Typing Tensor Calculus in 2-Categories (I)

Fatimah Rita Ahmadi

April 25, 2025

FATIMAH RITA AHMADI

Typing Tensor Calculus

April 25, 2025

ヨト・イヨト

1/46

э

OUTLINE

1 Motivation and Background

- **2** Tensors in Categories
- **3** 2-Categorical Structures
- **4** Tensors in 2-Categories
- **5** Vectorisation in 2-Categories

6 CONCLUSION

$$\aleph_{(iji'j')_{\theta}}^{(iji'j')_{\alpha}}:\theta_{ij}^{i'j'} \Longrightarrow \alpha_{ij}^{i'j'}$$

FIGURE: n-morphisms are tensors of rank 2^n .

FATIMAH RITA AHMADI

Typing Tensor Calculus

April 25, 2025

イロト イヨト イヨト イヨト

э

. . .

MOTIVATION

• Tensor calculus appears in many domains (physics, ML, etc.)

 Traditional notation is index-heavy; one needs to keep track of indices for different calculations.

$$T \times P = \sum_{j_2, k_2} T_{i_1 i_2 \dots i_n}^{j_1 j_2 \dots j_m} P_{k_1 k_2 \dots k_w}^{l_1 l_2 \dots l_q}$$

 Categorical typing of tensors offers abstraction and index-free typing; (multiplication=composing two arrows).

FATIMAH RITA AHMAI	
--------------------	--

Typing Tensor Calculus

Typed vs. Untyped Systems

- In **typed systems**, operations are only allowed when they make sense type-wise. For example, you can't add a number to a logical proposition.
- In **untyped systems**, everything is more flexible (and risky). You can try to do anything, but it might lead to contradictions or undefined behaviour.

JavaScript example

let result = "The answer is " + 42; Output: "The answer is 42" Category of Matrices is the suitable primary category for **typing** elements of linear algebra.

- Objects: Natural numbers, 0, 1, 2, ...
- Morphisms: Matrices of a finite fields, $Mat_{\mathbb{F}}$.

$$M_{q \times p} = \begin{bmatrix} m_{11} & \dots & m_{1p} \\ \dots & \dots & \dots \\ m_{q1} & \dots & m_{qp} \end{bmatrix}, M : p \longrightarrow q$$

• Composition: Matrix multiplication.

$$p \xrightarrow{M_{q \times p} \in hom(p,q)} q, \qquad p \xrightarrow{M_{q \times p} \in hom(p,q)} q \xrightarrow{N_{q \times w} \in hom(q,w)} w$$

LINEAR ALGEBRA IN CATEGORIES

Category of Matrices is the suitable primary category for **typing** elements of linear algebra.

- Objects: Natural numbers, 0, 1, 2, ...
- Morphisms: Matrices of a finite fields, $Mat_{\mathbb{F}}$.
- Composition: Matrix multiplication.

$$p \xrightarrow{M_{q \times p} \in hom(p,q)} q, \qquad p \xrightarrow{M_{q \times p} \in hom(p,q)} q \xrightarrow{N_{q \times w} \in hom(q,w)} w$$

• type Check:

$$M_{q \times p} * M_{z \times w}$$
, if $p = z$

Fraceback (most recent call last): File " <python-input-19>", line 1, in <module> MeN ~~</module></python-input-19>
ValueFror: operands could not be broadcast together with shapes (2,2) (3,3) >>> import numpy as np >>> M= np.eyet(2) >>> Ne: np.eyet(3) >>> Men
Traceback (most recent call last): File " <python-input-23>", line 1, in <module> MeN</module></python-input-23>

Fatimah Rita Ahmadi

Typing Tensor Calculus

Vectorisation is a common practice in many algorithms including Machine Learning; for example, if you are working with Neural Networks, you need to transfer the last layer to a vector. Also in the hardware level, some components work better with vectors than matrices.

$$f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{bmatrix}, \quad \text{vec} f = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}$$

