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Logical motivation

Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)
Let M, N be countable, ω-categorical structures.
. A theory is ω-categorical if any pair of countable

models are isomorphic.

There is a homeomorphism of topological groups

Aut(M) ∼= Aut(N),

if and only if M and N are bi-interpretable.

. How can we generalise this
correspondence?
− If M and N are not countable

models, we must weaken the
homeomorphism condition.

− If T1,T2 are not atomic, we
must use topological
groupoids of models.
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Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)
Let M, N be countable, ω-categorical structures.
There is a homeomorphism of topological groups

Aut(M) ∼= Aut(N),

if and only if M and N are bi-interpretable.

Theorem (Ben Yaacov [BY22])
For any pair of classical theories T1,T2, there are
topological groupoids G(T1) and G(T2) such that
there is a homeomorphism
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Logical motivation
Theorem (Ahlbrandt-Ziegler [AZ86], Coquand)
Let M, N be countable, ω-categorical structures.
There is a homeomorphism of topological groups

Aut(M) ∼= Aut(N),

if and only if M and N are bi-interpretable.

Theorem (Ben Yaacov [BY22])
For any pair of classical theories T1,T2, there are
topological groupoids G(T1) and G(T2) such that
there is a homeomorphism

G(T1) ∼= G(T2)

if and only if T1 and T2 are bi-interpretable.

However, the groupoid G(T) is not a groupoid of
models.

. How can we generalise this
correspondence?
− If M and N are not countable

models, we must weaken the
homeomorphism condition.

− If T1,T2 are not atomic, we
must use topological
groupoids of models.
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Theorem template

The theorems we seek to generalise involve comparing two species of data.

topological and
algebraic data logical data

Both species of data generate a topos where they can be compared:
(i) each topological category generates a topos of sheaves,
(ii) and each (geometric) theory has a classifying topos.
This will form a template for our reconstruction theorems.
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Theorem template

The theorems we seek to generalise involve comparing two species of data.

Representation of
a topos

topological and
algebraic data logical data

Both species of data generate a topos where they can be compared:
(i) each topological category generates a topos of sheaves,
(ii) and each (geometric) theory has a classifying topos.
This will form a template for our reconstruction theorems.
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Equivariant sheaves on a topological category
Given a category X, a discrete
bundle on X consists of a map
q : Y → X0,

M M ′ . . . N
X0.

. . .

a

a′

...

a′′

b

...

b′

c

...

c ′

If X is endowed with topologies making it a
topological category, a bundle is a sheaf if
(i) q : Y → X0 is a local homeomorphism,
(ii) and β : Y ×X0 X1 → X1 is continuous.

A morphism of sheaves is a continuous map
f : Y → Y ′ such that the following commute:

Y ×X0 X1 Y ′ ×X0 X1

Y Y ′,

β

f ×X0 idX1

β′

f

Y Y ′

X0.

f

q q′

Definition
The category of sheaves and their morphisms define
a topos Sh(X).
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Basic examples

(i) For every space X ,

X X X ,idX

idX

idX

idX

is a topological category, whose topos of equivariant sheaves is the usual topos
Sh(X ) of sheaves on X .

(ii) If G is a topological group,

G × G G { ∗ },m
!

!

e

is a topological category, whose topos of equivariant sheaves is the topos BG of
continuous actions G × X → X on discrete sets.
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Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that satisfies

T-Mod(Sets) ' Geom(Sets, ET).

This defines ET up to equivalence.
• Every geometric theory has a

classifying topos;
• every topos is the classifying

topos of some geometric theory.

Example
Let T be a (classical) propositional theory, and let
XT be the associated Stone space.

Then Sh(XT), the topos of sheaves on the space
XT, classifies T.



Introduction The topos-theoretic framework Representing groupoids Morita equivalence of groupoids References

Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies

T-Mod(F) ' Geom(F , ET).

This defines ET up to equivalence.

• Every geometric theory has a
classifying topos;

• every topos is the classifying
topos of some geometric theory.

Example
Let T be a (classical) propositional theory, and let
XT be the associated Stone space.

Then Sh(XT), the topos of sheaves on the space
XT, classifies T.



