Compositional statistical mechanics, entropy and variational inference

Gregoire Sergeant-Perthuis

LCQB Sorbonne Université

SYCO 12 Birmingham, UK 16 April, 2024

Paper arXiv:2403.16104

Sergeant-Perthuis (LCQB)

Categorical Stat. Mech.

15/4/24 SYCO 12

1/36

Statistical mechanics: motivation and problems

Statistical mechanics: motivation

- What for? \rightsquigarrow modelling interaction between random variables, e.g. $X = X_1...X_N \in \{-1, 1\}.$
- How? ~> Energy-based modeling
 - energy function (Hamiltonian), e.g.

$$H=X_1\cdot X_2+X_2\cdot X_3+X_3\cdot X_4\ldots$$

- Probability distribution: Boltzmann distribution

 $p_X \propto e^{-\beta H} \propto e^{\beta X_1 \cdot X_2} \cdot e^{\beta X_2 \cdot X_3} \cdot e^{\beta X_3 \cdot X_4} \dots$ (Markov chain)

- Relation to computer science [MM09], (key words):
 - Markov chain, Hidden Markov model (HMM)
 - Graphical models, factor graphs ...
 - Inference (maximum likelihood), Bayesian inference
 → machine learning (≠ deep learning)

3/36

When there are a (countable) infinity of random variables $(X_1, \ldots, X_n, \ldots)$ then:

- one Hamiltonian H
 ightarrow how to make sense of $p_X \propto e^{-eta H}$
 - \rightsquigarrow several possible distribution *p* (Dobrushin-Lanford-Ruelle condition)
 - \rightarrow Phases, pure phases, e.g "solid, gaz, liquid"
- Characterizing the phases is a hard problem
- "Manipulating" (transforming) the phases is difficult
- For translation invariant potential:
 - \rightarrow Correspondance: phases \leftrightarrow tangent of a convex functional ("Helmholtz free energy") at *H*.
 - $\, {\scriptstyle \downarrow} \,$ relates to variational principle

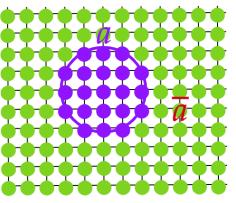
4/36

Statistical mechanics: formal definitions

- I index of (finite) random variables: $(X_i \in E_i, i \in I)$
- Global state space $\Omega = \prod_{i \in I} E_i$ denoted as *E* with σ -algebra \mathscr{E} ,
- $\mathbb{P}(E)$ space of measures
- $a \subseteq I$ finite subset of I, $\mathscr{P}_f(I)$ the set of finite subsets
- $X_a \in E_a = \prod_{i \in a} E_i$ or (E, \mathscr{E}_a) when seen in (E, \mathscr{E})
- for $b \subseteq a$, $i_b^a : E_a \to E_b$ in **Mes** (E_a, E_b)

6/36

Statistical system: collection of border conditions



- Probability kernel $p: E_{\overline{a}} \to E$,
- $p \in \text{Kern}(E_{\overline{a}}, E)$
- $\forall \omega_{\overline{a}} \in E_{\overline{a}}, p_{\omega_{\overline{a}}} \in \mathbb{P}(E)$
- For $A \in \mathscr{E}$, $p(A|\omega_{\overline{a}}) \cong \mathbb{E}[A|\mathscr{E}_{\overline{a}}]$

7/36

Definition: Proper Kernel [Geo11]

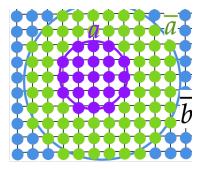
Let $\mathscr{E}_1 \subseteq \mathscr{E}$ be two σ -algebras of a set E, a kernel $p \in \text{Kern}((E, \mathscr{E}_1), (E, \mathscr{E}))$ is proper if and only if, for any $A \in \mathscr{E}$, any $B \in \mathscr{E}_1$ and any $\omega \in E$,

$$p(A \cap B|\omega) = p(A|\omega)$$
1 $[\omega \in B]$

For *f* a \mathcal{E}_1 -measurable function,

$$p(f|\omega) = \int f(x)p(dx|\omega) = f(\omega)$$

Let $i : (E, \mathscr{E}) \to (E, \mathscr{E}_1)$ the set identity map. $p : (E, \mathscr{E}_1) \to (E, \mathscr{E})$ proper if and only if, $i \circ p = id$.