VECTORISATION

Vectorisation is a common practice in many algorithms including Machine Learning; for example, if you are working with Neural Networks, you need to transfer the last layer to a vector. Also in the hardware level, some components work better with vectors than matrices.

$$f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{bmatrix}, \quad \text{vec} f = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}$$

The vectorization map, currying?

$$\mathbf{vec} :: (3 \xleftarrow{f} 2 \times 1) \leftarrow (3 \times 2 \xleftarrow{\mathbf{vec}f} 1)$$

GENERALISATION TO SEMIADDITIVE MONOIDAL CATEGORIES

Definition

A monoidal category C is a category with a bifunctor, $\otimes : C \times C \longrightarrow C$ such that for every three objects, there exists a (natural) isomorphism $a_{A,B,C}$ such that it satisfies the pentagonal and tiangle equations.

$$\alpha_{A,B,C}: (A \otimes B) \otimes C \longrightarrow A \otimes (B \otimes C)$$

Fatimah Rita Af	ΗM	IAD
-----------------	----	-----

Typing Tensor Calculus

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 April 25, 2025

An object is a **zero object** if it is both initial and terminal objects. Morphisms that factorize through the zero object are **zero morphisms**.

DEFINITION

Algebraic Definition: In a category whose hom-sets are commutative monoids, a *biproduct* of a pair of objects (A, B) is a tuple $(P = A \oplus B, p_A : P \longrightarrow A, p_B : P \longrightarrow B, i_A : A \longrightarrow P, i_B : B \longrightarrow P)$ where 0 are zero morphisms, such that:

> $p_A i_A = i d_A$, $p_B i_B = i d_B$, $p_A i_B = 0_{A,B}$, $p_B i_A = 0_{B,A}$, $i_{\Delta}p_{\Delta} + i_{B}p_{B} = id_{\Delta \oplus B}$

FATIMAH RITA AHMADI

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ April 25, 2025

In a locally pointed category, the **canonical morphism** between a coproduct of a pair of objects A_1, A_2 , i.e. $A_1 \sqcup A_2$ and a product $A_1 \times A_2$ is morphim r such that it satisfies $p_k r_{ij} = \delta_{k,j}$.

$$A_j \xrightarrow{i_j} A_1 \sqcup A_2 \xrightarrow{r} A_1 imes A_2 \xrightarrow{p_k} A_k, \quad \text{if} \quad i, j \in \{1, 2\}$$

Fatimah Rita Ahmadi

Typing Tensor Calculus

In a locally pointed category, the **canonical morphism** between a coproduct of a pair of objects A_1, A_2 , i.e. $A_1 \sqcup A_2$ and a product $A_1 \times A_2$ is morphim r such that it satisfies $p_k r_{ij} = \delta_{k,j}$.

$$A_j \xrightarrow{i_j} A_1 \sqcup A_2 \xrightarrow{r} A_1 \times A_2 \xrightarrow{p_k} A_k, \quad \text{if} \quad i, j \in \{1, 2\}$$

Definition

In a category with zero morphisms, a pair of objects A and B has a **biproduct** if the canonical morphism r is an isomorphism.

Theorem

The limit-form and algebraic form of biproducts are equivalent.

Proof.

Algebraic \Rightarrow Limit-form: One needs to show that (P, p_A, p_B) is a product and (P, i_A, i_B) is a coproduct. Meaning, they satisfy the universality condition.

Algebraic \Leftarrow Limit-form: One needs to show the canonical morphism is an identity morphism.

$$A_j \xrightarrow{i_j} A_1 \sqcup A_2 \xrightarrow{r} A_1 imes A_2 \xrightarrow{p_k} A_k, \qquad ext{ if } i,j \in \{1,2\}$$

イロト イボト イヨト イヨト

Semiadditive Categories

DEFINITION

Semiadditive category is a category with finite biproducts.

F	ATIMAH	Rita 4	Ahmadi

Typing Tensor Calculus

April 25, 2025

< 1[™] ►

3

MONOIDAL SEMIADDITIVE CATEGORIES

DEFINITION

Semiadditive category is a category with finite biproducts.

