*for systems with fading memory

Fading Memory and the Problem of Approximating Nonlinear Operators with Volterra
Series, Boyd and Chua



Volterra series (time-domain)

A Volterra series V : S(R) — S(R) is a sum of homogeneous operators, the V/,

= (For now, think of S(R)
y(t) — V[S] (t) = z; ‘/][8] (t) Eieégace of signals
J:

which convolve the tensor power of their input by a kernel function, R R/ — C, then slice along the diagonal

00 J

=VO+Z/ (1) [ ] st — 7)dr,

The j"-order output is

The supports of the V;

J
Y; (t) = ‘/J[S] (t) - / . U; (Tj) H S(t o Tr)dTr constrain the system
T, ERY

v memory.



Volterra series (frequency-domain)

The spectrum of the output at order j is given (by the projection-slice theorem) by point-
wise multiplication followed by projection

J
p@=[ @) [[swds,
2;cRJ \Eﬂj:w



Volterra series, tensor power form

Vi(s)(t) = /.ew v; (1) (t1; — 7;)dT,

V@@= [ (0@,

S(R)? . T9(S(R))
(—) ; i
S(R) ———— Ti(S(R))

Recall that F distributesover @: F(f1®@ fo® -+ Q fn) =Ff1QFfo ® - --

QR Ffn



Key idea: a Volterra series represents nonlinear effects by filtering intermodulation
components of frequencies from the input signal.

A first-order Volterra operator is just an LTl system: V/(s)(t) = / U(T)s(t — T7)dT
TER



Volterra series representations of some simple systems

* translation: T.(s)(t) =s(t— 1) —
» differential: g —
« memoryless polynomial: el — Z;io a;s’ —



Audio demo

 demo harmonics generation (3rd-order VS)

e demo cello distortion
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Categorification, level 1: the category S (R)

For a reference on these spaces, see Time-frequency analysis on R”, by Vuojamo et al.



Key points:
* oObjects are signals (resp., spectra)
 morphisms are convolutors (resp., multipliers) between them

 the Fourier transform is well-defined



Definition (Schwartz space) The Schwartz space #(R) of rapidly decreasing smooth func-

tions, or test functions, is the subspace of functions ¢ € ¥*°(R) for which

sup |z°95 p(x)| < oo,
rER

Definition (Tempered distributions) The space .# (R) of tempered distributions is the

space of continuous linear functionals on .#(R).

1 wikipedia.org/wiki/Multivariate_normal_distribution



Example: delta function

The Dirac delta ‘function’ is the distribution,

6 €7 (R), 4(¢) = ¢(0).

Example: Dirac comb function
The Dirac Comb III is the distribution given by tr ottt
Hlr € & , (Rn)
d(z) z=nT,ncZ
LHT(¢) i 0 1 4T -3T 2T -T 0 T 2T 3T 4T
else

2 wikipedia.org/wiki/Dirac_comb
1 wikipedia.org/wiki/Dirac_delta_function



Definition: Multipliers The space of multipliers, &'(R), is the space of functions ¢ €
#(R) such that, for every a € N, there is a polynomial P, such that, Vr € R,

Oap(z)| < |P(2)],

i.e., whose derivatives are polynomially bounded. Pointwise multiplication of a Schwartz

function by a multiplier results in another Schwartz function.



Definition: Convolutors The space of convolutors, ﬁ'(R) is the space of tempered dis-

tributions A for which, for any integer A > 0, there is a finite family of continuous functions,
fo : R — C, with index a € Ny, such that

and such that

for all |a| < h.



The convolutors are precisely those tempered distributions which map Schwartz functions

to Schwartz functions under convolution. The Fourier Transform is a linear bijection between
the spaces Oy(R) and & (R).



the base category, S'(R)

Definition: The category S’(R) is the category with objects, tempered distributions (in-

cluding Schwartz functions), and morphisms, convolutors between them.

The category S’(R) has a filtered structure, with convolutions in the time-domain weakly

contracting spectral bandwidth.



Categorification, level 2: the Volterra series as functor



If we morph the input to a Volterra series, how does the output change?



Action of V on a morphism of signals

V(!) applies [ to each copy of s occurring at order j. (Can think of this as post-composition.)

