
Pushing monads forward

Adrián Doña Mateo

15 Apr 2024

University of Edinburgh

1



Table of Contents

1. Pushforward monads

2. Pushing forward along FinSet ↪→ Set

3. The codensity monad of Field ↪→ Ring

2



Pushforward monads



Pushing a monad forward along a functor

Let T be a monad on C and G : C → D. Under what conditions do

we get a monad on D?

Well-known answer

If F ⊣ G , then GTF is a monad on D.

If T is the identity monad, then this is the usual monad induced by

the adjunction F ⊣ G .

Little-known answer

If a certain Kan extension exists, then we get a monad on D.

3



Pushing a monad forward along a functor

Let T be a monad on C and G : C → D. Under what conditions do

we get a monad on D?

Well-known answer

If F ⊣ G , then GTF is a monad on D.

If T is the identity monad, then this is the usual monad induced by

the adjunction F ⊣ G .

Little-known answer

If a certain Kan extension exists, then we get a monad on D.

3



Pushing a monad forward along a functor

Let T be a monad on C and G : C → D. Under what conditions do

we get a monad on D?

Well-known answer

If F ⊣ G , then GTF is a monad on D.

If T is the identity monad, then this is the usual monad induced by

the adjunction F ⊣ G .

Little-known answer

If a certain Kan extension exists, then we get a monad on D.

3



The pushforward monad

Even when G : C → D doesn’t have a left adjoint, we can consider

the following right Kan extension.

C D

C D

G

T RanG GT
κG ,T

G

Definition

The pushforward of T along G is G∗T := RanG GT , when the

latter exists.

This comes with a monad structure, which I will now describe.

4



The pushforward monad

Even when G : C → D doesn’t have a left adjoint, we can consider

the following right Kan extension.

C D

C D

G

T RanG GT
κG ,T

G

Definition

The pushforward of T along G is G∗T := RanG GT , when the

latter exists.

This comes with a monad structure, which I will now describe.

4



The pushforward monad

Even when G : C → D doesn’t have a left adjoint, we can consider

the following right Kan extension.

C D

C D

G

T RanG GT
κG ,T

G

Definition

The pushforward of T along G is G∗T := RanG GT , when the

latter exists.

This comes with a monad structure, which I will now describe.

4



The pushforward monad

Even when G : C → D doesn’t have a left adjoint, we can consider

the following right Kan extension.

C D

C D

G

T RanG GT
κG ,T

G

Definition

The pushforward of T along G is G∗T := RanG GT , when the

latter exists.

This comes with a monad structure, which I will now describe.

4



The monad structure

We have a strict monoidal category K(G ,T ), where objects are

pairs (S , σ) fitting into a diagram

C D

C D

G

T S
σ

G

and a morphism (S , σ) → (S ′, σ′) is a natural transformation

α : S ⇒ S ′ such that σ = σ′ ◦ αG .

5



The monad structure

The monoidal product of (S , σ) and (S ′, σ′) and the monoidal unit

are

C D

C D

C D

G

T

T

S ′σ′

G

T

µT

S
σ

G

and

C D

C D

G

1CT 1D

G

ηT

RanG GT is, by definition, the terminal object of K(G ,T ), and

hence it has a unique monoid structure. This gives it a canonical

monad structure.

6



The monad structure

The monoidal product of (S , σ) and (S ′, σ′) and the monoidal unit

are

C D

C D

C D

G

T

T

S ′σ′

G

T

µT

S
σ

G

and

C D

C D

G

1CT 1D

G

ηT

RanG GT is, by definition, the terminal object of K(G ,T ), and

hence it has a unique monoid structure. This gives it a canonical

monad structure.

6



Reconciling with the adjunction situation

Proposition

If G has a left adjoint F , then G∗T = GTF .

Proof sketch. This follows from the fact that right Kan extending

along a right adjoint is the same as precomposing with the left

adjoint:

G∗T = RanG GT = GTF

7



Reconciling with the adjunction situation

Proposition

If G has a left adjoint F , then G∗T = GTF .

Proof sketch. This follows from the fact that right Kan extending

along a right adjoint is the same as precomposing with the left

adjoint:

G∗T = RanG GT = GTF

7



Some easy examples

Recall the limit formula for a right Kan extension:

(RanG GT )(d) = lim
d→Gc

GTc,

where the limit is indexed by the comma category (d ↓ G ).

