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Graphs

A simple graph G = (V,E) is
▶ a set V = V (G) of nodes,
▶ a symmetric, irreflexive binary relation E = E(G) ⊆ V × V (edges).

Write Gn ∈ Set for the set of simple graphs G with V (G) = [n] ={1, . . . , n}. Thus ∣Gn∣ = 2
(n
2
)
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A large graph: proximity on a sphere

For a fixed θ, let x, y ∈ S
2 be connected if the angle between them is < θ.

θ = π/3 θ = π/6
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Graphons — a model of large graphs

A graphon* consists of
▶ a probability space (Ω,F , µ),
▶ a symmetric measurable function W ∶ Ω2 → [0, 1].

▶ E.g. Ω = S
2, µ = uniform distribution, W (x, y) = Jx ⋅ y > cos θK.

▶ E.g. Any finite graph G: let Ω = V (G), µ = uniform distribution,
W (u, v) = Juv ∈ E(G)K.

▶ Models dense rather than sparse graphs.
▶ Equivalence of graphons is non-trivial.

*Usually restricted to (Ω,F , µ) = ([0, 1],B([0, 1]), λ).
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Graphons — subgraph sampling

A graphon consists of
▶ a probability space (Ω, µ),
▶ a symmetric measurable function W ∶ Ω2 → [0, 1].

▶ Induce a distribution on graphs Gn as follows.
▶ Sample a vector x⃗ ∈ Ω

n using µ
⊗n.

▶ For each 1 ≤ i < j ≤ n, let there be an edge ij ∈ E(G) with
probability W (xi, xj).

▶ I.e.,
PW,n(G) = ∫

x1∈Ω
. . .∫

xn∈Ω
∏

ij∈E(G)W (xi, xj) × ∏
ij∉E(G)(1 −W (xi, xj))µ(dxn) . . . µ(dx1).
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Random graph models

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable: each pn is invariant under permutations of {1, . . . , n},
▶ consistent: pn(G) = ∑ pn+1(G′) where G′ varies over the 2n one-node

extensions of G,
▶ local: ph(G1)pk(G2) = ∑ ph+k(G′) where G′ varies over all 2hk graphs

on {1, . . . , h + k} that restrict to G1 on {1, . . . , h} and G2 on {h +
1, . . . , h + k}.

Basic result: a graphon gives rise to a random graph model, and conversely every
random graph model arises from a graphon.
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Aside: countable random graph models and graph limits

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable, ▶ consistent, ▶ local.

▶ We could also use a graphon to sample a graph on vertex set N.

▶ Can also consider graphons as ‘graph limits’:

FinGraph → [0, 1]FinGraph
G↦ λH.

∣ hom(H,G)∣∣V (G)∣∣V (H)∣ .
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The Rado graph

The Rado graph is the unique countable graph with the extension property:

For all finite disjoint A,B ⊆ V (G), ∃x ∈ V (G)\(A ∪ B) with ∀y ∈
A.xy ∈ E(G) and ∀z ∈ B.xz ∉ E(G).

A

B

x
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The Erdős-Rényi model

For 0 < α < 1, let Ω = {∗} and Wα(∗,∗) = α.

Theorem (Erdős-Rényi)
With probability 1, the countable graph sampled from Wα is isomorphic to the
Rado graph.

▶ N.B. The Wα are different random graph models:

PWα,n(G) = α
∣E(G)∣ ⋅ (1 − α)(n

2
)−∣E(G)∣

.

▶ Impossible to present with a black-and-white ({0,1}-valued) graphon.
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Summary

A graphon consists of
▶ a probability space (Ω,F , µ),
▶ a symmetric measurable function W ∶ Ω2 → [0, 1].

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable, ▶ consistent, ▶ local.

