A topos-theoretic framework for reconstruction theorems in model theory

Joshua Wrigley

SYCO 12, Birmingham

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)

Let *M*, *N* be countable, ω -categorical structures.

 \triangleright A theory is ω -categorical if any pair of countable models are isomorphic.

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)

Let *M*, *N* be countable, ω -categorical structures.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N)$,

if and only if *M* and *N* are *bi-interpretable*.

A structure is interpretable in another if it can be obtained as a definable quotient of definable subsets. Representing groupoid

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand) Let M, N be countable, ω -categorical structures. There is a homeomorphism of topological groups Aut(M) \cong Aut(N),

if and only if M and N are *bi-interpretable*.

How can we generalise this correspondence? Representing groupoid

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand) Let M, N be countable, ω -categorical structures. There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if M and N are *bi-interpretable*.

- How can we generalise this correspondence?
 - If *M* and *N* are not countable models, we must weaken the homeomorphism condition.

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand) Let M, N be countable, ω -categorical structures. There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if M and N are *bi-interpretable*.

- How can we generalise this correspondence?
 - If *M* and *N* are not countable models, we must weaken the homeomorphism condition.
 - If $\mathbb{T}_1, \mathbb{T}_2$ are not atomic, we must use *topological* groupoids of models.

Representing groupoid

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)

Let *M*, *N* be countable, ω -categorical structures.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if M and N are *bi-interpretable*.

Theorem (Ben Yaacov [BY22])

For any pair of classical theories $\mathbb{T}_1, \mathbb{T}_2$, there are topological groupoids $G(\mathbb{T}_1)$ and $G(\mathbb{T}_2)$ such that there is a homeomorphism

 ${f G}({\mathbb T}_1)\cong {f G}({\mathbb T}_2)$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

- How can we generalise this correspondence?
 - If *M* and *N* are not countable models, we must weaken the *homeomorphism* condition.
 - If $\mathbb{T}_1, \mathbb{T}_2$ are not atomic, we must use *topological* groupoids of models.

Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand) Let M, N be countable, ω -categorical structures.

There is a homeomorphism of topological groups

 $\operatorname{Aut}(M) \cong \operatorname{Aut}(N),$

if and only if M and N are *bi-interpretable*.

Theorem (Ben Yaacov [BY22])

For any pair of classical theories $\mathbb{T}_1, \mathbb{T}_2$, there are topological groupoids $G(\mathbb{T}_1)$ and $G(\mathbb{T}_2)$ such that there is a homeomorphism

 $\textbf{G}(\mathbb{T}_1)\cong \textbf{G}(\mathbb{T}_2)$

if and only if \mathbb{T}_1 and \mathbb{T}_2 are *bi-interpretable*.

However, the groupoid $\mathbf{G}(\mathbb{T})$ is *not* a groupoid of models.

- How can we generalise this correspondence?
 - If *M* and *N* are not countable models, we must weaken the homeomorphism condition.
 - If $\mathbb{T}_1, \mathbb{T}_2$ are not atomic, we must use *topological* groupoids of models.

Theorem template

The theorems we seek to generalise involve comparing two species of data.

topological and algebraic data

logical data

Theorem template

The theorems we seek to generalise involve comparing two species of data.

Both species of data generate a topos where they can be compared:

- (i) each topological category generates a topos of sheaves,
- (ii) and each (geometric) theory has a *classifying topos*.

This will form a template for our reconstruction theorems.

Equivariant sheaves on a topological category

Given a category \mathbb{X} , a discrete bundle on \mathbb{X} consists of a map $q: Y \to X_0$,

Equivariant sheaves on a topological category

Given a category X, a discrete *bundle* on \mathbb{X} consists of a map $q: Y \rightarrow X_0$, equipped with an X_1 -action $\beta \colon Y \times_{X_0} X_1 \to Y$, а b С $\cdot \alpha(a)$ a′ . . . a″ h' Μ M' X_0

Equivariant sheaves on a topological category

If \mathbb{X} is endowed with topologies making it a *topological category*, a bundle is a *sheaf* if (i) $q: Y \to X_0$ is a local homeomorphism, (ii) and $\beta: Y \times_{X_0} X_1 \to X_1$ is continuous.

Equivariant sheaves on a topological category

If \mathbb{X} is endowed with topologies making it a *topological category*, a bundle is a *sheaf* if (i) $q: Y \to X_0$ is a local homeomorphism, (ii) and $\beta: Y \times_{X_0} X_1 \to X_1$ is continuous.

A morphism of sheaves is a continuous map $f: Y \rightarrow Y'$ such that the following commute:

Equivariant sheaves on a topological category

If \mathbb{X} is endowed with topologies making it a *topological category*, a bundle is a *sheaf* if (i) $q: Y \to X_0$ is a local homeomorphism, (ii) and $\beta: Y \times_{X_0} X_1 \to X_1$ is continuous.