Examples

� Let G : 0 → D and D have a terminal object 1. Then G∗1 is

constant at 1 with its unique monad structure.

� Let d : 1 → D and D have powers. Then A∗1 is the

endomorphism monad of d , given by d ′ 7→ [D(d ′, d), d ].

8



Some easy examples

Recall the limit formula for a right Kan extension:

(RanG GT )(d) = lim
d→Gc

GTc,

where the limit is indexed by the comma category (d ↓ G ).

Examples

� Let G : 0 → D and D have a terminal object 1. Then G∗1 is

constant at 1 with its unique monad structure.

� Let d : 1 → D and D have powers. Then A∗1 is the

endomorphism monad of d , given by d ′ 7→ [D(d ′, d), d ].

8



Some easy examples

Recall the limit formula for a right Kan extension:

(RanG GT )(d) = lim
d→Gc

GTc,

where the limit is indexed by the comma category (d ↓ G ).

Examples

� Let G : 0 → D and D have a terminal object 1. Then G∗1 is

constant at 1 with its unique monad structure.

� Let d : 1 → D and D have powers. Then A∗1 is the

endomorphism monad of d , given by d ′ 7→ [D(d ′, d), d ].

8



Codensity monads

Definition

For any functor G : C → D, if G∗1C exists, it is called the

codensity monad of G .

Many codensity monads have been studied in the literature.

Examples

� The codensity monad of FinSet ↪→ Set is the ultrafilter

monad, whose algebras are compact Hausdorff spaces.

� The codensity monad of Vectfdk ↪→ Vectk is the double

dualisation monad.

� The codensity monad of FinGrp ↪→ Grp is the profinite

completion monad, whose algebras are profinite groups.

9



Codensity monads

Definition

For any functor G : C → D, if G∗1C exists, it is called the

codensity monad of G .

Many codensity monads have been studied in the literature.

Examples

� The codensity monad of FinSet ↪→ Set is the ultrafilter

monad, whose algebras are compact Hausdorff spaces.

� The codensity monad of Vectfdk ↪→ Vectk is the double

dualisation monad.

� The codensity monad of FinGrp ↪→ Grp is the profinite

completion monad, whose algebras are profinite groups.

9



Codensity monads

Definition

For any functor G : C → D, if G∗1C exists, it is called the

codensity monad of G .

Many codensity monads have been studied in the literature.

Examples

� The codensity monad of FinSet ↪→ Set is the ultrafilter

monad, whose algebras are compact Hausdorff spaces.

� The codensity monad of Vectfdk ↪→ Vectk is the double

dualisation monad.

� The codensity monad of FinGrp ↪→ Grp is the profinite

completion monad, whose algebras are profinite groups.

9



Codensity monads

Definition

For any functor G : C → D, if G∗1C exists, it is called the

codensity monad of G .

Many codensity monads have been studied in the literature.

Examples

� The codensity monad of FinSet ↪→ Set is the ultrafilter

monad, whose algebras are compact Hausdorff spaces.

� The codensity monad of Vectfdk ↪→ Vectk is the double

dualisation monad.

� The codensity monad of FinGrp ↪→ Grp is the profinite

completion monad, whose algebras are profinite groups.

9



A universal property of the pushforward

The comparison transformation κG ,T : G∗T ◦ G → GT of the Kan

extension gives a functor KG ,T making the following square

commute

CT DG∗T

C D

KG ,T

UT UG∗T

G

We can hence see KG ,T as an arrow in CAT/D.

Recall that we have a functor Alg : Mnd(D)op → CAT/D, which

sends a monad S on D to its category of algebras, DS . Then:

Theorem

KG ,T is a universal arrow from GUT to Alg.

10



A universal property of the pushforward

The comparison transformation κG ,T : G∗T ◦ G → GT of the Kan

extension gives a functor KG ,T making the following square

commute

CT DG∗T

C D

KG ,T

UT UG∗T

G

We can hence see KG ,T as an arrow in CAT/D.

Recall that we have a functor Alg : Mnd(D)op → CAT/D, which

sends a monad S on D to its category of algebras, DS . Then:

Theorem

KG ,T is a universal arrow from GUT to Alg.

10



A universal property of the pushforward

Theorem (continued)

More explicitly, we have an isomorphism, natural in S ,

Mnd(D)(S ,G∗T ) ∼= (CAT/D)

 CT

D
GUT

DS

D
US


sending θ to Alg(θ) ◦ KG ,T . Hence, UG∗T is the universal

monadic replacement of GUT .