▶ We have a model of ‘large graphs with a measure on the space of vertices’.
▶ Next: we give a more categorical presentation of random graph model.
▶ Then: identify random graph models with black-and-white graphons internal

to Markov categories, i.e. with equational semantics for programming
language with a ‘graph interface’.
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Recap of finite distributions monad

▶ Let Fin = a skeleton of the category of finite sets and functions.
▶ Finite distributions form a functor D ∶ Fin→ Set where

D(n) = {α ∈ [0, 1]n ∣ ∑α(i) = 1} .
▶ (Abstract) clone with

ηn ∶ n→ D(n) ηn(i) = δi = λj.Ji = jK(>>=) ∶ D(m) ×D(n)m → D(n) α >>= (βi)i = ∑i α(i) ⋅ βi
▶ clones ≃ finitary monads (left Kan extend to an endofunctor on Set).
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Commutative clones

▶ A clone T is commutative if for all α ∈ T (m), β ∈ T (n)
α >>= (λi.β >>= (λj.η(i, j))) = β >>= (λj.α >>= (λi.η(i, j)))

in T (m × n).
▶ Define α ⋆ β to be the common value of the two sides. Then(⋆) ∶ T (m) × T (n)→ T (m × n)

with η1 ∶ 1→ T (1) makes T a symmetric monoidal functor.
▶ For finite distributions, actually 1 ≅ D(1) and

α ⋆ β = λ(i, j).α(i)β(j)
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The category of finite kernels

Let FinStoch = FinD be the Kleisli category of D.

This is a symmetric monoidal category with a terminal unit, with an
identity-on-objects symmetric monoidal functor Fin→ FinStoch.

▶ Maps m→ n in FinStoch are matrices A ∶ [m] × [n]→ [0, 1] with
∑j Aij = 1 for all i ∈ [m].

▶ Composition of A ∶ l → m with B ∶ m→ n is given by(B ◦ A)ik = ∑
j∈[m]AijBjk.

▶ The tensor of A ∶ m→ n with B ∶ m′ → n is given by(A⊗B)(i,i′)(j,j ′) = AijBi′j ′ .
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Random graph models

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable: […]
▶ consistent: […]
▶ local: […]

In particular, it is a sequence (pn ∶ 1→ Gn) of maps in FinStoch.
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The diagram of finite graphs

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable: each pn is invariant under permutations of {1, . . . , n},
▶ consistent: pn(G) = ∑ pn+1(G′) where G′ varies over the 2n one-node

extensions of G,
▶ local: […]

▶ Let Inj↪ Fin be the wide subcategory of injections.
▶ G(−) extends to a functor Injop → Fin→ FinStoch.
▶ A cone p ∶ 1⇒ G(−) in FinStoch is an exchangeable, consistent sequence.
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locality

A random graph model is (pn ∈ D(Gn) ∣ n ∈ N) which is:
▶ exchangeable: […]
▶ consistent: […]
▶ local: ph(G1)pk(G2) = ∑ ph+k(G′) where G′ varies over all 2hk graphs

on {1, . . . , h + k} that restrict to G1 on {1, . . . , h} and G2 on {h +
1, . . . , h + k}.

▶ + on Fin restricts to monoidal structure on Inj.
▶ G(−) ∶ Injop → Fin is oplax monoidal:(Gι1 ,Gι2) ∶ Gm+n → Gm × Gn
▶ A cone p ∶ 1⇒ G(−) in FinStoch is monoidal iff (pn) is local.
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Theory of graph-sampling

Cones are equivalently:
lim

n∈Injop
D(Gn) ≅ lim

n∈Injop
[Fin, Set](Fin(Gn,−), D)

≅ [Fin, Set](colimn∈Injop Fin(Gn,−), D)
Define G ≔ colimn∈Injop Fin(Gn,−) ∶ Fin→ Set.