A morphism of sheaves is a continuous map $f: Y \rightarrow Y'$ such that the following commute:

Definition

The category of sheaves and their morphisms define a topos $\mathbf{Sh}(\mathbb{X})$.

Basic examples

(i) For every space X,

$$X \xrightarrow{\operatorname{id}_X} X \xrightarrow{\operatorname{id}_X} X \xrightarrow{\operatorname{id}_X} X,$$

is a topological category, whose topos of equivariant sheaves is the usual topos $\mathbf{Sh}(X)$ of sheaves on X.

Basic examples

(i) For every space X,

$$X \xrightarrow{\operatorname{id}_X} X \xrightarrow{\operatorname{id}_X} X,$$

is a topological category, whose topos of equivariant sheaves is the usual topos Sh(X) of sheaves on X.

(ii) If G is a topological group,

$$G \times G \xrightarrow{m} G \xleftarrow{\stackrel{!}{\xleftarrow{e}}} \{*\},$$

is a topological category, whose topos of equivariant sheaves is the topos **B***G* of continuous actions $G \times X \to X$ on discrete sets.

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let \mathbb{T} be a theory. A *classifying topos* $\mathcal{E}_{\mathbb{T}}$ for \mathbb{T} is a topos that satisfies

 $\mathbb{T}\text{-Mod}(\mathsf{Sets}) \simeq \mathsf{Geom}(\mathsf{Sets}, \mathcal{E}_{\mathbb{T}}).$

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F}) \simeq \mathsf{Geom}(\mathcal{F}, \mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F}) \simeq \mathsf{Geom}(\mathcal{F}, \mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F})\simeq \text{Geom}(\mathcal{F},\mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Example

Let \mathbb{T} be a (classical) propositional theory, and let $X_{\mathbb{T}}$ be the associated Stone space.

Then **Sh**($X_{\mathbb{T}}$), the topos of sheaves on the space $X_{\mathbb{T}}$, classifies \mathbb{T} .

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F}) \simeq \mathsf{Geom}(\mathcal{F}, \mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Definition

Two theories \mathbb{T}_1 and \mathbb{T}_2 are *Morita equivalent* if there is a natural equivalence

$$\mathbb{T}_1\operatorname{\mathsf{-Mod}}(\mathcal{F})\simeq\mathbb{T}_2\operatorname{\mathsf{-Mod}}(\mathcal{F}),$$

or equivalently if $\mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}$.

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F}) \simeq \mathsf{Geom}(\mathcal{F}, \mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Definition

Two theories \mathbb{T}_1 and \mathbb{T}_2 are Morita equivalent if there is a natural equivalence

$$\mathbb{T}_1\operatorname{\mathsf{-Mod}}(\mathcal{F})\simeq\mathbb{T}_2\operatorname{\mathsf{-Mod}}(\mathcal{F}),$$

or equivalently if $\mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}$.

 $\begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are } \\ \text{bi-interpretable} & \longrightarrow \end{array} \begin{array}{c} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita} \\ \text{equivalent.} \end{array}$

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F}) \simeq \mathsf{Geom}(\mathcal{F}, \mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Definition

Two theories \mathbb{T}_1 and \mathbb{T}_2 are Morita equivalent if there is a natural equivalence

$$\mathbb{T}_1\operatorname{\mathsf{-Mod}}(\mathcal{F})\simeq\mathbb{T}_2\operatorname{\mathsf{-Mod}}(\mathcal{F})_2$$

or equivalently if $\mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}$.

P

 $\begin{array}{ccc} \mathbb{T}_1, \mathbb{T}_2 \text{ are } & \longrightarrow & \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita} \\ \text{bi-interpretable} & \longleftarrow & \text{equivalent} \end{array}$

(e.g. see Kamsma [Ka23]).

Toposes also admit a logical description via the notion of a *classifying topos*.

Definition

Let $\mathbb T$ be a theory. A classifying topos $\mathcal E_\mathbb T$ for $\mathbb T$ is a topos that naturally satisfies

 $\mathbb{T}\text{-}\mathsf{Mod}(\mathcal{F})\simeq \text{Geom}(\mathcal{F},\mathcal{E}_{\mathbb{T}}).$

This defines $\mathcal{E}_{\mathbb{T}}$ up to equivalence.

- Every *geometric theory* has a classifying topos;
- every topos is the classifying topos of some geometric theory.

Definition

Two theories \mathbb{T}_1 and \mathbb{T}_2 are *Morita equivalent* if there is a natural equivalence

 $\mathbb{T}_1\text{-}\mathsf{Mod}(\mathcal{F})\simeq\mathbb{T}_2\text{-}\mathsf{Mod}(\mathcal{F}),$

or equivalently if $\mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}$.

