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Large graphs and random graph models



A G=(V,E)is
» aset V =V(G) of
P a symmetric, irreflexive binary relation £ = E(G) S V XV ( ).

Write € Set for the set of simple graphs G with V(G) = [n] =
{1,....n}. Thus |G, | = 203




A large graph: proximity on a sphere

For a fixed 0, let x,y € S® be connected if the angle between them is < 6. ]

0=mn/3 0=mn/6



Graphons — a model of large graphs

A graphon* consists of

P a probability space (2, F, 1),

» a symmetric measurable function W : O — [0, 1].

» Eg. Q=5 u = uniform distribution, W (x,y) = [x -y > cosf].
» E.g. Any finite graph G: let Q = V(G), pu = uniform distribution,
W(u,v) = [uv € E(G)].

» Models dense rather than sparse graphs.

» Equivalence of graphons is non-trivial.

*Usually restricted to (Q, F, 1) = ([0, 1], B([0,1]), \).



Graphons — subgraph sampling

A graphon consists of

» a probability space (9, i),

» a symmetric measurable function W : Q* — [0, 1].

» Induce a distribution on graphs G,, as follows.
» Sample a vector € Q" using 1"
» For each 1 <i < j < n, let there be an edge ij € E(G) with
probability W (z;,z;).
» le.,
Pyn(G) = LIEQ J;HGQ [T Wiz x [] Q=-Wa,z))ulde,). .. plder).

ijEE(QG) ij¢E(G)



Random graph models

A is (p, € D(G,,) | n € N) which is:
> : each p, is invariant under permutations of {1,...,n},

> . pu(G) = Y pra1(G') where G varies over the 2" one-node
extensions of GG,

> - p(G)pe(Gs) = Y prii(G') where G varies over all 2" graphs
on {1,...,h + k} that restrict to G; on {1,...,h} and G5 on {h +
1,...,h + k}.

Basic result: a graphon gives rise to a random graph model, and conversely every
random graph model arises from a graphon.



Aside: countable random graph models and graph limits

A random graph model is (p, € D(G,) | n € N) which is:

P exchangeable, P consistent, P local.

» We could also use a graphon to sample a graph on vertex set N.

» Can also consider graphons as ‘graph limits':

FinGraph — [0, 1]FinGraph
G \H | hom(H, G)]|
e
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The Rado graph

The Rado graph is the unique countable graph with the extension property:

For all finite disjoint A,B € V(G), dz € V(G)\(A U B) with Yy €
A.xy € E(G) and Vz € B.xz ¢ E(G).

Sl
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The Erdos-Rényi model

[ ForO<a<1,let Q={*}and W, (x*,*) = «.

Theorem (Erdés-Rényi) |
With probability 1, the countable graph sampled from W, is isomorphic to the
Rado graph.

» N.B. The W, are different random graph models:
Py (G) = o EON (g _ a)(g)—wm)y
» Impossible to present with a black-and-white ({0,1}-valued) graphon.
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N

A graphon consists of
» a probability space (2, F, i),

» a symmetric measurable function W : O — [0, 1].

7~

A random graph model is (p,, € D(G,) | n € N) which is:
P exchangeable, P consistent, P local.

» We have a model of ‘large graphs with a measure on the space of vertices'.

» Next: we give a more categorical presentation of random graph model.

» Then: identify random graph models with black-and-white graphons internal
to Markov categories, i.e. with equational semantics for programming

language with a ‘graph interface’.
13



Probability theories over finite sets
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Recap of finite distributions monad

B Let Fin = a skeleton of the category of finite sets and functions.

p Finite distributions form a functor D : Fin — Set where

D(n) = {ae€[0,1]"| ) a(i) = 1}.
» (Abstract) clone with
M 2= D(n) ma(t) = 6; = Aj.[i = j]
(»=) : D(m) x D(n)" - D(n) a»=(8); =), ai)- B
» clones = finitary monads (left Kan extend to an endofunctor on Set).
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Commutative clones

» A clone T is commutative if for all « € T'(m), 8 € T'(n)

a = (\i.f>= (\j.n(i,5))) = >= (Nj.a>= (Nin(i,j)))

in T(m X n).