Putting G 7→ GUT and T 7→ 1 in the last sentence, we get:

Corollary

G∗T ∼= (GUT )∗1, i.e. G∗T is the codensity monad of UGT .

11



A universal property of the pushforward

Theorem (continued)

More explicitly, we have an isomorphism, natural in S ,

Mnd(D)(S ,G∗T ) ∼= (CAT/D)

 CT

D
GUT

DS

D
US


sending θ to Alg(θ) ◦ KG ,T . Hence, UG∗T is the universal

monadic replacement of GUT .

Putting G 7→ GUT and T 7→ 1 in the last sentence, we get:

Corollary

G∗T ∼= (GUT )∗1, i.e. G∗T is the codensity monad of UGT .

11



Some functoriality properties

Proposition

If G∗T exists for all T ∈ Mnd(C), then G∗ becomes a functor

Mnd(C) → Mnd(D).

This is the case, for example, if C is small and D is complete.

If we further have H : D → E , then:

Proposition

If H preserves limits, or if G is a right adjoint, then

(HG )∗T ∼= H∗(G∗T ),

and both of these conditions are sharp.

12



Some functoriality properties

Proposition

If G∗T exists for all T ∈ Mnd(C), then G∗ becomes a functor

Mnd(C) → Mnd(D).

This is the case, for example, if C is small and D is complete.

If we further have H : D → E , then:

Proposition

If H preserves limits, or if G is a right adjoint, then

(HG )∗T ∼= H∗(G∗T ),

and both of these conditions are sharp.

12



Pushing forward along FinSet ↪→ Set



Some monads on Set and FinSet

Consider the following endofunctors of Set:

� For a finite set E , the functor PE := (−) + E has a monad

structure, whose algebras are E -pointed sets.

� For a finite monoid M, the functor AM := M × (−) has a

monad structure, whose algebras are (left) M-sets.

� The covariant powerset functor P has a monad structure,

whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to

monads on FinSet, which we denote P f
E , A

f
M and P f , respectively.

13



Some monads on Set and FinSet

Consider the following endofunctors of Set:

� For a finite set E , the functor PE := (−) + E has a monad

structure, whose algebras are E -pointed sets.

� For a finite monoid M, the functor AM := M × (−) has a

monad structure, whose algebras are (left) M-sets.

� The covariant powerset functor P has a monad structure,

whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to

monads on FinSet, which we denote P f
E , A

f
M and P f , respectively.

13



Some monads on Set and FinSet

Consider the following endofunctors of Set:

� For a finite set E , the functor PE := (−) + E has a monad

structure, whose algebras are E -pointed sets.

� For a finite monoid M, the functor AM := M × (−) has a

monad structure, whose algebras are (left) M-sets.

� The covariant powerset functor P has a monad structure,

whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to

monads on FinSet, which we denote P f
E , A

f
M and P f , respectively.

13



Some monads on Set and FinSet

Consider the following endofunctors of Set:

� For a finite set E , the functor PE := (−) + E has a monad

structure, whose algebras are E -pointed sets.

� For a finite monoid M, the functor AM := M × (−) has a

monad structure, whose algebras are (left) M-sets.

� The covariant powerset functor P has a monad structure,

whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to

monads on FinSet, which we denote P f
E , A

f
M and P f , respectively.

13



Pushing forward along FinSet ↪→ Set

Let i : FinSet ↪→ Set denote the obvious inclusion. What is i∗T
f ,

for T f each of the monads in the previous slide?

The unit ηT
f
is always a map of monads 1 → T f . Using the

functoriality of i∗, get a map of monads i∗1 → i∗T
f . Recall that

U := i∗1 is the ultrafilter monad, whose algebras are compact

Hausdorff spaces.

Moreover, each T f is the restriction of a monad T on Set, which

gives a map of monads T → i∗T
f .

Intuition

Thus, i∗T
f-algebras have an underlying T -algebra structure and

compact Hausdorff topology, which are compatible in some way.

14



Pushing forward along FinSet ↪→ Set

Let i : FinSet ↪→ Set denote the obvious inclusion. What is i∗T
f ,

for T f each of the monads in the previous slide?

The unit ηT
f
is always a map of monads 1 → T f . Using the

functoriality of i∗, get a map of monads i∗1 → i∗T
f .