• Tower rule: for $A \in \mathscr{E}$,

$$\mathbb{E}\left[\mathbb{E}[A|\mathscr{F}_{\overline{a}}]|\mathscr{F}_{\overline{b}}\right] = \mathbb{E}[A|\mathscr{F}_{\overline{b}}]$$

For $\omega \in E$,
 $p_{\overline{a}} \circ p_{\overline{b}}(A|\omega_{\overline{b}}) = \int p(A|x_{\omega_{\overline{a}}})p(dx|\omega_{\overline{b}})$

$$oldsymbol{
ho}_{\overline{b}}\left(oldsymbol{
ho}_{\overline{a}}(oldsymbol{A}|.)|\omega_{\overline{b}}
ight)=oldsymbol{
ho}_{\overline{b}}(oldsymbol{A}|\omega_{\overline{b}})$$

Definition: Specification [Geo11]

A specification with parameter set *I* and state spaces (E, \mathscr{E}) is a collection $(\gamma_a, a \in \mathscr{P}_f(I))$ of proper kernels such that for any $a \in \mathscr{P}_f(I)$, $\gamma_a \in \text{Kern}((E, \mathscr{E}_{\overline{a}}), (E, \mathscr{E}))$ and which satisfies that for any $a \subseteq b$, i.e $\overline{b} \subseteq \overline{a}$, any $A \in \mathscr{E}$ and $\omega \in E$,

$$\gamma_{a}\gamma_{b}(\boldsymbol{A}|\omega) = \gamma_{b}(\boldsymbol{A}|\omega)$$

Sergeant-Perthuis (LCQB)

Definition: Gibbs measures

Let γ be a specification with state space E, the set of probability measures,

$$\mathscr{G}(\gamma) = \{ \mu \in \mathbb{P}(E) : \mathbb{E}_{\mu}(A|\mathscr{E}_{\overline{a}}) = \gamma_{a}(A|.) \ \mu \text{ a.s.} \}$$

is called the set of Gibbs measures of γ .

Contribution: Proposed categorical formulation

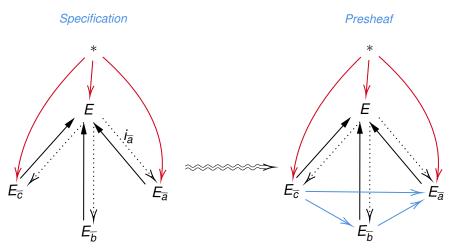
Problem:

- reference to 'global' $E \leftrightarrow$ difficult to "transform phases", in fact:
 - \rightarrow Hamiltonian don't behave well with respect to maps $E \rightarrow E_1$
 - \rightarrow local operation on $H(+\phi)$ are not compositional for $\mu \in \mathscr{G}(\gamma)$

What we would like:

- "to build complex statistical systems from simple ones in a way that allows controlling and computing the phases of the associated statistical systems from the phases of the simpler one."
- other motivation:
 - → model statistical systems with incomplete/incompatible information on variables + heterogeneity (related to use of sheaves in data science [SP22, Cur13, BGC⁺22])

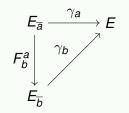
From classical description to categorical description



• The collection $(i_{\overline{a}}, a \in \mathscr{P}(I))$ encodes the functor of observables

Proposition (SP '21)

Let γ be a specification with the state space E. For any $a, b \in \mathscr{P}_f(I)$ such that $b \subseteq a$, there is a unique Markov kernel $F_b^a : E_{\overline{a}} \to E_{\overline{b}}$ such that the following diagram commutes,



(0.1)

i.e. such that $\gamma_b \circ F_b^a = \gamma_a$. Furthermore for any collection $a, b, c \in \mathscr{P}_f(I)$ with $a \subseteq b \subseteq c$,

$$F_c^b \circ F_b^a = F_c^a \tag{0.2}$$

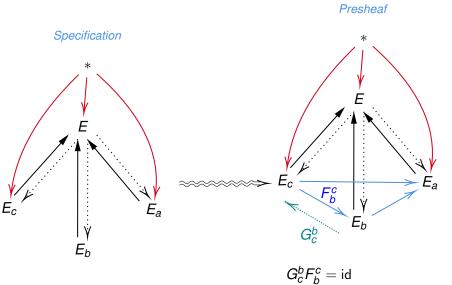
Categories of measurable spaces and probability kernels

- **Mes**: Objects are measurable space, Morphisms are measurable applications
- Kern: Objects are measurable spaces, Morphisms are probability kernel

Definition (Generalized Specification, *A*-Specifications)

Let \mathscr{A} be a poset, a generalized specification over \mathscr{A} , or simply \mathscr{A} -specification, is a couple (G, F) of a presheaf and a functor where $G : \mathscr{A}^{op} \to \mathbf{Mes}$ and $F : \mathscr{A} \to \mathbf{Kern}$ are such that for any $a, b \in \mathscr{A}$ with $b \leq a$,

$$G_b^a F_a^b = \mathrm{id}$$
 (0.3)