G is a commutative clone
G(m) × G(n)m ≅ colimh Fin(Gh,m) × (colimk Fin(Gk, n))m

→ colimh,k Fin(Gh+k,m × n
m)

→ G(n).
Monoidal cone ⟺ monoidal natural transformation G → D
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Morphisms of clones

▶ If T is a commutative clone with T (1) ≅ 1 (“affine”), then
∀α ∈ T (m), βi ∈ T (n)

α >>= (βi)i = T (ev)(α ⋆ β1 ⋆ . . . ⋆ βm)
where ev ∶ m × n

m → n is the evaluation map, and ηn ∶ n→ T (n) is

n ≅ 1 + . . . + 1 ≅ T (1) + . . . + T (1)→ T (n).
▶ Therefore, a monoidal natural transformation G → D is the same as a

morphism of clones G → D (i.e. a morphism of monads).
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Summary

▶ A ‘theory of probability over finite sets’ is a commutative, affine clone.
⟹ The Kleisli category is symmetric monoidal with terminal unit.

▶ Random graph models are equivalent to theory morphisms G → D.
▶ We would like to characterize random graph models in terms of programs

that interface with the sets of vertices and their edge relation.
▶ Next: we will recap Markov categories.
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Markov categories [Fritz 2020], …

Definition
A Markov category is a symmetric monoidal category C, where
▶ every object X is equipped with the structure of a commutative comonoid

copyX ∶ X → X ⊗X, discX ∶ X → I,
▶ the copyX , discX maps are compatible with the monoidal structure,
▶ discX is natural (which implies I is a terminal object).

▶ Basic fact: there is a subcategory Cdet of deterministic maps: those
f ∶ X → Y such that copyY ◦ f = (f ⊗ f) ◦ copyX .

▶ Cdet is cartesian (has chosen finite products).
▶ Cdet ↪ C is symmetric and strict monoidal.
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Probability theory over a cartesian category

Let V be a cartesian category.

A “probability theory over”* V is an identity-on-objects symmetric strict
monoidal functor i ∶ V→ C into a symmetric monoidal category whose unit
is a terminal object.

▶ For X ∈ V, the images of X → X ×X and X → 1 under i make X a
commutative comonoid in C.

▶ C becomes a Markov category.
▶ Get a factorization V→ Cdet ↪ C.

* = commutative Freyd category over V with terminal unit.
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Markov categories and monads

▶ Basic example: V→ VT , for T a commutative affine monad on V.

Conversely, let i ∶ V→ C be a ‘probability theory’.

The adjunction [Vop
, Set] [Cop

, Set]⊥

i!

i
∗

induces a commutative affine monad on T on the cartesian category[Vop
, Set], such that the bijective-on-objects factorization of

V→ [Vop
, Set]→ [Vop

, Set]T
is isomorphic to i ∶ V→ C. 27



Summary of Markov categories

Roughly, a Markov category is
▶ a symmetric monoidal category,
▶ whose unit is terminal,
▶ which contains a wide cartesian subcategory.

▶ We ‘forget’ exactly which cartesian subcategory. Maximal possibility is Cdet.
▶ Sufficient to consider commutative affine monads on cartesian categories.
▶ E.g.

▶ Finite distributions Fin→ FinStoch.
▶ Meas → Stoch = MeasP , the Kleisli category of the Giry monad P on

measurable spaces.
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Coproducts in a Markov category

Consider a coproduct diagram in a Markov category C:

A BA +B
ιA ιB

The following are equivalent.
▶ ιA, ιB induce Cdet(A,−) × Cdet(B,−) ≅ Cdet(A +B,−),
▶ ιA, ιB are deterministic,
▶ “+ is chosen compatibly with the comonoid structures”, i.e.

copyA+B = [(ιA ⊗ ιA) ◦ copyA, (ιB ⊗ ιB) ◦ copyB].
29



Distributivity

Definition
A distributive symmetric monoidal category is a symmetric monoidal category C,
where
▶ C has chosen finite coproducts,
▶ The canonical maps

X ⊗ Z + Y ⊗ Z → (X + Y )⊗ Z 0→ 0⊗ Z

are isomorphisms.

A distributive category is a cartesian distributive symmetric monoidal category.
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Distributive Markov categories

Definition
A distributive Markov category is a Markov category C, which is
▶ distributive as a symmetric monoidal category, and moreover
▶ the chosen coproduct inclusions are deterministic.
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Probability theory over a distributive category

Let V be a distributive category.