DEFINITION

A **monoidal semiadditive category** is a category with finite biproducts and a monoidal product such that the monoidal product distributes over biproducts.

$$A \otimes (B \oplus C) \cong (A \otimes B) \oplus (A \otimes C)$$

Typing Matrices and Vectorisation

In a monoidal semiadditive category, we then have the same structures as Category of $Mat_{\mathbb{F}}$. The vectorisation is also more general, as one can potentially transfer matrices of different shapes to each other.

$$f: A_1 \oplus A_2 \longrightarrow B_1 \oplus B_2 \oplus B_3, \qquad f_{ij}: A_i \longrightarrow B_i$$

$$f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{bmatrix}, \quad \text{vec} f = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}$$

Typing Matrices and Vectorisation

K is called the thinning factor!

г	ATTEND ATT	DIMA /	TREATS
	AIIMAR	IULIA 2	AUMADI

Typing Tensor Calculus

Other operations in terms of vectorisation: Having a matrix $N \stackrel{f}{\leftarrow} K \times 1$, we start by first de-vectorization, $1 \stackrel{g=unvecf}{\longleftarrow} N \times K$, then vectorization, $N \times K \stackrel{h=vecg}{\longleftarrow} 1$ and finally, $K \stackrel{unvech}{\longleftarrow} N$. Hence,

 $f^{T} = unvec(vec(unvec f)))$

2-CATEGORIES

- Objects, 1-morphisms $A \xrightarrow{f} B$, 2-morphisms $\gamma : f \Rightarrow g$.
- Composition: horizontal $\gamma \circ \xi$ and vertical $\beta \odot \alpha$.

• Compositions are strict.

Fatimah Rita Ahmadi

- We follow the same procedure, first defining the algebraic form of biproducts and then the limit-form definition.
- To define limit in 2-categories, let us first define products and coproducts. One can consider four possible limits in 2-categories: **strict, weak, lax, and oplax**. We define the weak version here.

DEFINITION

In a 2-category, a *weak 2-product* of a pair of objects A, B is an object $A \times B$ equipped with 1-morphism projections

 $(p_A : A \times B \longrightarrow A, p_B : A \times B \longrightarrow B)$ such that:

- for every cone $(X, f : X \longrightarrow A, g : X \longrightarrow B)$, there exist a 1-morphism $b : X \longrightarrow A \times B$ and 2-isomorphisms $\{\xi\}$ such that $(\xi_A : p_A b \Longrightarrow f, \xi_B : p_B b \Longrightarrow g)$ (the red cone in Figure 4).
- Moreover, for any other cone $(X, f' : X \longrightarrow A, g' : X \longrightarrow B)$ with a corresponding 1-morphism $b' : X \longrightarrow A \times B$ and 2-isomorphisms $(\xi'_A : p_A b' \Longrightarrow f', \xi'_B : p_B b' \Longrightarrow g')$ (the blue cone in Figure 4) and given 2-morphisms $(\Sigma_A : f \Longrightarrow f', \Sigma_B : g \Longrightarrow g')$,

there exists a unique 2-morphism $\gamma: b \Longrightarrow b'$ which satisfies the following condition:

$$(p_A \gamma) = (\xi'_A)^{-1} \odot \Sigma_A \odot (\xi_A) \tag{1}$$

FIGURE: Weak 2-product in 2-categories.

H ATPLATA H	BUDA I	A LI MA A I M

Typing Tensor Calculus

FIGURE: Weak 2-product in 2-categories.

Fatimah Rita Ahmadi

Typing Tensor Calculus

FIGURE: Weak 2-product in 2-categories.

 						_					
A II.			Λ.				•				
	-										

Typing Tensor Calculus

Some Definition

DEFINITION

A *locally semiadditive 2-category* is a 2-category whose hom-categories are semiadditive(have finite biproducts defined in categories).