Introduction The topos-theoretic framework Representing groupoids Morita equivalence of groupoids References

Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies

T-Mod(F) ' Geom(F , ET).

This defines ET up to equivalence.
• Every geometric theory has a

classifying topos;
• every topos is the classifying

topos of some geometric theory.

Example
Let T be a (classical) propositional theory, and let
XT be the associated Stone space.

Then Sh(XT), the topos of sheaves on the space
XT, classifies T.



Introduction The topos-theoretic framework Representing groupoids Morita equivalence of groupoids References

Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies

T-Mod(F) ' Geom(F , ET).

This defines ET up to equivalence.
• Every geometric theory has a

classifying topos;
• every topos is the classifying

topos of some geometric theory.

Example
Let T be a (classical) propositional theory, and let
XT be the associated Stone space.

Then Sh(XT), the topos of sheaves on the space
XT, classifies T.



Introduction The topos-theoretic framework Representing groupoids Morita equivalence of groupoids References

Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies
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topos of some geometric theory.
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Two theories T1 and T2 are Morita equivalent if
there is a natural equivalence

T1-Mod(F) ' T2-Mod(F),

or equivalently if ET1 ' ET2 .
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Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies

T-Mod(F) ' Geom(F , ET).

This defines ET up to equivalence.
• Every geometric theory has a

classifying topos;
• every topos is the classifying

topos of some geometric theory.

Definition
Two theories T1 and T2 are Morita equivalent if
there is a natural equivalence

T1-Mod(F) ' T2-Mod(F),

or equivalently if ET1 ' ET2 .

T1,T2 are
bi-interpretable

T1,T2 are Morita
equivalent\

(e.g. see Kamsma [Ka23]).
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Classifying topos theory

Toposes also admit a logical description via the notion of a classifying topos.

Definition
Let T be a theory. A classifying topos
ET for T is a topos that naturally
satisfies

T-Mod(F) ' Geom(F , ET).

This defines ET up to equivalence.
• Every geometric theory has a

classifying topos;
• every topos is the classifying

topos of some geometric theory.

Definition
Two theories T1 and T2 are Morita equivalent if
there is a natural equivalence

T1-Mod(F) ' T2-Mod(F),

or equivalently if ET1 ' ET2 .

Proposition (McEldowney [Mc20])
If T1,T2 both prove that ∃x , y x 6= y , then

T1,T2 are
bi-interpretable ⇐⇒ T1,T2 are Morita

equivalent.
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A topos-theoretic template
Using this framework, we can recover Ahlbrandt-Ziegler type results.
By Caramello’s Topological Galois theory [Ca16],

ET ' BAut(M)

T a complete,
ω-categorical theory

M ⊨ T
a countable model.

Hence, for complete, ω-categorical theories T1,T2 and countable models M ⊨ T1,
N ⊨ T2, there is a chain of equivalences

T1,T2 are Morita equivalent ⇐⇒ ET1 ' ET2 ,

⇐⇒ BAut(M) ' BAut(N)

And so we recover the classical Ahlbrandt-Ziegler result.
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Using this framework, we can recover Ahlbrandt-Ziegler type results.
By Caramello’s Topological Galois theory [Ca16],

ET ' BAut(M)

T a complete,
ω-categorical theory

M ⊨ T
a countable model.

Hence, for complete, ω-categorical theories T1,T2 and countable models M ⊨ T1,
N ⊨ T2, there is a chain of equivalences

T1,T2 are Morita equivalent ⇐⇒ ET1 ' ET2 ,

⇐⇒ BAut(M) ' BAut(N) ⇐⇒ Aut(M) ∼= Aut(N).

And so we recover the classical Ahlbrandt-Ziegler result.
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A topos-theoretic template
Using this framework, we can recover Ahlbrandt-Ziegler type results.
We have that

ET ' Sh(XT)

T a classical
propositional

XT the Stone space
of models for T.

Hence, for classical, propositional theories T1,T2, there is a chain of equivalences

T1,T2 are Morita equivalent ⇐⇒ ET1 ' ET2 ,

⇐⇒ Sh(XT1) ' Sh(XT2) ⇐⇒ XT1
∼= XT2 .