Proposition (McEldowney [Mc20]) If $\mathbb{T}_1, \mathbb{T}_2$ both prove that $\exists x, y \ x \neq y$, then $\mathbb{T}_1, \mathbb{T}_2$ are bi-interpretable $\iff \mathbb{T}_1, \mathbb{T}_2$ are Morita equivalent.

Using this framework, we can recover Ahlbrandt-Ziegler type results.

By Caramello's Topological Galois theory [Ca16],

Hence, for complete, ω -categorical theories $\mathbb{T}_1, \mathbb{T}_2$ and countable models $M \models \mathbb{T}_1$, $N \models \mathbb{T}_2$, there is a chain of equivalences

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \mathbf{B}\mathrm{Aut}(M) \simeq \mathbf{B}\mathrm{Aut}(N) \end{split}$$

Using this framework, we can recover Ahlbrandt-Ziegler type results.

By Caramello's Topological Galois theory [Ca16],

Hence, for complete, ω -categorical theories $\mathbb{T}_1, \mathbb{T}_2$ and countable models $M \models \mathbb{T}_1$, $N \models \mathbb{T}_2$, there is a chain of equivalences

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \mathbf{B}\mathrm{Aut}(M) \simeq \mathbf{B}\mathrm{Aut}(N) \Longleftrightarrow \ \mathrm{Aut}(M) \cong \mathrm{Aut}(N). \end{split}$$

And so we recover the classical Ahlbrandt-Ziegler result.

Using this framework, we can recover Ahlbrandt-Ziegler type results. We have that

Hence, for classical, propositional theories $\mathbb{T}_1, \mathbb{T}_2$, there is a chain of equivalences

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \mathbf{Sh}(X_{\mathbb{T}_1}) \simeq \mathbf{Sh}(X_{\mathbb{T}_2}) \Longleftrightarrow \ X_{\mathbb{T}_1} \cong X_{\mathbb{T}_2}. \end{split}$$

This is a reformulation of Stone duality.

- \triangleright Each topological groupoid X yields a topos **Sh**(X).
- $\triangleright \text{ For certain representing groupoids of models,} \\ \mathcal{E}_{\mathbb{T}} \simeq \mathbf{Sh}(\mathbb{X}).$

For theories $\mathbb{T}_1,\mathbb{T}_2$ with representing groupoids $\mathbb X$ and $\mathbb Y,$

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \textbf{Sh}(\mathbb{X}) \simeq \textbf{Sh}(\mathbb{Y}) \end{split}$$

- \triangleright Each topological groupoid X yields a topos **Sh**(X).
- $\triangleright \text{ For certain representing groupoids of models,} \\ \mathcal{E}_{\mathbb{T}} \simeq \mathbf{Sh}(\mathbb{X}).$

For theories $\mathbb{T}_1,\mathbb{T}_2$ with representing groupoids $\mathbb X$ and $\mathbb Y,$

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \mathbf{Sh}(\mathbb{X}) \simeq \mathbf{Sh}(\mathbb{Y}) \\ & \Longleftrightarrow \ ? \end{split}$$

Representing groupoid

A topos-theoretic template

- \triangleright Each topological groupoid X yields a topos **Sh**(X).
- $\triangleright \text{ For certain representing groupoids of models,} \\ \mathcal{E}_{\mathbb{T}} \simeq \mathbf{Sh}(\mathbb{X}).$

geometric theory

 $\mathbb X$ a representing groupoid of models.

For theories $\mathbb{T}_1,\mathbb{T}_2$ with representing groupoids $\mathbb X$ and $\mathbb Y,$

$$\begin{split} \mathbb{T}_1, \mathbb{T}_2 \text{ are Morita equivalent } & \Longleftrightarrow \ \mathcal{E}_{\mathbb{T}_1} \simeq \mathcal{E}_{\mathbb{T}_2}, \\ & \Longleftrightarrow \ \mathbf{Sh}(\mathbb{X}) \simeq \mathbf{Sh}(\mathbb{Y}) \\ & \Longleftrightarrow \ ? \end{split}$$

Overview

- A. We characterise which groupoids of models are *representing*.
- B. We establish a *bi-equivalence* between topoi with enough points and a *localisation* of topological groupoids.

Hence, we deduce when two topological groupoids are *Morita equivalent*.

Representing groupoids overview

Theorem A (W.)

A groupoid of models represents a geometric theory if and only if

- (i) it is conservative,
- (ii) and it *eliminates parameters*.

Representing groupoids overview

Theorem A (W.)