V(1 Z /T o ) [ [ i(s)(t — 7)dr;

S > S
1% 1%
V(s) > V(')



Equivalently, it filters \A/j ® §® by the tensor power of the multiplier weight function:

00 J
. - (v is the weight functi
-3/ 6;(0) [T 1wswadls  roamirer

related to [)



Does V respect composition?

Functoriality

V(go f)V(8)(w)
— R g 1
=3 | (6,087 0507 ()Y
=0 ﬂjERj | Eﬂj:w
5% / (9,0 5% ©§% © f9)(Q,)dSx,
=0 ﬂjERj \Eﬂj:w

|dentity?



Caveat: destructive interference

— V(5)(w) could be zero when V( I(s) )(w) is not. But the former will almost always be richer
than the latter, since [ is a filter.



Examples of the action of a Volterra series on:

e translation
e modulation
* periodization

 sampling



Translation

Let ¢ : s — s’ be the translation-by-l map, given in the time-domain as c(s)(t) = (s *
0;)(t) = | s(7)é(t — 1 — 7)dr. Then c commutes with the action of a Volterra series; i.e.,
V(c):V(s) = V(s') is defined by

00 J

. it 5 (€. TT e—iwrm 3 |

= E / e / . 0,;(€2;) I I e " §(w,)d2;dw
]:O weR ﬂ] cRJ |EQJ —W

r=1

=Y [ e [ e )i, )and
]:0 0y J J j =W

Z/ : zw(t T) A (w)dw
§=0 weE

= V(s)(t —7)



Modulation

Let m: s — s, m(s)(t) = e.géts‘(i) be the modulation-by-¢ map. Then V(m) : V(s) = V(s)

‘is written in the frequency domain as
V(m)V(s)(w)

J

=) / , 0;(€5) | (8¢ * 8)(w,) a2,
§=0 ﬂj cRJ |Eﬂj:w

q=1
00
=) / , 0;(£2;)
=0 Q,cRI | XQj=w
00

D / 0;(€2;)8% (; — £1)dS;.
ﬂjERj |Eﬂj:w

7=0

-

8(wq — &)dS2;

q=1

and if s = 1, V(im)V(1)(t) = Z et . (€1)



Periodization

Let ¢ : s — s’ be the operation of convolution against the Dirac comb with period T
c(s)(t) = (L7 * s)(t); such an operation ‘periodizes’ the signal s. Then V' (c) : V(s) = V (s')
is defined by

S(f) Fourier
s(t) <= S(f)

B B D <n<k1>,.?.,n<kp>> L

R gmT-1k=0

1 wikipedia.org/wiki/Periodic_summation



Sampling
Let m : s — s’ be the operation of multiplication against the Dirac comb with period 7"

m(s)(t) = (ILL7 - s)(t) ; such an operation ‘samples’ the signal s. Then V(m) : V(s) — V(')
is defined

J

0y / o;(ry) T W (t — 7)s(t — 7,)dr,
=0 TjERj r

=1

:Z / ' ’Uj(’Tj) IHT®j(t1j — 'Tj) S®j(t1j e 'Tj)de

= Z 3 ‘ (n(kl) ] n(kp)) v;(t1 — Tk) s®7(t1 — Tk)



Morphisms of Volterra series

Systems change; thus, we need a notion of morphism of Volterra
series.



notational aside

Denote by [1] the order of nonlinearity of the ith operator;

and by I, = V(1), the index set (of homogeneous operators) of V.

1 I, here is analogous to what Spivak and Niu call the set of positions of a polynomial functor, in Polynomial
Functors: A Mathematical Theory of Interaction.



Definition: A morphism ¢ : V. — W of Volterra series is comprised of the following data:

e a function ¢, : Iy — Iy between index-sets;
e for each pair (7, ¢1(2)), with ¢ € Iy and ¢(7) € Iy,
— a linear map ¢; : RlY — RI#1()]

— and a weight function, or mask, ¥ : RY — C

from which we obtain the weighted pullback,
wﬁb? . S(RI1®)) — S(RE
w07 (2)(x) = P(x) - 2(4i(x))

where 2 & S’(R¢1[i]) and « € R Note that ¢ has the
structure of a lens.



We then obtain component morphisms, ¢, : V(s) — W(s), indexed by the objects of $'(R),

/Q.ERZ- (WO (0:; 0 §®[z°]) ® ¢f(f¢1}j))(ﬂj)dﬂj .
/Q'ERZ YO %0 §®[i])(ﬂy)wy(¢z(ﬂy))dﬂj

and can ask, do they assemble into a natural transformation?