Recall that

U := i∗1 is the ultrafilter monad, whose algebras are compact

Hausdorff spaces.

Moreover, each T f is the restriction of a monad T on Set, which

gives a map of monads T → i∗T
f .

Intuition

Thus, i∗T
f-algebras have an underlying T -algebra structure and

compact Hausdorff topology, which are compatible in some way.

14



Pushing forward along FinSet ↪→ Set

Let i : FinSet ↪→ Set denote the obvious inclusion. What is i∗T
f ,

for T f each of the monads in the previous slide?

The unit ηT
f
is always a map of monads 1 → T f . Using the

functoriality of i∗, get a map of monads i∗1 → i∗T
f . Recall that

U := i∗1 is the ultrafilter monad, whose algebras are compact

Hausdorff spaces.

Moreover, each T f is the restriction of a monad T on Set, which

gives a map of monads T → i∗T
f .

Intuition

Thus, i∗T
f-algebras have an underlying T -algebra structure and

compact Hausdorff topology, which are compatible in some way.

14



Pushing forward along FinSet ↪→ Set

Let i : FinSet ↪→ Set denote the obvious inclusion. What is i∗T
f ,

for T f each of the monads in the previous slide?

The unit ηT
f
is always a map of monads 1 → T f . Using the

functoriality of i∗, get a map of monads i∗1 → i∗T
f . Recall that

U := i∗1 is the ultrafilter monad, whose algebras are compact

Hausdorff spaces.

Moreover, each T f is the restriction of a monad T on Set, which

gives a map of monads T → i∗T
f .

Intuition

Thus, i∗T
f-algebras have an underlying T -algebra structure and

compact Hausdorff topology, which are compatible in some way.

14



Pushing forward along FinSet ↪→ Set

Let i : FinSet ↪→ Set denote the obvious inclusion. What is i∗T
f ,

for T f each of the monads in the previous slide?

The unit ηT
f
is always a map of monads 1 → T f . Using the

functoriality of i∗, get a map of monads i∗1 → i∗T
f . Recall that

U := i∗1 is the ultrafilter monad, whose algebras are compact

Hausdorff spaces.

Moreover, each T f is the restriction of a monad T on Set, which

gives a map of monads T → i∗T
f .

Intuition

Thus, i∗T
f-algebras have an underlying T -algebra structure and

compact Hausdorff topology, which are compatible in some way.

14



The case of P f
E and Af

M

Proposition

U preserves finite coproducts. In particular,

UPE
∼= PEU and UAM

∼= AMU.

Moreover, these isomorphisms are distributive laws.

This makes UPE and UAM monads on Set, whose algebras are

E -pointed compact Hausdorff spaces, and compact Hausdorff

spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for i∗P
f
E and i∗A

f
M -algebras!

15



The case of P f
E and Af

M

Proposition

U preserves finite coproducts. In particular,

UPE
∼= PEU and UAM

∼= AMU.

Moreover, these isomorphisms are distributive laws.

This makes UPE and UAM monads on Set, whose algebras are

E -pointed compact Hausdorff spaces, and compact Hausdorff

spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for i∗P
f
E and i∗A

f
M -algebras!

15



The case of P f
E and Af

M

Proposition

U preserves finite coproducts. In particular,

UPE
∼= PEU and UAM

∼= AMU.

Moreover, these isomorphisms are distributive laws.

This makes UPE and UAM monads on Set, whose algebras are

E -pointed compact Hausdorff spaces, and compact Hausdorff

spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for i∗P
f
E and i∗A

f
M -algebras!

15



The case of P f
E and Af

M

Theorem

We have isomorphisms of monads

i∗P
f
E
∼= UPE and i∗A

f
M

∼= UAM .

Proof sketch. A general construction gives a transformation

α : UPE → i∗P
f
E . For X ∈ Set, this is

αX : lim
PEX→N

N → lim
X→N

PEN,

where, for f : X → N, we have λf αX = λPE f . We will construct

an inverse for αX .

16



The case of P f
E and Af

M

Theorem

We have isomorphisms of monads

i∗P
f
E
∼= UPE and i∗A

f
M

∼= UAM .

Proof sketch. A general construction gives a transformation

α : UPE → i∗P
f
E . For X ∈ Set, this is

αX : lim
PEX→N

N → lim
X→N

PEN,

where, for f : X → N, we have λf αX = λPE f .