A groupoid of models represents a geometric theory if and only if

- (i) it is *conservative*,
- (ii) and it eliminates parameters.

Overview of Part A

- 1. Define elimination of parameters.
- 2. Technically restate the classification theorem.

Representing groupoids

Indexed structures

Let M be a structure over a signature Σ .

Given a set \Re of *parameters*, a \Re -*indexing* of *M* consists of:

(i) a subset $\mathfrak{K}' \subseteq \mathfrak{K}$,

(ii) and an expansion of M to the signature $\Sigma \cup \{ c_m \mid m \in \mathfrak{K}' \}$ such that M satisfies

$$\top \vdash_{x} \bigvee_{m \in \mathfrak{K}} x = c_m,$$

i.e. every $n \in M$ is the interpretation of some parameter $m \in \mathfrak{K}$.

Equivalently, this is a choice of partial surjection $\Re - M$.

Definables

Let *M* be a model of \mathbb{T} with an indexing $\mathfrak{K} \twoheadrightarrow M$.

(i) A *definable subset* is a subset of the form

$$\llbracket \vec{x} : \varphi \rrbracket_{M} = \{ \vec{n} \subseteq M \mid M \vDash \varphi(\vec{n}) \} \subseteq M^{n}$$

for some formula $\{ \vec{x} : \varphi \}$.

Definables

Let *M* be a model of \mathbb{T} with an indexing $\mathfrak{K} \twoheadrightarrow M$.

(i) A definable subset is a subset of the form

$$\llbracket \vec{x} : \varphi \rrbracket_M = \{ \vec{n} \subseteq M \mid M \vDash \varphi(\vec{n}) \} \subseteq M^n$$

for some formula $\{ \vec{x} : \varphi \}$.

(ii) A definable subset with parameters is a subset of the form

 $\llbracket \vec{x}, \vec{m} : \psi \rrbracket_{M} = \{ \vec{n} \subseteq M \mid M \vDash \psi(\vec{n}, \vec{m}) \} \subseteq M^{n}$

for some formula $\{\vec{x}, \vec{y} : \psi\}$ and a tuple of parameters $\vec{m} \subseteq \mathfrak{K}$.

Definables

For a groupoid X of T-models, a \mathfrak{K} -indexing of X is a choice of \mathfrak{K} -indexing $\mathfrak{K} \twoheadrightarrow M$ for each $M \in X$.

(i) A *definable* or *definable without parameters* is a subset of the form

$$\llbracket \vec{x} : \varphi \rrbracket_{\mathbb{X}} = \{ \langle \vec{n}, M \rangle \mid \vec{n} \subseteq M \in X_0, \ M \vDash \varphi(\vec{n}) \} \subseteq \coprod_{M \in X_0} M^n$$

for some formula $\{ \vec{x} : \varphi \}$.

(ii) A definable with parameters is a subset of the form

$$\llbracket \vec{x}, \vec{m} : \psi \rrbracket_{\mathbb{X}} = \{ \langle \vec{n}, M \rangle \mid \vec{n}, \vec{m} \subseteq M \in X_0, M \vDash \psi(\vec{n}, \vec{m}) \} \subseteq \prod_{M \in X_0} M^n$$

for some formula $\{ \vec{x}, \vec{y} : \psi \}$ and a tuple of parameters $\vec{m} \subseteq \mathfrak{K}$.

For each *n*, there is a bundle

Each definable defines a subset

Each definable defines a subset

Note that $[\![\vec{x}:\varphi]\!]_{\mathbb{X}}$ is *stable* under the X_1 -action.

Each definable with parameters also defines a subset

Each definable with parameters also defines a subset

However, $[\![\vec{x}, \vec{m} : \psi]\!]_{\mathbb{X}}$ is not stable under the X_1 -action.

Interpreting definables and elimination of parameters

We can consider the closure of $[\![\vec{x}, \vec{m} : \psi]\!]_{\mathbb{X}}$ under the X_1 -action

Interpreting definables and elimination of parameters

We can consider the closure of $[\![\,\vec{x},\vec{m}:\psi\,]\!]_{\mathbb{X}}$ under the $X_1\text{-action}$

We can consider the closure of $[\![\,\vec{x},\vec{m}:\psi\,]\!]_{\mathbb{X}}$ under the $X_1\text{-action}$

Definition

Given a groupoid $\mathbb X$ of $\mathbb T\text{-models}$ and an indexing $\mathfrak K\twoheadrightarrow\mathbb X,$

X eliminates parameters if, for every ψ and \vec{m} , there exists some geometric formula φ such that

$$\overline{\llbracket \vec{x}, \vec{m} : \psi \rrbracket}_{\mathbb{X}} = \llbracket \vec{x} : \varphi \rrbracket_{\mathbb{X}}.$$

Classification result

Theorem (W.)