DEFINITION

A locally semiadditive and compositionally distributive 2-category is a locally semiadditive 2-category whose 2-morphisms distribute over addition of 2-morphisms. That is Equations 2 and 3 hold in a compositionally distributive 2-category:

$$\gamma(\alpha + \beta) = \gamma \alpha + \gamma \beta \tag{2}$$

$$\alpha \odot (\beta + \gamma) = \alpha \odot \beta + \alpha \odot \gamma$$

イロン 不同 とくほう 不良 とうほ

(3

BIPRODUCT IN 2-CATEGORIES

DEFINITION

In a locally semiadditive and compositionally distributive 2-category, a weak 2-biproduct of a pair of objects (A, B) is a tuple

$$(A \boxplus B, p_A, p_B, i_A, i_B, \theta_A, \theta_B, \theta_{AB}, \theta_{BA}, \theta_P)$$

such that:

• 1-Morphism projections and injections:

$p_A: A \boxplus B \longrightarrow A,$	$p_B: A \boxplus B \longrightarrow B$
$i_A: A \longrightarrow A \boxplus B,$	$i_B: B \longrightarrow A \boxplus B$

• Weakening 2-isomorphisms:

 $\begin{aligned} \theta_A : p_A i_A \Rightarrow id_A, \theta_B : p_B i_B \Rightarrow id_B, \theta_{BA} : p_B i_A \Rightarrow 0_{B,A}, \theta_{AB} : p_A i_B \Rightarrow 0_{A,B} \\ \theta_P : i_A p_A \oplus i_B p_B \Rightarrow id_{A \boxplus B} \end{aligned}$

• Conditions for 2-biproducts:

$$p_A \theta_P i_A = \begin{bmatrix} (p_A i_A) \theta_A & 0\\ 0 & 0 \end{bmatrix}, \qquad p_B \theta_P i_B = \begin{bmatrix} 0 & 0\\ 0 & (p_B i_B) \theta_B \end{bmatrix} \quad (4)$$

Typing Tensor Calculus

April 25, 2025

イロト イヨト イヨト イヨト

ъ

In a locally semiadditive and compositionally distributive 2-category, a canonical 1-morphism between a 2-coproduct of a pair of objects A, B, i.e. $A \sqcup B$ and a 2-product $A \times B$ is a 1-morphism which satisfies $\theta_{k,j} : p_k ri_j \Rightarrow \delta_{k,j} id_j$, if $\theta_{k,j}$ are 2-isomorphisms.

$$A_j \xrightarrow{i_j} A_1 \sqcup A_2 \xrightarrow{r} A_1 imes A_2 \xrightarrow{p_k} A_k, \quad ext{ if } \quad j,k \in \{1,2\}$$

In a locally semiadditive and compositionally distributive 2-category, a pair of objects A and B has a *weak 2-biproduct* if the canonical 1-morphism r is an equivalence and satisfies the following conditions:

$$\begin{array}{ll} A_{1} \sqcup A_{2} \xrightarrow{r} A_{1} \times A_{2}, & A_{1} \sqcup A_{2} \xleftarrow{r} A_{1} \times A_{2} \\ \xi_{A \times B} : rr' \Rightarrow id_{A \times B}, & \xi_{A \sqcup B} : id_{A \sqcup B} \Rightarrow r'r \\ (r'\xi_{A \times B}) \odot (\xi_{A \sqcup B}r') = 1_{r'}, & (\xi_{A \times B}r) \odot (r\xi_{A \sqcup B}) = 1_{r} \end{array}$$

ヨト・イヨト

Theorem

In a locally semiadditive and compositionally distributive 2-category, the following conditions for a pair of objects A and B are equivalent:

- the weak 2-product (P, p_A, p_B) of A, B exists.
- **2** the weak 2-coproduct (P, i_A, i_B) of A, B exists.
- the weak 2-biproduct (P, p_A, p_B, i_A, i_B, θ_A, θ_B, θ_{AB}, θ_{BA}, θ_P) of A, B exists.