We will construct

an inverse for αX .

16



The case of P f
E and Af

M

Theorem

We have isomorphisms of monads

i∗P
f
E
∼= UPE and i∗A

f
M

∼= UAM .

Proof sketch. A general construction gives a transformation

α : UPE → i∗P
f
E . For X ∈ Set, this is

αX : lim
PEX→N

N → lim
X→N

PEN,

where, for f : X → N, we have λf αX = λPE f . We will construct

an inverse for αX .

16



The case of P f
E and Af

M

Proof sketch.

αX : lim
PEX→N

N → lim
X→N

PEN.

For f : X → N, we have λf αX = λPE f . We will construct an

inverse for αX .

Given x ∈ i∗P
f
EX , consider the diagram

X N PEN λf x

1 PE1 λ!x

f

!
! PE !

∈

∈

We see that λf x ∈ E iff λ!x ∈ E . Hence, either x is constant at

λ!x ∈ E , or x can be seen as an element of UX . This gives an

element of PEUX ∼= UPEX .

17



The case of P f
E and Af

M

Proof sketch.

αX : lim
PEX→N

N → lim
X→N

PEN.

For f : X → N, we have λf αX = λPE f . We will construct an

inverse for αX .

Given x ∈ i∗P
f
EX , consider the diagram

X N PEN λf x

1 PE1 λ!x

f

!
! PE !

∈

∈

We see that λf x ∈ E iff λ!x ∈ E .

Hence, either x is constant at

λ!x ∈ E , or x can be seen as an element of UX . This gives an

element of PEUX ∼= UPEX .

17



The case of P f
E and Af

M

Proof sketch.

αX : lim
PEX→N

N → lim
X→N

PEN.

For f : X → N, we have λf αX = λPE f . We will construct an

inverse for αX .

Given x ∈ i∗P
f
EX , consider the diagram

X N PEN λf x

1 PE1 λ!x

f

!
! PE !

∈

∈

We see that λf x ∈ E iff λ!x ∈ E . Hence, either x is constant at

λ!x ∈ E , or x can be seen as an element of UX . This gives an

element of PEUX ∼= UPEX .

17



The case of P f

There is no distributive law between U and P. But there is a well

known monad on Set that restricts to P f on FinSet, the filter

monad F .

This gives us a map F → i∗P f , and:

Theorem

This map is an isomorphism of monads F ∼= i∗P f .

The algebras for F are continuous lattices, which are a certain kind

of complete lattices with a compatible compact Hausdorff topology.

18



The case of P f

There is no distributive law between U and P. But there is a well

known monad on Set that restricts to P f on FinSet, the filter

monad F . This gives us a map F → i∗P f , and:

Theorem

This map is an isomorphism of monads F ∼= i∗P f .

The algebras for F are continuous lattices, which are a certain kind

of complete lattices with a compatible compact Hausdorff topology.

18



The case of P f

There is no distributive law between U and P. But there is a well

known monad on Set that restricts to P f on FinSet, the filter

monad F . This gives us a map F → i∗P f , and:

Theorem

This map is an isomorphism of monads F ∼= i∗P f .

The algebras for F are continuous lattices, which are a certain kind

of complete lattices with a compatible compact Hausdorff topology.

18



The codensity monad of

Field ↪→ Ring



The monad K

For this last section, let i : Field → Ring be the obvious inclusion,

and let K := i∗1 be its codensity monad.

Recall that i is famously

not monadic (since, for instance, Field doesn’t have products).

Our general theory tells us that UK is its monadic replacement.

For R ∈ Ring, we have

KR = lim
R→k

k .

Any map from a ring to a field factors through a fraction field

Frac(R/p) for a unique prime ideal p. This means that:

KR ∼=
∏

p∈SpecR
Frac(R/p).

19



The monad K

For this last section, let i : Field → Ring be the obvious inclusion,

and let K := i∗1 be its codensity monad. Recall that i is famously

not monadic (since, for instance, Field doesn’t have products).

Our general theory tells us that UK is its monadic replacement.

For R ∈ Ring, we have

KR = lim
R→k

k .

Any map from a ring to a field factors through a fraction field

Frac(R/p) for a unique prime ideal p. This means that:

KR ∼=
∏

p∈SpecR
Frac(R/p).

19



The monad K

For this last section, let i : Field → Ring be the obvious inclusion,

and let K := i∗1 be its codensity monad. Recall that i is famously

not monadic (since, for instance, Field doesn’t have products).