Let \mathbb{T} be a geometric theory and let $\mathbb{X} = (X_1 \rightrightarrows X_0)$ be a small groupoid of \mathbb{T} -models. We can endow \mathbb{X} with the structure of an **open** topological groupoid for which

 $\mathsf{Sh}(\mathbb{X})\simeq \mathcal{E}_{\mathbb{T}}$

if and only if

(i) X_0 is a conservative set –

$$[\![\vec{x}:\varphi]\!]_{\mathbb{X}} = [\![\vec{x}:\chi]\!]_{\mathbb{X}} \implies \varphi \equiv_{\vec{x}}^{\mathbb{T}} \chi,$$

(ii) there is an indexing of $\mathbb X$ by parameters $\mathfrak K$ for which $\mathbb X$ eliminates parameters –

$$\overline{[\![\vec{x},\vec{m}:\psi]\!]}_{\mathbb{X}} = [\![\vec{x}:\varphi]\!]_{\mathbb{X}}.$$

Examples

Examples (cf. Awodey-Forssell [AF13], Butz-Moerdijk [BM98], Caramello [Ca16])

- (i) The groupoid of all \Re -indexed models eliminates parameters.
- (ii) The groupoid of all *R*-enumerated -

every element is indexed by infinitely many parameters

- models eliminates parameters.

Examples

Examples (cf. Awodey-Forssell [AF13], Butz-Moerdijk [BM98], Caramello [Ca16])

- (i) The groupoid of all \mathfrak{K} -indexed models eliminates parameters.
- (ii) The groupoid of all *R*-enumerated -

every element is indexed by infinitely many parameters

- models eliminates parameters.

(iii) If ${\mathbb T}$ is an atomic theory, then

Aut(M) eliminates parameters $\iff M$ is *ultrahomogeneous*,

i.e. every finite partial isomorphism of M extends to a total isomorphism,

Examples

Examples (cf. Awodey-Forssell [AF13], Butz-Moerdijk [BM98], Caramello [Ca16])

- (i) The groupoid of all \Re -indexed models eliminates parameters.
- (ii) The groupoid of all *R*-enumerated -

every element is indexed by infinitely many parameters

- models eliminates parameters.

(iii) If ${\mathbb T}$ is an atomic theory, then

Aut(M) eliminates parameters $\iff M$ is *ultrahomogeneous*,

i.e. every finite partial isomorphism of M extends to a total isomorphism,

Thus, if \mathbb{T} is a complete, atomic (i.e. ω -categorical) theory, and $M \vDash \mathbb{T}$ is countable, then

 $\mathcal{E}_{\mathbb{T}} \simeq \mathbf{B}\mathrm{Aut}(M).$

Now we know when $\mathcal{E} \simeq \mathbf{Sh}(\mathbb{X})$, but when are two topological groupoids \mathbb{X}, \mathbb{Y} *Morita equivalent*?

That is, when do we have $Sh(\mathbb{X}) \simeq Sh(\mathbb{Y})$?

Now we know when $\mathcal{E} \simeq \mathbf{Sh}(\mathbb{X})$, but when are two topological groupoids \mathbb{X}, \mathbb{Y} *Morita equivalent*?

That is, when do we have $\mathsf{Sh}(\mathbb{X}) \simeq \mathsf{Sh}(\mathbb{Y})$?

Theorem B (W.)

There is a biequivalence

 $[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{\textit{w.e.p.}}^{\text{iso}}.$

Now we know when $\mathcal{E} \simeq \mathbf{Sh}(\mathbb{X})$, but when are two topological groupoids \mathbb{X}, \mathbb{Y} *Morita equivalent*?

That is, when do we have $\mathsf{Sh}(\mathbb{X}) \simeq \mathsf{Sh}(\mathbb{Y})$?

Theorem B (W.)

There is a biequivalence

 $[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{w.e.p.}^{\text{iso}}.$

- **Topos**^{iso}_{*w.e.p.*} is the bicategory of toposes with enough points, geometric morphisms, and natural isomorphisms,
- LogGrpd is a full 2-subcategory of TopGrpd,
- \mathfrak{W} is a *bi-calculus of fractions* on **LogGrpd**, i.e. a class of weak equivalences.

Now we know when $\mathcal{E} \simeq Sh(\mathbb{X})$, but when are two topological groupoids \mathbb{X}, \mathbb{Y} *Morita equivalent*?

That is, when do we have $\mathsf{Sh}(\mathbb{X}) \simeq \mathsf{Sh}(\mathbb{Y})$?

Theorem B (W.)