BIPRODUCTS IN 2-CATEGORIES

Proof. $1 \implies 3$: Assuming a pair of objects A, B has a weak 2-product P, we want to show P is also the weak 2-biproduct. Check the universal property of weak 2-products for $(A_{,A}: A \longrightarrow A, 0_{B,A}: A \longrightarrow B, i_A: A \longrightarrow P)$ and $(B_{,B}: B \longrightarrow B, 0_{A,B}: B \longrightarrow A, i_B: B \longrightarrow P)$. From the definition of 2-products, we know that there exist two 2-morphisms $(\gamma_A : p_A i_A \Longrightarrow_A, \gamma_B : p_B i_B \Longrightarrow_B)$. We let $\theta_A := \gamma_A$ and $\theta_B := \gamma_B$. To find θ_p , we check the universality condition for P and two 2-cones: $(P, p_A I : P \longrightarrow A, p_B I : P \longrightarrow B, I : P \longrightarrow P), \quad I := i_A p_A \oplus i_B p_B$ $(P, p_A : P \longrightarrow A, p_B : P \longrightarrow B, P : P \longrightarrow P)$

2-morphisms between these two cones are as below:

$$\Sigma_{A} = \begin{bmatrix} \gamma_{A}p_{A} & 0 \end{bmatrix} : p_{A}i_{A}p_{A} \oplus p_{A}i_{B}p_{B} \Rightarrow p_{A},$$

$$\Sigma_{B} = \begin{bmatrix} 0 & \gamma_{B}p_{B} \end{bmatrix} : p_{B}i_{A}p_{A} \oplus p_{B}i_{B}p_{B} \Rightarrow p_{B}$$
Therefore, $\theta_{P} = \begin{bmatrix} i_{A}\Sigma_{A}\\ i_{B}\Sigma_{B} \end{bmatrix} = \begin{bmatrix} i_{A}\gamma_{A}p_{A} & 0\\ 0 & i_{B}\gamma_{B}p_{B} \end{bmatrix}.$

Fatimah Rita Ahmadi

Typing Tensor Calculus

April 25, 2025

32/46

We need to now show it satisfies the condition expressed earlier in the definition. Since this is the horizontal composition, projection and injection sandwich θ_A and θ_B .

$$p_A \theta_P i_A = \begin{bmatrix} (p_A i_A) \theta_A (p_A i_A) & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} (p_A i_A) \theta_A & 0 \\ 0 & 0 \end{bmatrix}.$$

イロト イボト イヨト イヨト

A (weak)semiadditive 2-category is a locally semiadditive and compositionally distributive 2-categories whose objects have finite 2-biproducts.

DEFINITION

A monoidal semiadditive 2-category is a semiadditive 2-category with a monoidal product where the monoidal product and 2-biproduct are compatible; i.e. the monoidal product, \bigotimes , distributes over biproduct \boxplus .

- Semiadditive 2-Categories: 2-Biproducts (A
 B) at this level have 1-morphisms projections and injections indexed by objects (p_A : A
 B → A, i_A : A → A
 B).
- Semiadditive Hom-categories: biproducts $(f \oplus g)$ at this level have 2-morphisms projections and injections indexed by 1-morphisms, $(\pi_f : f \oplus g \longrightarrow f, \nu_f : f \longrightarrow f \oplus g)$.

TENSOR INDEXING IN 2-CATEGORIES

_			_				
			 	TOTAL A		 	
	- AC 1	- L A 4		1.1.1.4	 	-A I I I	

Typing Tensor Calculus

April 25, 2025

イロト イヨト イヨト イヨト

36 / 46

3

(5)

TENSOR INDEXING IN 2-CATEGORIES

Fatimah Rita Ahmadi

Typing Tensor Calculus

April 25, 2025

37 / 46

TENSORS IN 2-CATEGORIES

F	ATIMAH	RITA /	Ahmadi

Typing Tensor Calculus

< □ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ April 25, 2025

- External currying for 1-morphisms and 2-morphisms.
- Internal currying (in Hom-categories) for 2-morphisms.