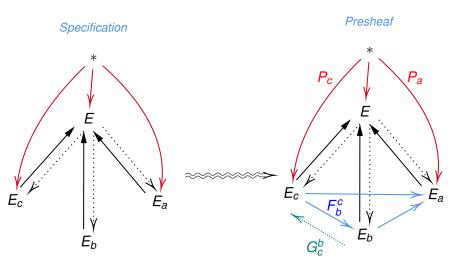


Proposed categorical formulation: Gibbs measures of a specification

Definition 8.3.7: Gibbs measures for specifications

Let $\gamma = (G, F)$ be a specification over \mathscr{A} , we shall call the Gibbs measures of γ the sections of F,

$$\mathscr{G}_{g}(\gamma) = \{ \mathcal{P}_{a} \in \mathbb{P}(\mathcal{F}(a)), a \in \mathscr{A} \mid \forall b \leq a, \mathcal{F}_{a}^{b}\mathcal{P}_{b} = \mathcal{P}_{a} \}$$



- Phases are invariants: H⁰
- Use resolutions to compute H^0 .
- Projective and injective objects characterized in previous work (next slides)
 - ⇒ Projectives extend independent random variables Corollary 3.2 [SP20] (necessary condition harder)

Definition (Projective presheaf)

 $F: \mathscr{A}^{op} \to \textbf{Vect}$ is projective if there is a collection $S_a, a \in \mathscr{A}$ such that,

$$F(a) \cong \bigoplus_{c \le a} S_c \tag{0.4}$$

and,

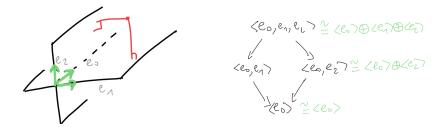
$$F_b^a \cong \rho r_b^a : \bigoplus_{c \le a} S_c \to \bigoplus_{c \le b} S_c$$
 (0.5)

 \rightarrow Characterized in [SP20]: " $F_b^a \circ F_c^a = F_{b \wedge c}^a$ "

Projective presheaves: example

•
$$V := \mathbb{R}^3$$
, $V_1 := \langle e_0, e_1 \rangle$, $V_2 := \langle e_0, e_2 \rangle$, $V_3 := \langle e_0 \rangle$

- Projections: orthogonal with respect to scalar product
- Collection of projections defines a projective presheaf



• Change scalar product ~> not projective anymore.

Sergeant-Perthuis (LCQB)

Categorical Stat. Mech.

- L[∞](E), the set of bounded, real-valued, measurable functions over E
- L[∞]: presheaf from **Mes** and **Kern** to the category of vector spaces **Vect**
- Consider $L^{\infty} \circ F : \mathscr{A}^{op} \to \mathbf{Vect}$

Definition (Projective A-specifications)

An \mathscr{A} -specification (*G*, *F*) is called projective when $L^{\infty} \circ F$ is a projective presheaf (in **Vect**).

• poset *A*, equivalence relation by symmetrizing the order:

$$\forall a, b \in \mathscr{A}, \ a \sim b \iff a \le b \text{ or } b \le a \tag{0.6}$$

- equivalence classes are connected components
- denote $\mathscr{C}(a)$ the connected component of $a \in \mathscr{A}$
- if each connected component has a minimum element, denote *C*_{*}(*A*) the set of these minimas. If not *C*_{*}(*A*) := Ø

Theorem (SP '21)

Let $\gamma = (G, F)$ be a projective \mathscr{A} -specification. If at least one of the connected components of \mathscr{A} does not have a minimum element, i.e. when,

$$\mathscr{C}_*(\mathscr{A}) = \emptyset$$
 (0.7)

then,

$$\mathscr{G}_{g}(\gamma) = \emptyset \tag{0.8}$$

if not,

$$\mathscr{G}_{g}(\gamma) = \prod_{a \in \mathscr{C}_{*}(\mathscr{A})} \mathbb{P}(\gamma(a))$$
(0.9)

Characterizing extreme Gibbs measures of \mathscr{A} -specifications \downarrow towards a 0 - 1 law for extreme Gibbs measures of \mathscr{A} -specifications For simplicity of presentation: $I = \mathbb{N}$,

- $E = \prod_{i \in \mathbb{N}} E_i$
- $\mathscr{E}_{\geq k}$, σ -algebra generated by the cylinders: $i_{\geq k}^{-1}(A)$ where $A \subseteq \prod_{n \geq k} E_n$.
- tail σ -algebra: $\mathscr{E}_{\infty} := \bigcap_{k \in \mathbb{N}} \mathscr{E}_{\geq k}$.
- Set of Gibbs measures 𝒢(γ) is convex.