) A

¢s ¢S’
W (s) > W(s')



Naturality

Py ¢,
Wis) way Ws)
/n-eR'i (f®[i] ® (w © (@7’ © §®[i]) © Qbf&(?ﬁj)))(ﬂj)dﬂ] (lower path)
Eéi:w
- / . (¥ ®© ((9; © 88 © fOIN © ¢7 (w,)))(R2,)d, woper path
22, =w

Note: a core fact in TFA is that modulation and convolution do not (generally) commute. This forces our choice of the mask y to
be a convolutor in the time domain.



A technical restriction

We further impose the following condition on the map ¢;: that it preserve the weak compositions

of frequencies, i.e. 20 = v — 2¢,(L2) = w.

Intuition: the two systems must interact at the same frequencies, in order for the image of any
component in the source to lie within the target spectrum; i.e., so the convolutor

¢, : V(s) = W(s) is well-defined.



The category VoIt

Definition: The category, Volt, of Volterra series is the category having, as objects, Volterra

series, and as morphisms, natural transformations between them.

V / s W

g
h
X
fi i :
V(1) » W (1) S(RE) = S(RIA O]
h1 91 B g?&l(’i)




Examples of Volterra morphisms

Autoconvolution The autoconvolution auty : V' — V is given by the pair (¢, ¢7), where
both ¢; and all of the qbf& are identity maps. This map results in the Volterra series whose

VKF at each order 7 is the autoconvolution (v; * v;) of v;.

Identity morphism The identity morphism idy : V — V is given by the pair (¢1, ¢™),
where ¢; = idy (1) is the identity and where, for any i € V (1), o7 : S'(REY — §'(RY) is the
weighted pullback along the identity on R that scales by the reciprocal of the spectrum of
vi, 1.e. () = o~ for 9;(2;) # 0. The definition of qbfé follows from the fact that the

— ()
spectrum of the autoconvolution R, = (v; * v;) is R, (£2;) = 0;(€2;)%.  This is why we need . to
have identity morphisms.

Translation LetT = [11,T2,...,T;] € RxR*x---xR; then the translation-by-7 morphism
is the morphism with target the VS whose VKF at each order ¢ is a multidimensional

distribution centered at 7;, with ¢; = id and all of the qbf also identities. The offsets can be

varied and/or the morphism iterated. Translation is an example of a parameterized morphism.



Categorification, level 3: Volt as a monoidal category



How can we wire nonlinear systems represented by Volterra series together?’
e sum (+)
* product (x)

e series composition ()

" These operations are well-known in the Volterra series literature; see
Modeling Nonlinear Systems by Volterra Series, by Carassale and Kareem.



Coproduct: +

Sums the homogeneous operators level-wise,

(V +W)(s)(t)

=D _(V+W);(s)(t) = )_Vi(s)(®) + Wy (s)(2)

J

= /.eRj (0;(T5) + (w;(75)) H 5(t — 7g)dT;:

q=0

Doesn’t change the order of nonlinearity.



Does it satisfy the universal property of the coproduct?

V " > V4+ W +—= 14



g1




Cartesian product: X

Kernel function given as product of kernels of the factors: v;(£2;) = Zaﬂf (67)

V(s)(t) = (4 x B)(s)(E) = 32 D (A(s) B s(9)(0
. 72 o=—f) )
Vi) = Sho [ e M) T wy)d,
QkERk ]_kp:O
X/ e%ktb; (k) T1 3(wq)dw,
Q;_r€ERI—F q=0

Orders of nonlinearity sum.






Universal property of the product

Y (1) LSRN
\\\\\ .
1 - ©1
~ \\\\)
M N Ay
=
S' (R « o
A \<\\\
i e
/ f1(k
qQ (R[ 1 ( )]) "

T (f1(k),g1 (k)

S’(R[gl (k)] )

. S'(RUAM) g SR M)

P(£1(k),91 (k)

hi(k) = (fi(k), g1(k))



Series composition: <

Outputs from the operators in A are fed as inputs to those in B; the B, are multivariate.

Z z Bk ...,yaz]

pl Z ar=j

E z S(J,k)ﬂ ﬁ G, (67)
. {p\Zar—J} b

Recall:

S (apadog) =
ad. 05 @ O

Orders of nonlinearity multiply.