There is a biequivalence

 $[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{w.e.p.}^{\text{iso}}.$

Overview of Part B

- 1. We first compare our localisation on the *left* with Moerdijk's localisation on the *right*.
- 2. We define the bicategory of *logical groupoids* and the *weak equivalences*.
- 3. Finally, we restate the biequivalence.

Thereby, we deduce a groupoidal characterisation of Morita equivalence for theories.

Homomorphisms of topological groupoids

A *homomorphism* of topological groupoids is a continuous functor

 $f: \mathbb{X} \to \mathbb{Y},$

i.e. a pair of continuous maps $f_0: X_0 \to Y_0$ and $f_1: X_1 \to Y_1$ such that

commutes.

Homomorphisms of topological groupoids

A *homomorphism* of topological groupoids is a continuous functor

$$f:\mathbb{X}\to\mathbb{Y},$$

i.e. a pair of continuous maps $f_0: X_0 \to Y_0$ and $f_1: X_1 \to Y_1$ such that

A transformation $f \stackrel{a}{\Rightarrow} g$ between homomorphisms is a natural transformation where the map $a: X_0 \rightarrow Y_1.$

$$x \mapsto f_0(x) \xrightarrow{a_x} g_0(x)$$

is continuous.

Together, this forms the datum of a *bicategory* **TopGrpd**, and there is a bifunctor

$$\textbf{Sh} \colon \textbf{TopGrpd} \to \textbf{Topos}_{w.e.p.}^{\textbf{iso}} \subseteq \textbf{Topos}.$$

commutes.

- Theorem (Moerdijk [Mo88], Pronk [Pr96])
- There is a biequivalence

 $\text{ECG}[\Sigma^{-1}] \simeq \text{Topos}^{\text{iso}}$

where **ECG** \subseteq **LocGrpd**.

```
Theorem (Moerdijk [Mo88], Pronk
[Pr96])
```

There is a biequivalence

 $\text{ECG}[\Sigma^{-1}]\simeq\text{Topos}^{\text{iso}}$

where **ECG** \subseteq **LocGrpd**.

Proposition

For any 2-subcategory $C \subseteq$ **TopGrpd**, and any **right** bicalculus W^{-1} on C,

 $\mathbf{Topos}_{w.e.p.}^{\mathsf{iso}} \simeq \mathcal{C}[W^{-1}].$

Proof: Suppose that **Topos**^{iso}_{*w.e.p.*} $\simeq C[W^{-1}]$.

Let \mathcal{E} be a topos with a large (and jointly conservative) set of points, e.g. the classifying topos for groups.

Let $\mathbb{X} \in \mathcal{C}$ be a representing groupoid for \mathcal{E} . By assumption there is a point $p: \mathbf{Sets} \to \mathcal{E}$ that is not included in X_0 .

Theorem (Moerdijk [Mo88], Pronk [Pr96])

There is a biequivalence

 $\text{ECG}[\Sigma^{-1}] \simeq \text{Topos}^{\text{iso}}$

where **ECG** \subseteq **LocGrpd**.

Proposition

For any 2-subcategory $C \subseteq$ **TopGrpd**, and any **right** bicalculus W^{-1} on C,

 $\mathbf{Topos}_{w.e.p.}^{\mathsf{iso}} \simeq \mathcal{C}[W^{-1}].$

Proof: Suppose that **Topos**^{iso}_{*w.e.p.*} $\not \simeq C[W^{-1}]$.

Let \mathcal{E} be a topos with a large (and jointly conservative) set of points, e.g. the classifying topos for groups.

Let $\mathbb{X} \in \mathcal{C}$ be a representing groupoid for \mathcal{E} . By assumption there is a point $p: \mathbf{Sets} \to \mathcal{E}$ that is not included in X_0 .

Now p is induced by a homomorphism $f \in C$, i.e.

$$\mathsf{Sets}\simeq\mathsf{Sh}(\mathbb{Y}) \xrightarrow{\mathsf{Sh}(f)=
ho} \mathsf{Sh}(\mathbb{X}),$$

by the hypothesis **Topos**^{iso}_{w.e.p.} $\simeq C[W^{-1}]$.

But any section of $\mathbf{Sh}(Y_0) \to \mathbf{Sets}$ yields a diagram $\mathbf{Sh}(Y_0) \xrightarrow{\mathbf{Sh}(f_0)} \mathbf{Sh}(X_0)$

$$\operatorname{\mathsf{Sets}}^{\not\downarrow}\simeq\operatorname{\mathsf{Sh}}(\mathbb{Y})\xrightarrow{\operatorname{\mathsf{Sh}}(f)=p}\operatorname{\mathsf{Sh}}(\mathbb{X})\simeq\mathcal{E},$$

a contradiction. Hence, Y_0 is empty, and so $\textbf{Sets} \simeq \textbf{0}.$

Theorem (Moerdijk [Mo88], Pronk [Pr96])

There is a biequivalence

 $\text{ECG}[\Sigma^{-1}] \simeq \text{Topos}^{\text{iso}}$

where **ECG** \subseteq **LocGrpd**.