Our general theory tells us that UK is its monadic replacement.

For R ∈ Ring, we have

KR = lim
R→k

k .

Any map from a ring to a field factors through a fraction field

Frac(R/p) for a unique prime ideal p. This means that:

KR ∼=
∏

p∈SpecR
Frac(R/p).

19



The monad K

For this last section, let i : Field → Ring be the obvious inclusion,

and let K := i∗1 be its codensity monad. Recall that i is famously

not monadic (since, for instance, Field doesn’t have products).

Our general theory tells us that UK is its monadic replacement.

For R ∈ Ring, we have

KR = lim
R→k

k .

Any map from a ring to a field factors through a fraction field

Frac(R/p) for a unique prime ideal p. This means that:

KR ∼=
∏

p∈SpecR
Frac(R/p).

19



The monad K

The unit ηKR embodies the philosophy of modern algebraic

geometry: it realises an element r ∈ R as a (dependent) function

on SpecR.

To understand µK
R , we need to understand SpecKR.

Proposition

The prime ideals of a product of fields are all maximal, and they

correspond to ultrafilters on the indexing set.

The multiplication µK
R only depends on those components indexed

by p ∈ SpecKR corresponding to principal ultrafilters.

20



The monad K

The unit ηKR embodies the philosophy of modern algebraic

geometry: it realises an element r ∈ R as a (dependent) function

on SpecR.

To understand µK
R , we need to understand SpecKR.

Proposition

The prime ideals of a product of fields are all maximal, and they

correspond to ultrafilters on the indexing set.

The multiplication µK
R only depends on those components indexed

by p ∈ SpecKR corresponding to principal ultrafilters.

20



The monad K

The unit ηKR embodies the philosophy of modern algebraic

geometry: it realises an element r ∈ R as a (dependent) function

on SpecR.

To understand µK
R , we need to understand SpecKR.

Proposition

The prime ideals of a product of fields are all maximal, and they

correspond to ultrafilters on the indexing set.

The multiplication µK
R only depends on those components indexed

by p ∈ SpecKR corresponding to principal ultrafilters.

20



The category of K -algebras

What might the K -algebras be?

� The functor K i ,1 : Field → RingK tells us that each field is a

K -algebra.

� Since Ring is complete, RingK is complete and the forgetful

functor UK creates limits.

Field has equalisers, but not products. It turns out that this is all

it’s missing!

Theorem

There is an isomorphism of categories over Ring

RingK ∼= Prod(Field)

21



The category of K -algebras

What might the K -algebras be?

� The functor K i ,1 : Field → RingK tells us that each field is a

K -algebra.

� Since Ring is complete, RingK is complete and the forgetful

functor UK creates limits.

Field has equalisers, but not products. It turns out that this is all

it’s missing!

Theorem

There is an isomorphism of categories over Ring

RingK ∼= Prod(Field)

21



The category of K -algebras

What might the K -algebras be?

� The functor K i ,1 : Field → RingK tells us that each field is a

K -algebra.

� Since Ring is complete, RingK is complete and the forgetful

functor UK creates limits.

Field has equalisers, but not products. It turns out that this is all

it’s missing!

Theorem

There is an isomorphism of categories over Ring

RingK ∼= Prod(Field)

21



The category of K -algebras

What might the K -algebras be?

� The functor K i ,1 : Field → RingK tells us that each field is a

K -algebra.

� Since Ring is complete, RingK is complete and the forgetful

functor UK creates limits.

Field has equalisers, but not products. It turns out that this is all

it’s missing!

Theorem

There is an isomorphism of categories over Ring

RingK ∼= Prod(Field)

21



The category of K -algebras

What might the K -algebras be?

� The functor K i ,1 : Field → RingK tells us that each field is a

K -algebra.

� Since Ring is complete, RingK is complete and the forgetful

functor UK creates limits.

Field has equalisers, but not products. It turns out that this is all

it’s missing!

Theorem

There is an isomorphism of categories over Ring

RingK ∼= Prod(Field)

21



Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we

push K forward along UR?

Prod(Field) Ring Set

UK

⊣

UR

FK

⊣

FR

Since we are pushing forward along a right adjoint,

UR
∗ (i∗1)

∼= (UR i)∗1,

so this gives the codensity monad of UR i : Field → Set.