__________________________________________________________________________________________________




Associativity of <

Theorem 1: The series composition, <, of Volterra series is associative. I.e.,

1€

(c<(b<a)); = ((cabd)<a);

for all 0 <y < 0.
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Part 4. Time-Frequency Analysis

Time-frequency concerns the joint localization of signals. Used to analyze non-stationary
sighals, whose spectra are time-varying. Connections to QM and symplectic geometry.

See, e.q., Explorations in time-frequency analysis by Patrick Flandrin



frequency

Core object: the Wigner-Ville distribution
x(f) = A(f)e'?"
T ' 3 c

We(s, f) = [ z(sA 2):1:*(8 2)cfz_izwf'rdfr ¢<f>=z_:,)apf”
finstg):(ﬂ/

- perfectly localizes linearly frequency-modulated signals (quadratic-phase chirps) along
their instantaneous frequency.

Wigner-Ville spectrogram somme des WV (N = 3) WV de la somme (N = 3)

frequency

time time

1 x here should be analytic: x(1) = s(¢) + iH(s)(¢)
2 Data driven time-frequency analysis, Patrick Flandrin



A broad class of time-frequency distributions, Cohen’s class, can be represented by
Volterra series.’

But we need multivariate, parameterized Volterra series.

1 Vlolterra series representation of time-frequency distributions, Powers and Nam



Multivariate and parameterized Volterra series

Second-order, double (or bivariate) Volterra series:

gl = lsie 9 1 //h2(u,v) - To(t — u)zp(t — v)dudv

Volterra series with parameterized kernel function:

V(s)(t,0) =y(t,0) = / V9.9(T1,T2) * Tr (t — T1) Ty (t — To)dTy dTo

T9 ER2



Volterra series form of the Wigner-Ville distribution

The WVD as a Volterra series Is

Wil = //Ze_sz(“_”)é(u +v) - s*(t —u) - s(t —v)dudv

— //(S(f | ;fl - %f2) : 627r73(f1+f2)t : S*(_fl)s(fz)dfldfz

The parameterized kernel function is

,02,9(7.1’7.2) - 5(7_1 i 7_2)6—27ri9(7'1+7'2)



Conclusions

Volterra series model nonlinear systems; generalize LTI to the nonlinear regime;

» are functorial over S'(R)

Morphisms of VS model how nonlinear systems change

* and are natural (under certain restrictions)

VS and their morphisms assemble into a category, VoIt

 whose monoidal products model ways of interconnecting VS

Core time-frequency transforms can be represented within o/t



Extensions and generalizations

graph Volterra series’; topological signal processing"”
explore categorical structure of Volt; connections to Poly™?

study key transforms within Vot

nonlinear system identification®; system decomposition

’ Topological Volterra Filters, Leus et al.

1 Topological Signal Processing, Michael Robinson

* Topology in Sound Synthesis and Digital Signal Processing--DAFx2022 Lecture Notes, Georg Essl|
> Polynomial Functors: A Mathematical Theory of Interaction, Niu and Spivak

) Volterra Neural Networks, Krim et al.



UL

Thanks for listening.

reference: https://arxiv.org/abs/2308.07229v4

questions, feedback:
jaraujosimon@protonmail.com
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Symmetric kernel functions

Volterra series kernel functions are assumed symmetric; they can be symmetrized via




Multivariate Volterra series

V:SR)? - S(R)*

V@IU|(t) = y (¢ Z (a)

y](a) (t) = Z (nf(ul), . J ,nf(u3)> [, .”;,yam’f("'j) ili“f(z’)(t — 7;)dT;,

A . €RJ
j J
Jevu /Sj

,U;,};m,f(‘rj) — 'n,*(‘rj) Z ’U;ia(Ta(l), o s o Ta(]’)):

O'ESj



An important combinatorial identity:

J ) .
pg(jz‘;"f_l) (af,ag,...,ozz ko
7



Projection-Slice theorem and Radon transform

Fi P = SlFZ P, - Proj.

. S, - Slice
J

@ = [ @) [[swds,
QjER]‘ZQij

q=1

Integrating over hyperplanes in the frequency domain.



Non-commutativity of time- and frequency-shifts:

MI/TT = e—ZWiTVTTMV