This is a reformulation of Stone duality.
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A topos-theoretic template

. Each topological groupoid X yields a topos Sh(X).

. For certain representing groupoids of models,
ET ' Sh(X).

ET ' Sh(X)

T a
geometric theory

X a representing
groupoid of models.

For theories T1,T2 with representing groupoids X and Y,

T1,T2 are Morita equivalent ⇐⇒ ET1 ' ET2 ,

⇐⇒ Sh(X) ' Sh(Y)

Overview
A. We characterise which

groupoids of models are
representing.

B. We establish a bi-equivalence
between topoi with enough
points and a localisation of
topological groupoids.
Hence, we deduce when
two topological groupoids are
Morita equivalent.
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Representing groupoids overview

Theorem A (W.)
A groupoid of models represents
a geometric theory if and only if
(i) it is conservative,
(ii) and it eliminates parameters.

Overview of Part A
1. Define elimination of parameters.
2. Technically restate the classification theorem.
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Indexed structures

Let M be a structure over a signature Σ.
Given a set K of parameters, a K-indexing of M consists of:
(i) a subset K′ ⊆ K,
(ii) and an expansion of M to the signature Σ ∪ { cm | m ∈ K′ } such that M satisfies

> `x
∨

m∈K
x = cm,

i.e. every n ∈ M is the interpretation of some parameter m ∈ K.

Equivalently, this is a choice of partial surjection K⇁⇁ M.
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Definables

Let M be a model of T with an indexing K⇁⇁ M.

(i) A definable subset is a subset of the form

J~x : ϕ KM = {~n ⊆ M | M ⊨ ϕ(~n) } ⊆ Mn

for some formula {~x : ϕ }.

(ii) A definable subset with parameters is a subset of the form

J~x , ~m : ψ KM = {~n ⊆ M | M ⊨ ψ(~n, ~m) } ⊆ Mn

for some formula {~x , ~y : ψ } and a tuple of parameters ~m ⊆ K.
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Let M be a model of T with an indexing K⇁⇁ M.

(i) A definable subset is a subset of the form

J~x : ϕ KM = {~n ⊆ M | M ⊨ ϕ(~n) } ⊆ Mn

for some formula {~x : ϕ }.
(ii) A definable subset with parameters is a subset of the form
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Definables

For a groupoid X of T-models, a K-indexing of X is a choice of K-indexing K⇁⇁ M for
each M ∈ X.

(i) A definable or definable without parameters is a subset of the form

J~x : ϕ KX = { 〈~n,M〉 | ~n ⊆ M ∈ X0, M ⊨ ϕ(~n) } ⊆
⨿

M∈X0

Mn

for some formula {~x : ϕ }.

(ii) A definable with parameters is a subset of the form

J~x , ~m : ψ KX = { 〈~n,M〉 | ~n, ~m ⊆ M ∈ X0, M ⊨ ψ(~n, ~m) } ⊆
⨿

M∈X0

Mn

for some formula {~x , ~y : ψ } and a tuple of parameters ~m ⊆ K.
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Interpreting definables and elimination of parameters

For each n, there is a bundle

M M ′ . . . N
X0.

. . .

~a

~a′

...

~a′′

Mn
~b

...

~b′

M ′n

~c

...

~c ′

Nn
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Interpreting definables and elimination of parameters

Each definable defines a subset

M M ′ . . . N
X0.

. . .

~a

~a′

...

~a′′

Mn
~b

...

~b′

M ′n

~c

...

~c ′

Nn

J~x : ϕ KX
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Interpreting definables and elimination of parameters
Each definable defines a subset

M M ′ . . . N
X0.

. . .

~a

~a′

...

~a′′

Mn
~b

α(~a)

...

~b′

M ′n

~c

...

~c ′

Nn

J~x : ϕ KX

α

Note that J~x : ϕ KX is stable under the
X1-action.
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Interpreting definables and elimination of parameters

Each definable with parameters also defines a
subset

M M ′ . . . N
X0.

. . .

~a

~a′

...

~a′′

Mn
~b

...