» Define a x 3 to be the common value of the two sides. Then
(%) : T(m)xXT(n) » T(m Xxn)

with 7, : 1 = T'(1) makes T' a symmetric monoidal functor.
» For finite distributions, actually 1 = D(1) and

ax =i, j).a(i)B(j)
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The category of finite kernels

[ Let FinStoch = Finp be the Kleisli category of D. ]

This is a symmetric monoidal category with a terminal unit, with an
identity-on-objects symmetric monoidal functor Fin — FinStoch.

» Maps m — n in FinStoch are matrices A : [m] X [n] — [0, 1] with
> Ay =1forallie[m]
» Composition of A : 1 — m with B : m — n is given by
(BoA)w= Y AyBj.
jelm]
» The tensor of A :m — n with B : m' — n is given by

(A® B)uin = AijBiy-
17



Random graph models

A random graph model is (p, € D(G,) | n € N) which is:

P exchangeable: [..]
P consistent: [..]

» local: [.]

In particular, it is a sequence (p,, : 1 = G,,) of maps in FinStoch.

18



The diagram of finite graphs

-

A random graph model is (p,, € D(G,,) | n € N) which is:
B exchangeable: each p, is invariant under permutations of {1,...,n},

» consistent: p,(G) = Y pns1(G') where G varies over the 2" one-node
extensions of G,

» local: [.]

» Let Inj = Fin be the wide subcategory of injections.
» G- extends to a functor Inj”” — Fin — FinStoch.

» A conep:1= G, in FinStoch is an exchangeable, consistent sequence.
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locality

A random graph model is (p,, € D(G,,) | n € N) which is:

P exchangeable: [..]
P consistent: [..]

» local: pp(G)pe(Gs) = Y prar(G') where G varies over all 2" graphs
on {1,...,h + k} that restrict to G; on {1,...,h} and G5 on {h +
1,...,h + k}.

» + on Fin restricts to monoidal structure on Inj.
» G : Inj®® - Fin is oplax monoidal:
(gala ng) : gm+n = gm X gn

» A cone p: 1= Gy in FinStoch is monoidal iff (p,,) is local.
20



Theory of graph-sampling

Cones are equivalently:

lim D(G,) = lim [Fln Set](Fin(G,,—), D)

n€lnj°p n€lnj°p

[Fin, Set](colim,,gjjor Fin(G,,, =), D)

113

I

Define G := colim,,ejner Fin(G,,, =) ¢ Fin — Set. ]

G is a commutative clone
G(m) x G(n)™ = colimy, Fin(Gy, m) X (colimy, Fin(G,,n))"
— colimy, ; Fin(Gj4p, m X n™)
- G(n).

Monoidal cone < monoidal natural transformation G —» D
21



Morphisms of clones

» If T is a commutative clone with 7'(1) = 1 (“affine”), then
Va € T(m),B3; € T(n)

a>=(8); =T(ev)(a* By x...% )

where ev : m X n'" — n is the evaluation map, and 7, : n — T(n) is
n=l+...+1=T(1)+...+T(1) » T(n).

P Therefore, a monoidal natural transformation G — D is the same as a
morphism of clones G — D (i.e. a morphism of monads).

22



» A ‘theory of probability over finite sets’ is a commutative, affine clone.
= The Kleisli category is symmetric monoidal with terminal unit.
» Random graph models are equivalent to theory morphisms G — D.

» We would like to characterize random graph models in terms of programs
that interface with the sets of vertices and their edge relation.

» Next: we will recap Markov categories.

23



(Distributive) Markov categories and Bernoulli bases
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Markov categories [Fritz 2020], ...

Definition |
A Markov category is a symmetric monoidal category C, where

P every object X is equipped with the structure of a commutative comonoid
copyy : X = X ® X, discy : X — I,

P the copyy,discxy maps are compatible with the monoidal structure,

B discy is natural (which implies I is a terminal object).

» Basic fact: there is a subcategory Cg,; of deterministic maps: those
f+ X = Y such that copyy o f = (f ® f) o copyy.
» Cge is cartesian (has chosen finite products).

» Cgiet = C is symmetric and strict monoidal.

25



Probability theory over a cartesian category

Let V be a cartesian category.

A “probability theory over”™* V is an identity-on-objects symmetric strict
monoidal functor ¢ : V — C into a symmetric monoidal category whose unit

is a terminal object.

» For X €V, the images of X —» X X X and X — 1 under i make X a

commutative comonoid in C.
» C becomes a Markov category.

» Get a factorization V — Cg4., = C.

* — commutative Freyd category over V with terminal unit.

26



Markov categories and monads

» Basic example: V — Vp, for T a commutative affine monad on V.