From [Geo11]):

- $\to\,$ Gibbs measures are fully characterized by their restriction to the tail $\sigma\text{-algebra}\,\mathscr{E}_\infty.$
- → Extreme Gibbs measures, $\mu \in \text{ext } \mathscr{G}_g(\gamma)$, are 'trivial' on \mathscr{E}_{∞} , i.e. for any $A \in \mathscr{E}_{\infty}$,

$$\mu(A) = 0 \text{ or } 1$$

- Recall $\gamma = (G, F), G : \mathscr{A}^{op} \to Mes, F : \mathscr{A} \to Kern$
- Assumptions: G(a) are finite (\mathscr{A} does not need to be finite) and a "positivity condition" on *F*.
 - \sim Assumption (probably) not required for weaker version of 0 1 law.

Definition (Tail σ -algebra for \mathscr{A} -specifications)

Let $\gamma = (G, F)$ be a \mathscr{A} -specification. Pose $\sigma(G)_a^b A_b := G_b^{a-1} A_b$, for $b \le a$. The tail σ -algebra of \mathscr{A} -specification is defined as:

 $\lim \sigma(G) := \{ (A_a \in \sigma(G(a)), a \in \mathscr{A}) | \forall a, b \in \mathscr{A}, \quad A_a = G_b^{a-1} A_b \}$

Theorem (SP '24, Section 7 [SP24])

Let $\gamma = (G, F)$ be a specification, let G(a) be finite sets for any $a \in \mathscr{A}$, let F > 0. $\mathscr{G}_g(\gamma)$ is a convex set. Each $\mu \in \mathscr{G}_g(\gamma)$ is uniquely determined by it's restriction to $\lim \sigma(G)$. Furthermore μ is extreme in $\mathscr{G}_g(\gamma)$ if and only if for any $A \in \lim \sigma(G)$, $\forall a \in \mathscr{A}$, $\mu_a(A_a) = 0$ or 1. \rightarrow Echoes with 0 - 1 laws in a categorical setting for i.i.d sequences and Markov chains [FGP21, MP23].

↓ Full relation to be explored in future work.

Toward an entropy and variational principle for \mathscr{A} -specifications \rightsquigarrow Section 8 Paper arXiv:2403.16104 Thank you for your attention!

References I

- Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Lio, and Michael M. Bronstein, <u>Neural sheaf diffusion: A topological perspective on</u> <u>heterophily and oversmoothing in GNNs</u>, Advances in Neural Information Processing Systems (Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, eds.), 2022.

D. Bennequin, O. Peltre, G. Sergeant-Perthuis, and J. P. Vigneaux, <u>Extra-fine</u> sheaves and interaction decompositions, September 2020, Submitted to Algebraic and Geometric Topology, arXiv:2009.12646.

Justin Curry, <u>Sheaves, cosheaves and applications</u>, Ph.D. thesis, The University of Pennsylvania, 2013, arXiv:1303.3255.

Tobias Fritz, Tomáš Gonda, and Paolo Perrone, <u>De finetti's theorem in categorical</u> probability, arXiv preprint arXiv:2105.02639 (2021).

- Hans-Otto Georgii, <u>Gibbs measures and phase transitions</u>, De Gruyter, Berlin, New York, 2011.
 - Marc Mezard and Andrea Montanari, <u>Information, physics, and computation</u>, Oxford University Press, Inc., USA, 2009.

References II

Sean Moss and Paolo Perrone, <u>A category-theoretic proof of the ergodic</u> <u>decomposition theorem</u>, Ergodic Theory and Dynamical Systems **43** (2023), no. 12, 4166–4192.

D. Ruelle, <u>Rigorous results in statistical mechanics</u>, Lect. Theor. Phys. **6** (1964), 73–111.

- G. Sergeant-Perthuis, <u>Bayesian/Graphoid intersection property for factorisation spaces</u>, March 2019, arXiv:1903.06026.
- _____, Intersection property and interaction decomposition, April 2019, arXiv:1904.09017.
- _____, Interaction decomposition for presheaves, August 2020, arXiv:2008.09029.
 - _____, Interaction decomposition for Hilbert spaces, 2021, arXiv:2107.06444.
- Grégoire Sergeant-Perthuis, <u>Intersection property, interaction decomposition</u>, regionalized optimization and applications, 2021, PhD thesis, 10.13140/RG.2.2.19278.38729, Link to manuscript.

. Regionalized optimization, 2022.

<u>Compositional statistical mechanics, entropy and variational inference,</u> 2024.