~b′

M ′n

~c

...

~c ′

NnJ~x , ~m : ψ KX
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Interpreting definables and elimination of parameters
Each definable with parameters also defines a
subset

M M ′ . . . N
X0.

. . .

~a

~a′

...

~a′′

Mn
~b

α(~a)

...

~b′

M ′n

~c

...

~c ′

NnJ~x , ~m : ψ KX

α

However, J~x , ~m : ψ KX is not stable under the
X1-action.
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Interpreting definables and elimination of parameters

We can consider the closure of J~x , ~m : ψ KX
under the X1-action

M M ′ . . . N
X0.

. . .

~a

γ(~b)

...

~a′′

Mn
~b

α(~a)

...

~b′

M ′n

~c

...

~c ′

NnJ~x , ~m : ψ KX
J~x , ~m : ψ KX

α

γ
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In this example, J~x , ~m : ψ KX = J~x : ϕ KX.

Definition
Given a groupoid X of T-models and
an indexing K⇁⇁ X,
X eliminates parameters if, for every
ψ and ~m, there exists some geometric
formula ϕ such that

J~x , ~m : ψ KX = J~x : ϕ KX.
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Classification result

Theorem (W.)
Let T be a geometric theory and let X = (X1 ⇒ X0) be a small groupoid of T-models.
We can endow X with the structure of an open topological groupoid for which

Sh(X) ' ET

if and only if
(i) X0 is a conservative set –

J~x : ϕ KX = J~x : χ KX =⇒ ϕ ≡T
x⃗ χ,

(ii) there is an indexing of X by parameters K for which X eliminates parameters –

J~x , ~m : ψ KX = J~x : ϕ KX.
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Examples
Examples (cf. Awodey-Forssell [AF13], Butz-Moerdijk [BM98], Caramello [Ca16])
(i) The groupoid of all K-indexed models eliminates parameters.
(ii) The groupoid of all K-enumerated –

every element is indexed by infinitely many parameters
– models eliminates parameters.

(iii) If T is an atomic theory, then
Aut(M) eliminates parameters ⇐⇒ M is ultrahomogeneous,

i.e. every finite partial isomorphism of M extends to a total isomorphism,
~n ~n′

M M.

∼

∼

Thus, if T is a complete, atomic (i.e. ω-categorical) theory, and M ⊨ T is countable,
then

ET ' BAut(M).
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A biequivalence for topoi with enough points

Now we know when E ' Sh(X), but when are two topological groupoids X,Y Morita
equivalent?
That is, when do we have Sh(X) ' Sh(Y)?

Theorem B (W.)
There is a biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p..
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A biequivalence for topoi with enough points

Now we know when E ' Sh(X), but when are two topological groupoids X,Y Morita
equivalent?
That is, when do we have Sh(X) ' Sh(Y)?

Theorem B (W.)
There is a biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p..

• Toposiso
w.e.p. is the bicategory of toposes with

enough points, geometric morphisms, and
natural isomorphisms,

• LogGrpd is a full 2-subcategory of TopGrpd,
• W is a bi-calculus of fractions on LogGrpd,

i.e. a class of weak equivalences.
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A biequivalence for topoi with enough points

Now we know when E ' Sh(X), but when are two topological groupoids X,Y Morita
equivalent?
That is, when do we have Sh(X) ' Sh(Y)?

Theorem B (W.)
There is a biequivalence

[W−1]LogGrpd ' Toposiso
w.e.p..

Overview of Part B
1. We first compare our localisation on the left with

Moerdijk’s localisation on the right.
2. We define the bicategory of logical groupoids

and the weak equivalences.
3. Finally, we restate the biequivalence.

Thereby, we deduce a groupoidal characterisa-
tion of Morita equivalence for theories.
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Homomorphisms of topological groupoids

A homomorphism of topological
groupoids is a continuous functor

f : X → Y,

i.e. a pair of continuous maps
f0 : X0 → Y0 and f1 : X1 → Y1
such that

X1 ×X0 X1 Y1 ×Y0 Y1

X1 Y1

X0 Y0

m m′

f1

ts t′s′

f0

commutes.