Proposition

Prod(Field) has and URUK preserves reflective coequalisers.

22



Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we

push K forward along UR?

Prod(Field) Ring Set

UK

⊣

UR

FK

⊣

FR

Since we are pushing forward along a right adjoint,

UR
∗ (i∗1)

∼= (UR i)∗1,

so this gives the codensity monad of UR i : Field → Set.

Proposition

Prod(Field) has and URUK preserves reflective coequalisers.

22



Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we

push K forward along UR?

Prod(Field) Ring Set

UK

⊣

UR

FK

⊣

FR

Since we are pushing forward along a right adjoint,

UR
∗ (i∗1)

∼= (UR i)∗1,

so this gives the codensity monad of UR i : Field → Set.

Proposition

Prod(Field) has and URUK preserves reflective coequalisers.

22



Pushing forward to Set

Corollary

URUK : Prod(Field) → Set is monadic.

Corollary

The theory of products of fields is the ‘smallest’ algebraic theory

containing the theory of fields.

This is an infinitary theory with many interesting operations. For

example, there are n-ary operations that vanish on all fields with

fewer than n algebraically independent elements.

23



Pushing forward to Set

Corollary

URUK : Prod(Field) → Set is monadic.

Corollary

The theory of products of fields is the ‘smallest’ algebraic theory

containing the theory of fields.

This is an infinitary theory with many interesting operations. For

example, there are n-ary operations that vanish on all fields with

fewer than n algebraically independent elements.

23



Pushing forward to Set

Corollary

URUK : Prod(Field) → Set is monadic.

Corollary

The theory of products of fields is the ‘smallest’ algebraic theory

containing the theory of fields.

This is an infinitary theory with many interesting operations. For

example, there are n-ary operations that vanish on all fields with

fewer than n algebraically independent elements.

23



Thank you!

23



References

J. F. Kennison and Dion Gildenhuys. “Equational completion,

model induced triples and pro-objects”. In: Journal of Pure

and Applied Algebra 1.4 (1971), pp. 317–346.

Ross Street. “The formal theory of monads”. In: Journal of Pure

and Applied Algebra 2.2 (1972), pp. 149–168.

Tom Leinster. “Codensity and the ultrafilter monad”. In: Theory

and Applications of Categories 28.13 (July 2013), pp. 332–370.

Barry Devlin. “Codensity, compactness and ultrafilters”.

PhD thesis. University of Edinburgh, 2016.

Richard Garner. “The Vietoris Monad and Weak Distributive

Laws”. In: Applied Categorical Structures 28.2 (2020), pp. 339–354.

24



Filters and ultrafilters

Definition

A filter on a set X is a collection F ⊆ PX such that

� X ∈ F ;

� if A ⊆ B and A ∈ F , then B ∈ F ;

� if A,B ∈ F , then A ∩ B ∈ F .

An ultrafilter on X is a filter U such that

� for each A ⊆ X , exactly one of A and X \ A is in U .

For example, for A ⊆ X , the collection ↑A := {B ⊆ X | A ⊆ B} is

a filter on X . For x ∈ X , ↑{x} is an ultrafilter.



Constants in Prod(Field)

� Constants: Q× F2 × F3 × F5 × F7 × · · ·

Given a field k , with char k = p. The constant c in k is just cp.



Operations in Prod(Field)

� n-ary operations:
∏

p∈SpecZ[t1,...,tn] Frac(Z[t1, . . . , tn]/p)

Let k be a field, and θ an n-ary operation θ. A choice of n

elements of k is equivalent to a ring homomorphism

h : Z[t1, . . . , tn] → k. Then p := ker h is a prime ideal of

Z[t1, . . . , tn], and applying θ to the elements h(t1), . . . , h(tn) gives

the image of θp under the rightmost morphism of

Z[t1, . . . , tn] Z[t1, . . . , tn]/p Frac(Z[t1, . . . , tn]/p)

k k k

h

q l



Operations in Prod(Field)

Let τ ∈
∏

p∈SpecZ[t] Frac(Z[t]/p) be the unary operation with

� for each p = 0 or prime, set τ(t,p) = 1;

� τp = 0 for every other p ∈ SpecZ[t].

For k a field and x ∈ k, τ(x) = 1 iff x is transcendental over the

prime subfield of k .


	Pushforward monads
	Pushing forward along FinSet to Set
	The codensity monad of Field to Ring
	Appendix