A “(distributive) probability theory over”* V is an identity-on-objects sym-
metric strict monoidal functor i ∶ V → C into a symmetric monoidal cat-
egory whose unit is a terminal object such that i preserves finite coproducts.

▶ C becomes a distributive Markov category.
▶ Get a factorization V→ Cdet ↪ C.
▶ Basic example: V→ VT , for T a commutative affine monad on a

distributive V.

* = commutative distributive Freyd category over V with terminal unit.
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Distributive Markov categories and monads

Conversely, let i ∶ V→ C be a ‘distributive probability theory’.

There is an adjunction

FP(Vop
, Set) FP(Cop

, Set)⊥

i!

i
∗

which induces a commutative affine monad on T on the distributive category
FP(Vop

, Set), such that the bijective-on-objects factorization of

V→ FP(Vop
, Set)→ FP(Vop

, Set)T
is isomorphic to i ∶ V→ C.

⟹ If V = Fin then precisely a commutative affine clone. 33



Summary of distributive Markov categories

Roughly, a distributive Markov category is
▶ a distributive symmetric monoidal category,
▶ whose unit is terminal,
▶ which contains a wide distributive subcategory.

▶ Sufficient to consider commutative affine monads on distributive categories.
▶ E.g.

▶ Finite distributions Fin→ FinStoch.
▶ Kleisli of Giry monad Meas → Stoch.

▶ Over Fin, equivalent to finitary commutative affine clones.

34



Numerals of a distributive Markov category

The numerals

0, 1, 2 ≔ 1 + 1, 3 ≔ 2 + 1, . . .

are the image of the canonical distributive symmetric monoidal functor Fin→ C.
Definition
For a distributive Markov category C, write CN for the induced clone.

I.e.
CN(m) ≔ C(1, 1 + . . . + 1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

m

).
E.g. FinStochN ≅ StochN ≅ D.
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Bernoulli bases

Definition
A Bernoulli base for a distributive Markov category C is an injective monoidal
natural transformation (equivalently, clone morphism),

CN ↪ D.

Concretely, each n-measurement of C can be identified with classical probability
distribution:

Φn ∶ C(1, n)↪ D(n).
Since FinStochN ≅ StochN ≅ D, FinStoch and Stoch each have a unique
Bernoulli base.
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The graph programming interface

Let C be a distributive Markov category.

Definition
A graph interface in C consists of

V ∈ C edge ∶ V ⊗ V → 2 new ∶ 1→ V

such that
▶ edge is deterministic: (edge⊗ edge) ◦ copyV ⊗V = copy2 ◦ edge

▶ edge is irreflexive and symmetric:

edge ◦ copyV = ι0 ◦ discV ∶ V → 2 edge ◦ swap = edge ∶ V ⊗ V → 2.

38



Random graph models from a graph programming interface

Let (V, edge, new) be a graph interface in a distributive Markov category C.

As before,
Inj

op G(−)
−−→ Fin→ C

is an oplax monoidal functor.

Define a monoidal cone over G(−) where pn is

1 ≅ 1
⊗n new

⊗n

−−−−→ V
⊗n
→ (V ⊗2)⊗(n

2
) (edge(πi,πj)∣i<j)
−−−−−−−−−−−→ 2

⊗(n
2
) ≅ Gn.
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Random graph models from a graph programming interface

Define a monoidal cone over G(−) where pn is

1 ≅ 1
⊗n new

⊗n

−−−−→ V
⊗n
→ (V ⊗2)⊗(n

2
) (edge(πi,πj)∣i<j)
−−−−−−−−−−−→ 2

⊗(n
2
) ≅ Gn.

As before, a monoidal cone is the same as a monoidal transformation G → CN.

Suppose that C has a Bernoulli base Φ ∶ CN → D.

Then we get a random graph model by composition.

G → CN
Φ
−→ D
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Black-and-white graphons

A graphon consists of
▶ a probability space (Ω,F , µ),
▶ a symmetric measurable function let W ∶ Ω2 → [0, 1].