A transformation f a
=⇒ g between homomorphisms

is a natural transformation where the map
a : X0 → Y1,

x 7→ f0(x)
ax−→ g0(x)

is continuous.
Together, this forms the datum of a bicategory
TopGrpd, and there is a bifunctor

Sh : TopGrpd → Toposiso
w.e.p. ⊆ Topos.
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Moerdijk’s equivalence

Theorem (Moerdijk [Mo88], Pronk
[Pr96])
There is a biequivalence

ECG[Σ−1] ' Toposiso

where ECG ⊆ LocGrpd.

Proposition
For any 2-subcategory C ⊆ TopGrpd,
and any right bicalculus W−1 on C,

Toposiso
w.e.p. 6' C[W−1].

Proof: Suppose that Toposiso
w.e.p. 6' C[W−1].

Let E be a topos with a large (and jointly conservative) set
of points, e.g. the classifying topos for groups.
Let X ∈ C be a representing groupoid for E . By assumption
there is a point p : Sets → E that is not included in X0.
Now p is induced by a homomorphism f ∈ C, i.e.

Sets ' Sh(Y) Sh(f )=p−−−−−→ Sh(X),
by the hypothesis Toposiso

w.e.p. 6' C[W−1].
But any section of Sh(Y0) → Sets yields a diagram

Sh(Y0) Sh(X0)

Sets ' Sh(Y) Sh(X) ' E ,

Sh(f0)

Sh(f )=p

a contradiction. Hence, Y0 is empty, and so Sets ' 0.
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Logical groupoids
Definition
An open topological groupoid X = (X1 ⇒ X0) is said to be logical if X0,X1 are sober,
and X is étale complete in the sense that:
(i) for any pair x , y ∈ X0, a natural isomorphism

Sets Sh(X0)

Sh(X0) Sh(X),

u

u

x

y α ∼
is instantiated by an point α ∈ X1,

(ii) the topology on X1 is the coarsest such topology determined by Sh(X),
i.e. given another topology T on the points of X1 yielding a topological groupoid
X′, if Sh(X) ' Sh(X′) then T contains the topology on X1.

We denote by LogGrpd ⊆ TopGrpd the full 2-subcategory of logical groupoids.

Remark
A topological groupoid X is a logical groupoid if and only if it is a representing
groupoid of models, with all possible isomorphisms, for a theory classified by Sh(X).
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Weak equivalences of logical groupoids

Definition
A homomorphism of logical groupoids

ψ : Y → W

is a weak equivalence if
(i) ψ is full inclusion Y ↪→ W,
(ii) Let T be a theory classified by Sh(W).

When W is viewed as a representing
groupoid of indexed T-models, the sub-
groupoid Y is still conservative and elimi-
nates parameters.

Denote the class of weak equivalences by W.

Corollary
If ψ : Y ↪→ W is a weak equivalence, then

Sh(ψ) : Sh(Y) ∼−→ Sh(W)

is an equivalence.

Proposition
Every geometric morphism

f : Sh(X) → Sh(Y)

is induced by a cospan
Y

X W

ψ

φ

where ψ is a weak equivalence.
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A bi-equivalence for toposes

Theorem (W.)
There is a bi-equivalence

[W−1]LogGrpd ' Toposiso
w.e.p..

• An object of [W−1]LogGrpd is a logical groupoid.

• An arrow X (φ,ψ)−−−→ Y ∈ [W−1]LogGrpd is a cospan

Y

X W

ψ

φ

where ψ is a weak equivalence.
• A 2-cell (ϕ,ψ) ⇒ (ϕ′, ψ′) is a transformation ϕ a

=⇒ ϕ′.
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A bi-equivalence for toposes
Theorem (W.)
There is a bi-equivalence

[W−1]LogGrpd ' Toposiso
w.e.p..

Corollary
Two logical groupoids X,Y are Morita equivalent, i.e. Sh(X) ' Sh(Y), if and only if
there is a co-span of weak equivalences

X W Y

Future directions
(i) What Morita-invariant properties of topological groupoids are preserved by weak

equivalences?
(ii) What is an entirely topological description of weak equivalences?
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