Proposition

For any 2-subcategory $\mathcal{C} \subseteq \mathbf{TopGrpd}$, and any **right** bicalculus W^{-1} on \mathcal{C} ,

Topos^{iso}_{w.e.p.}
$$\simeq \mathcal{C}[W^{-1}].$$

Logical groupoids

Definition

An open topological groupoid $\mathbb{X} = (X_1 \rightrightarrows X_0)$ is said to be *logical* if X_0, X_1 are sober, and \mathbb{X} is *étale complete* in the sense that:

(i) for any pair $x, y \in X_0$, a natural isomorphism

is instantiated by an point $\alpha \in X_1$,

- (ii) the topology on X_1 is the coarsest such topology determined by $\mathbf{Sh}(\mathbb{X})$,
 - i.e. given another topology T on the points of X_1 yielding a topological groupoid \mathbb{X}' , if $\mathbf{Sh}(\mathbb{X}) \simeq \mathbf{Sh}(\mathbb{X}')$ then T contains the topology on X_1 .

We denote by $LogGrpd \subseteq TopGrpd$ the full 2-subcategory of logical groupoids.

Logical groupoids

Definition

An open topological groupoid $\mathbb{X} = (X_1 \rightrightarrows X_0)$ is said to be *logical* if X_0, X_1 are sober, and \mathbb{X} is *étale complete* in the sense that:

(i) for any pair $x, y \in X_0$, a natural isomorphism

is instantiated by an point $\alpha \in X_1$,

- (ii) the topology on X_1 is the coarsest such topology determined by $\mathbf{Sh}(\mathbb{X})$,
 - i.e. given another topology T on the points of X_1 yielding a topological groupoid \mathbb{X}' , if $\mathbf{Sh}(\mathbb{X}) \simeq \mathbf{Sh}(\mathbb{X}')$ then T contains the topology on X_1 .

We denote by $LogGrpd \subseteq TopGrpd$ the full 2-subcategory of logical groupoids.

Remark

A topological groupoid X is a logical groupoid if and only if it is a representing groupoid of models, with *all possible* isomorphisms, for a theory classified by **Sh**(X).

Weak equivalences of logical groupoids

Definition

A homomorphism of logical groupoids

$$\psi \colon \mathbb{Y} \to \mathbb{W}$$

- is a weak equivalence if
- (i) ψ is full inclusion $\mathbb{Y} \hookrightarrow \mathbb{W}$,
- (ii) Let \mathbb{T} be a theory classified by $\mathbf{Sh}(\mathbb{W})$.

When \mathbb{W} is viewed as a representing groupoid of indexed \mathbb{T} -models, the sub-groupoid \mathbb{Y} is still conservative and eliminates parameters.

Denote the class of weak equivalences by $\mathfrak{W}.$

Weak equivalences of logical groupoids

Definition

A homomorphism of logical groupoids

 $\psi \colon \mathbb{Y} \to \mathbb{W}$

Corollary If $\psi \colon \mathbb{Y} \hookrightarrow \mathbb{W}$ is a weak equivalence, then

 $\mathsf{Sh}(\psi) \colon \mathsf{Sh}(\mathbb{Y}) \xrightarrow{\sim} \mathsf{Sh}(\mathbb{W})$

is an equivalence.

- is a weak equivalence if
 - (i) ψ is full inclusion $\mathbb{Y} \hookrightarrow \mathbb{W}$,
- (ii) Let $\mathbb T$ be a theory classified by $\boldsymbol{Sh}(\mathbb W).$

When \mathbb{W} is viewed as a representing groupoid of indexed \mathbb{T} -models, the sub-groupoid \mathbb{Y} is still conservative and eliminates parameters.

Denote the class of weak equivalences by \mathfrak{W} .

Weak equivalences of logical groupoids

Definition

A homomorphism of logical groupoids

 $\psi \colon \mathbb{Y} \to \mathbb{W}$

- is a weak equivalence if
- (i) ψ is full inclusion $\mathbb{Y} \hookrightarrow \mathbb{W}$,
- (ii) Let \mathbb{T} be a theory classified by $\mathbf{Sh}(\mathbb{W})$.

When \mathbb{W} is viewed as a representing groupoid of indexed \mathbb{T} -models, the sub-groupoid \mathbb{Y} is still conservative and eliminates parameters.

Denote the class of weak equivalences by \mathfrak{W} .