$$f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \\ f_{31} & f_{32} \end{bmatrix}, f' = \begin{bmatrix} f'_{11} & f'_{12} \\ f'_{21} & f'_{22} \\ f'_{31} & f'_{32} \end{bmatrix}, \theta = \begin{bmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \\ \theta_{31} & \theta_{32} \end{bmatrix}$$

∃ ≥ >

CURRYING

$$\mathbf{v} = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}, \mathbf{v}' = \begin{bmatrix} f'_{11} \\ f'_{12} \\ f'_{21} \\ f'_{22} \\ f'_{31} \\ f'_{32} \end{bmatrix}, \alpha = \begin{bmatrix} \theta_{11} \\ \theta_{12} \\ \theta_{21} \\ \theta_{22} \\ \theta_{31} \\ \theta_{32} \end{bmatrix}$$

(9)

Fatimah Rita Ahmadi

Typing Tensor Calculus

April 25, 2025

40 / 46

EXTERNAL CURRYING

$$e_3(id_3 \otimes v) = f, e_3(id_3 \otimes v') = f', 1_{e_3} \circ (id_3 \otimes \alpha) = \theta$$
(11)

FATIMAH RITA AHMADI

Typing Tensor Calculus

April 25, 2025

→ Ξ → < Ξ →</p>

э

41 / 46

< 17 b

CURRYING

The consider,

$$\mathbf{v} = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}, \mathbf{v}' = \begin{bmatrix} f'_{11} \\ f'_{12} \\ f'_{21} \\ f'_{22} \\ f'_{31} \\ f'_{32} \end{bmatrix}, \alpha = \begin{bmatrix} \theta_{11} \\ \theta_{12} \\ \theta_{21} \\ \theta_{22} \\ \theta_{31} \\ \theta_{32} \end{bmatrix}$$

$$\theta_{11} = \begin{bmatrix} \theta_{11}^1 & \theta_{11}^2 & \theta_{11}^3 \\ \theta_{11}^4 & \theta_{11}^5 & \theta_{11}^6 \end{bmatrix}$$

(12)

April 25, 2025

・ロ・・ (日・・ (日・・ (日・

æ

INTERNAL CURRYING

	A TOTAL .	
ALLING A H	n ina a	аналанн

Typing Tensor Calculus

April 25, 2025

イロト イヨト イヨト イヨト

43 / 46

ъ

CURRYING

$$\mathbf{v} = \begin{bmatrix} f_{11} \\ f_{12} \\ f_{21} \\ f_{22} \\ f_{31} \\ f_{32} \end{bmatrix}, \mathbf{v}' = \begin{bmatrix} f_{11}' \\ f_{12}' \\ f_{21}' \\ f_{21}' \\ f_{21}' \\ f_{21}' \\ f_{21}' \\ f_{31}' \\ f_{32}' \end{bmatrix}, \alpha = \begin{bmatrix} \theta_{11}^1 \\ \theta_{11}^3 \\ \theta_{11}^4 \\ \theta_{11}^6 \\ \theta_{11}^6 \\ \theta_{12} \\ \theta_{21} \\ \theta_{22} \\ \theta_{31} \\ \theta_{32} \end{bmatrix}$$

The consider,

$$\theta_{11} = \begin{bmatrix} \theta_{11}^1 & \theta_{11}^2 & \theta_{11}^3 \\ \theta_{11}^4 & \theta_{11}^5 & \theta_{11}^6 \end{bmatrix}$$

Fatimah Rita Ahmadi

Typing Tensor Calculus

 ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 APRIL 25, 2025

æ

(14)

- Cartesian close bicategories.
- Curry-Howard in Cartesian close bicategories.
- Potential for scalable computation and formal proofs.

ヨト・イヨト

F. R. Ahmadi, "Typing Tensor Calculus in 2-Categories (I)," arXiv:1908.01212. https://arxiv.org/abs/1908.01212

Typing Tensor Calculus

April 25, 2025

イロト 不同 とくほ とくほとう

3