▶ A graphon is black-and-white (or random-free) if W ∶ Ω2 → {0, 1}.
▶ Gives a graph interface in Stoch:

V = Ω edge = W new = µ

▶ Bernoulli-based: StochN ≅ FinStoch.
▶ We recover the same random graph model.

What about general graphons?
41



Programming with an edge relation

Let G be the category of finite simple graphs and functions that preserve and
reflect the edge relation.

Then Fam(Gop) has

▶ as objects, sequence (G1, . . . , Gn) of finite simple graphs;
▶ as morphisms (G1, . . . , Gm)→ (H1, . . . , Hn), functions f ∶ m→ n with

G-morphisms fi ∶ Hf(i) → Gi for 1 ≤ i ≤ m.

Proposition
Fam(Gop) is a distributive category modelling the (V, edge) part of the graph
interface.
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Programming with an edge relation

Proposition
Fam(Gop) is a distributive category modelling the (V, edge) part of the graph
interface.

Let V = the one-vertex graph. Cartesian products:( )2 = + ( )3 = + 3 ⋅ + 3 ⋅ + ( )n = ∑G∈Gn
G

× = + 4 ⋅ + 2 ⋅ + 2 ⋅ + 2 ⋅ + 4 ⋅ + . . .

The edge map is + → 1 + 1 = 2.
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Sampling a fresh vertex

We want to add a new global element 1→ V .

Define Fam(Gop)→ Fam(Gop)[ν] by

Fam(Gop)[ν](G, H⃗) ≔ colimk∈Inj Fam(Gop)(( )k ×G, H⃗)
and extend to Fam(Gop)[ν](G⃗, H⃗) by distributivity.

This is indeed a distributive probability theory over Fam(Gop).
Define new ∶ 1→ ( ) by [1, π1 ∶ × 1→ ].

See [Hermida & Tennent 2012] for the non-distributive case.
Cf. the ‘para construction’..
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Sampling a fresh vertex

Define Fam(Gop)→ Fam(Gop)[ν] by

Fam(Gop)[ν](G, H⃗) ≔ colimk∈Inj Fam(Gop)(( )k ×G, H⃗)
and extend to Fam(Gop)[ν](G⃗, H⃗) by distributivity.

The numerals of this distributive Markov category are familiar:

Fam(Gop)[ν]N(n) ≅ colimk∈Inj Fam(Gop)(( )k, n)
≅ colimk∈Inj Set(Gk, n)
= G(n)
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Quotients of distributive Markov categories

Theorem
Suppose
▶ C is a distributive Markov category,
▶ Ψ ∶ CN → D is a monoidal natural transformation,
▶ ∀X ∈ C, either X ≅ 0 or C(1, X) ≠ ∅.

Then there is a distributive Markov category C/ψ and an identity-on-objects strict
distributive Markov functor C→ C/Ψ inducing a factorization

CN ↠ (C/Ψ)N ↣ D.

Idea: for f, g ∈ C(X,Y ), say f ∼ g iff

∀Z, n, 1
h
−→ X ⊗ Z, Y ⊗ Z

k
−→ n.Ψ(k ◦ (f ⊗ Z) ◦ h) = Ψ(k ◦ (g ⊗ Z) ◦ h)

in D(n). 46



Summary

▶ A random graph model corresponds to a monoidal transformation
Ψ ∶ (Fam(Gop)[ν])N → D.

▶ We can quotient Fam(Gop)[ν] to another distributive Markov category with
graph interface so that Ψ becomes injective.

Theorem
Every random graph model arises from a graph interface* in some
Bernoulli-based distributive Markov category.

* = internal notion of a black-and-white graphon.

47



Conclusions

▶ Categorical structures are a good match for the algebraic constraints of
random graph models.

▶ Distributivity is natural for Markov categories.
▶ In the paper: another way to obtain the Erdős-Rényi model using the topos

of Rado-nominal sets.

Thank you!
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