Conversely, let 7 : V — C be a ‘probability theory’.

The adjunction i

— T
[V, Set] 1 [C", Set]
1’\_/

L%
]

induces a commutative affine monad on 7' on the cartesian category
[V, Set], such that the bijective-on-objects factorization of

V — [V?,Set] - [V?, Set]r

is isomorphic to 7 : V — C.




Summary of Markov categories

Roughly, a Markov category is

» a symmetric monoidal category,

» whose unit is terminal,

» which contains a wide cartesian subcategory.

» We ‘forget’ exactly which cartesian subcategory. Maximal possibility is C 4.
» Sufficient to consider commutative affine monads on cartesian categories.
» Eg.
» Finite distributions Fin — FinStoch.
» Meas — Stoch = Measp, the Kleisli category of the Giry monad P on
measurable spaces.

28



Coproducts in a Markov category

Consider a coproduct diagram in a Markov category C:

LA lp
A—— A+ B+— B

The following are equivalent.
> la, LB induce (Cdet(Aa _) X Cdet(Ba _) = Cdet(A + B7 _)v
» .4,Lp are deterministic,

» “+ is chosen compatibly with the comonoid structures”, i.e.

copy sy = [(1a ® t4) o copyy, (tp ® Lp) o copyp].

29



Definition |
A distributive symmetric monoidal category is a symmetric monoidal category C,
where

» C has chosen finite coproducts,

» The canonical maps
X®Z+Y®Z->(X+Y)®Z 0-00~7

are isomorphisms.

A distributive category is a cartesian distributive symmetric monoidal category.

30



Distributive Markov categories

Definition
A distributive Markov category is a Markov category C, which is

» distributive as a symmetric monoidal category, and moreover

» the chosen coproduct inclusions are deterministic.
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Probability theory over a distributive category

Let V be a distributive category.

A “(distributive) probability theory over”* V is an identity-on-objects sym-
metric strict monoidal functor ¢ : V — C into a symmetric monoidal cat-
egory whose unit is a terminal object such that 7 preserves finite coproducts.

» C becomes a distributive Markov category.

» Get a factorization V — Cy; = C.

» Basic example: V — Vg, for T a commutative affine monad on a
distributive V.

* — commutative distributive Freyd category over V with terminal unit.

32



Distributive Markov categories and monads

Conversely, let ¢ : V — C be a ‘distributive probability theory'.

There is an adjunction 1
—
FP(V, Set) 1 FP(C®, Set)
\_/

.k
]

which induces a commutative affine monad on 7" on the distributive category
FP(V°,Set), such that the bijective-on-objects factorization of

V > FP(V®, Set) — FP(V®, Set)

is isomorphic to 7 : V — C.

= If V = Fin then precisely a commutative affine clone. 33



Summary of distributive Markov categories

Roughly, a distributive Markov category is

» a distributive symmetric monoidal category,
» whose unit is terminal,

» which contains a wide distributive subcategory.

» Sufficient to consider commutative affine monads on distributive categories.
» Eg

» Finite distributions Fin — FinStoch.

» Kleisli of Giry monad Meas — Stoch.

» Over Fin, equivalent to finitary commutative affine clones.
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Numerals of a distributive Markov category

The numerals

0, 1, 2:=1+1, 3:=2+1,

are the image of the canonical distributive symmetric monoidal functor Fin — C.
Definition

For a distributive Markov category C, write C,; for the induced clone.

l.e.
Cy(m) =C(1,1+ ...+ 1).

m

E.g. FinStochy = Stochy = D.
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Bernoulli bases

Definition |
A Bernoulli base for a distributive Markov category C is an injective monoidal
natural transformation (equivalently, clone morphism),

CNHD.

Concretely, each n-measurement of C can be identified with classical probability
distribution:
®, : C(1,n) = D(n).

Since FinStochy = Stochy = D, FinStoch and Stoch each have a unique
Bernoulli base.

36



A Markov category for random graphs

37



The graph programming interface

Let C be a distributive Markov category.

Definition
A graph interface in C consists of

VeC edge: VoV -2 new:1 -V

such that
P edge is deterministic: (edge ® edge) o copyy g, = Copy, © edge

P edge is irreflexive and symmetric:

edge o copyy, = g odiscy 1V — 2 edgeoswap =edge: V@V — 2.

38



Random graph models from a graph programming interface

Let (V, edge, new) be a graph interface in a distributive Markov category C.