Corollary If $\psi \colon \mathbb{Y} \hookrightarrow \mathbb{W}$ is a weak equivalence, then

 $\mathsf{Sh}(\psi) \colon \mathsf{Sh}(\mathbb{Y}) \xrightarrow{\sim} \mathsf{Sh}(\mathbb{W})$

is an equivalence.

Proposition

Every geometric morphism

 $f: \mathbf{Sh}(\mathbb{X}) \to \mathbf{Sh}(\mathbb{Y})$

is induced by a cospan

where ψ is a weak equivalence.

Theorem (W.) There is a bi-equivalence

 $[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{\textit{w.e.p.}}^{\text{iso}}.$

- An object of $[\mathfrak{W}^{-1}]$ LogGrpd is a logical groupoid.
- An arrow $\mathbb{X} \xrightarrow{(\varphi,\psi)} \mathbb{Y} \in [\mathfrak{W}^{-1}]$ LogGrpd is a cospan

$$\begin{array}{c} \mathbb{Y} \\ & \ \int^{\psi} \\ \mathbb{X} \xrightarrow{\varphi} \\ \end{array} \end{array}$$

where ψ is a weak equivalence.

• A 2-cell $(\varphi, \psi) \Rightarrow (\varphi', \psi')$ is a transformation $\varphi \stackrel{a}{\Rightarrow} \varphi'$.

Theorem (W.) There is a bi-equivalence

 $[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{\textit{w.e.p.}}^{\text{iso}}.$

Corollary

Two logical groupoids \mathbb{X}, \mathbb{Y} are *Morita equivalent*, i.e. $Sh(\mathbb{X}) \simeq Sh(\mathbb{Y})$, if and only if there is a co-span of weak equivalences

 $\mathbb{X} \longleftrightarrow \mathbb{W} \longleftrightarrow \mathbb{Y}$

Theorem (W.) There is a bi-equivalence

```
[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{w.e.p.}^{\text{iso}}.
```

Corollary

Let \mathbb{T}_1 and \mathbb{T}_2 be theories with representing groupoids $\mathbb X$ and $\mathbb Y$ respectively.

Then \mathbb{T}_1 and \mathbb{T}_2 are Morita equivalent $% \mathbb{T}_1$ if and only if there is a co-span of weak equivalences

 $\mathbb{X} \longleftrightarrow \mathbb{W} \longleftrightarrow \mathbb{Y}$

Theorem (W.) There is a bi-equivalence

```
[\mathfrak{W}^{-1}] \textbf{LogGrpd} \simeq \textbf{Topos}_{w.e.p.}^{\text{iso}}.
```

Corollary

Let \mathbb{T}_1 and \mathbb{T}_2 be theories with representing groupoids $\mathbb X$ and $\mathbb Y$ respectively.

Then \mathbb{T}_1 and \mathbb{T}_2 are Morita equivalent $% \mathbb{T}_1$ if and only if there is a co-span of weak equivalences

 $\mathbb{X} \longleftrightarrow \mathbb{W} \longleftrightarrow \mathbb{Y}$

Future directions

- (i) What *Morita-invariant* properties of topological groupoids are preserved by weak equivalences?
- (ii) What is an entirely topological description of weak equivalences?

Based on PhD thesis, available here: jlwrigley.github.io/

- [AZ86] G. Ahlbrandt and M. Ziegler, "Quasi finitely axiomatizable totally categorical theories", Ann. Pure Appl. Logic, vol. 30, no. 1, pp. 63-82, 1986.
- [AF13] S. Awodey and H. Forssell, "First-order logical duality", Ann. Pure Appl. Logic, vol. 164, no. 3, pp. 319-348, 2013.
- [BY22] I. Ben Yaacov, "Reconstruction of non-ℵ₀-categorical theories", *J. Symb. Logic* 87, no. 1, pp. 159187, 2022.
- [BM98] C. Butz and I. Moerdijk, "Representing topol by topological groupoids", J. Pure Appl. Algebra, vol. 130, no. 3, pp. 223-235, 1998.
- [Ca16] O. Caramello, "Topological Galois theory", Adv. Math., vol. 291, pp. 646-695, 2016.
- [Ka23] M. Kamsma, "Type space functors and interpretations in positive logic", Arch. Math. Logic 62, pp. 128 (2023).
- [Mc20] P.A. McEldowney, "On Morita equivalence and interpretability", Rev. Symb. Logic 13, no. 2, pp. 388415 (2020).
- [Mo88] I. Moerdijk, "The classifying topos of a continuous groupoid, I", Trans. Amer. Math. Soc., vol. 310, pp. 629-668, 1988.
- [Pr96] D. Pronk, "Etendues and stacks as bicategories of fractions", Compos. Math., vol. 102, no. 3, pp. 1151-1170, 1996.

Introduction

References

Thank you for listening!