As before,
9(-)

i — Fin » C

Inj

is an oplax monoidal functor.

Define a monoidal cone over G_y where p,, is

n
®n hew

121" 2, v L (v

®(’21) (edge(m;,m;)|i<y) 2@("

;) =q,.

39



Random graph models from a graph programming interface

Define a monoidal cone over G_y where p,, is

on new®” (2‘) (edge(mi,m;)li<j) ®(g)

] =10 v, e, (V®2)® Jedeetm Mt o =G

As before, a monoidal cone is the same as a monoidal transformation G — Cy.
Suppose that C has a Bernoulli base ® : Cy — D.

Then we get a random graph model by composition.

G- Cy>D

40



Black-and-white graphons

A graphon consists of

» a probability space (2, F, i),

» a symmetric measurable function let W : O — [0, 1].

» A graphon is black-and-white (or random-free) if W : 0% - {0,1}.
» Gives a graph interface in Stoch:
V=0 edge = W new = [

» Bernoulli-based: Stochy = FinStoch.
» We recover the same random graph model.

[ What about general graphons? ]

41



Programming with an edge relation

Let G be the category of finite simple graphs and functions that preserve and
reflect the edge relation.

Then Fam(G®”) has

D as objects, sequence (G, ...,G,,) of finite simple graphs;

» as morphisms (G4,...,G,,) = (Hy,..., H,), functions f : m — n with
G-morphisms f; : Hy;y — G, for 1 <0 < m.

Proposition |
Fam(G®) is a distributive category modelling the (V, edge) part of the graph
interface.

42



Programming with an edge relation

Proposition |
Fam(G®) is a distributive category modelling the (V, edge) part of the graph
interface.

Let VV = o the one-vertex graph. Cartesian products:
(‘)2:-/.+0. (.)320/:\0+3'£0+3°o:0+0.0 (.)n:ZGegnG
O Xe'=00t+4-te+2-+2-N+2-F0+4- N+ %

The edge mapis ¢* + ,* = 1+ 1 =2.

43



Sampling a fresh vertex

We want to add a new global element 1 — V.

Define Fam(G™) — Fam(G™)[v] by
Fam(G™)[v](G, H) := colimygy; Fam(G™P)((¢)* x G, H)

and extend to Fam(G*®)[v](G, H) by distributivity.

This is indeed a distributive probability theory over Fam(G™).
Define new : 1 — (o) by [1,71; : e X 1 — e].

See [Hermida & Tennent 2012] for the non-distributive case.

Cf. the ‘para construction’..

44



Sampling a fresh vertex

Define Fam(G®") —» Fam(G®’)[v] by

Fam(G™)[v](G, H) := colimyey; Fam(G™)((¢)" x G, H)

and extend to Fam(G™)[v](G, H) by distributivity.

The numerals of this distributive Markov category are familiar:

Fam(Gop)[V]N(n) = colimyejp; Fam(Gop)((')ka”)
COhmkEmj Set(gk7 n)

=G(n)

I
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Quotients of distributive Markov categories

Theorem
Suppose

» C is a distributive Markov category,
» U :Cy — D is a monoidal natural transformation,
» VX €C, either X =0or C(1,X) + @.

Then there is a distributive Markov category C,,, and an identity-on-objects strict
distributive Markov functor C — C,y inducing a factorization

Cy — ((C/\I!)N - D.

Idea: for f,g € C(X,Y), say f ~ g iff
VZn 1l XeZYeZSnU(ko(f®Z)oh)=U(ko(g®Z)oh)
in D(n). %0



» A random graph model corresponds to a monoidal transformation
U : (Fam(G™)[v])y — D.

» We can quotient Fam(G”)[v] to another distributive Markov category with
graph interface so that ¥ becomes injective.

Theorem
Every random graph model arises from a graph interface* in some
Bernoulli-based distributive Markov category.

* = internal notion of a black-and-white graphon.
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Conclusions

» Categorical structures are a good match for the algebraic constraints of
random graph models.

» Distributivity is natural for Markov categories.

» In the paper: another way to obtain the Erdés-Rényi model using the topos
of Rado-nominal sets.

48



Conclusions

» Categorical structures are a good match for the algebraic constraints of
random graph models.

» Distributivity is natural for Markov categories.

» In the paper: another way to obtain the Erdés-Rényi model using the topos
of Rado-nominal sets.

Thank you!
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