Pushing monads forward

Adrián Doña Mateo

15 Apr 2024
University of Edinburgh

Table of Contents

1. Pushforward monads
2. Pushing forward along FinSet \hookrightarrow Set
3. The codensity monad of Field \hookrightarrow Ring

Pushforward monads

Pushing a monad forward along a functor

Let T be a monad on \mathcal{C} and $G: \mathcal{C} \rightarrow \mathcal{D}$. Under what conditions do we get a monad on \mathcal{D} ?

Pushing a monad forward along a functor

Let T be a monad on \mathcal{C} and $G: \mathcal{C} \rightarrow \mathcal{D}$. Under what conditions do we get a monad on \mathcal{D} ?

Well-known answer

If $F \dashv G$, then $G T F$ is a monad on \mathcal{D}.

If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.

Pushing a monad forward along a functor

Let T be a monad on \mathcal{C} and $G: \mathcal{C} \rightarrow \mathcal{D}$. Under what conditions do we get a monad on \mathcal{D} ?

Well-known answer

If $F \dashv G$, then $G T F$ is a monad on \mathcal{D}.

If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.

Little-known answer

If a certain Kan extension exists, then we get a monad on \mathcal{D}.

The pushforward monad

Even when $G: \mathcal{C} \rightarrow \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.

The pushforward monad

Even when $G: \mathcal{C} \rightarrow \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.

The pushforward monad

Even when $G: \mathcal{C} \rightarrow \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.

Definition

The pushforward of T along G is $G_{*} T:=\operatorname{Ran}_{G} G T$, when the latter exists.

The pushforward monad

Even when $G: \mathcal{C} \rightarrow \mathcal{D}$ doesn't have a left adjoint, we can consider the following right Kan extension.

Definition

The pushforward of T along G is $G_{*} T:=\operatorname{Ran}_{G} G T$, when the latter exists.

This comes with a monad structure, which I will now describe.

The monad structure

We have a strict monoidal category $\mathcal{K}(G, T)$, where objects are pairs (S, σ) fitting into a diagram

\[

\]

and a morphism $(S, \sigma) \rightarrow\left(S^{\prime}, \sigma^{\prime}\right)$ is a natural transformation $\alpha: S \Rightarrow S^{\prime}$ such that $\sigma=\sigma^{\prime} \circ \alpha G$.

The monad structure

The monoidal product of (S, σ) and $\left(S^{\prime}, \sigma^{\prime}\right)$ and the monoidal unit are

The monad structure

The monoidal product of (S, σ) and $\left(S^{\prime}, \sigma^{\prime}\right)$ and the monoidal unit are

$\operatorname{Ran}_{G} G T$ is, by definition, the terminal object of $\mathcal{K}(G, T)$, and hence it has a unique monoid structure. This gives it a canonical monad structure.

Reconciling with the adjunction situation

Proposition
 If G has a left adjoint F, then $G_{*} T=G T F$.

Reconciling with the adjunction situation

Proposition

If G has a left adjoint F, then $G_{*} T=G T F$.

Proof sketch. This follows from the fact that right Kan extending along a right adjoint is the same as precomposing with the left adjoint:

$$
G_{*} T=\operatorname{Ran}_{G} G T=G T F
$$

Some easy examples

Recall the limit formula for a right Kan extension:

$$
\left(\operatorname{Ran}_{G} G T\right)(d)=\lim _{d \rightarrow G c} G T c
$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Some easy examples

Recall the limit formula for a right Kan extension:

$$
\left(\operatorname{Ran}_{G} G T\right)(d)=\lim _{d \rightarrow G c} G T c
$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

- Let $G: \mathbf{0} \rightarrow \mathcal{D}$ and \mathcal{D} have a terminal object $\mathbb{1}$. Then $G_{*} 1$ is constant at $\mathbb{1}$ with its unique monad structure.

Some easy examples

Recall the limit formula for a right Kan extension:

$$
\left(\operatorname{Ran}_{G} G T\right)(d)=\lim _{d \rightarrow G c} G T c
$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

- Let $G: \mathbf{0} \rightarrow \mathcal{D}$ and \mathcal{D} have a terminal object $\mathbb{1}$. Then $G_{*} 1$ is constant at $\mathbb{1}$ with its unique monad structure.
- Let $d: \mathbf{1} \rightarrow \mathcal{D}$ and \mathcal{D} have powers. Then $A_{*} 1$ is the endomorphism monad of d, given by $d^{\prime} \mapsto\left[\mathcal{D}\left(d^{\prime}, d\right), d\right]$.

Codensity monads

Definition

For any functor $G: \mathcal{C} \rightarrow \mathcal{D}$, if $G_{*} 1_{\mathcal{C}}$ exists, it is called the codensity monad of G.

Codensity monads

Definition

For any functor $G: \mathcal{C} \rightarrow \mathcal{D}$, if $G_{*} 1_{\mathcal{C}}$ exists, it is called the codensity monad of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of FinSet \hookrightarrow Set is the ultrafilter monad, whose algebras are compact Hausdorff spaces.

Codensity monads

Definition

For any functor $G: \mathcal{C} \rightarrow \mathcal{D}$, if $G_{*} 1_{\mathcal{C}}$ exists, it is called the codensity monad of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of FinSet \hookrightarrow Set is the ultrafilter monad, whose algebras are compact Hausdorff spaces.
- The codensity monad of Vect $_{k}^{\mathrm{fd}} \hookrightarrow$ Vect $_{k}$ is the double dualisation monad.

Codensity monads

Definition

For any functor $G: \mathcal{C} \rightarrow \mathcal{D}$, if $G_{*} 1_{\mathcal{C}}$ exists, it is called the codensity monad of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of FinSet \hookrightarrow Set is the ultrafilter monad, whose algebras are compact Hausdorff spaces.
- The codensity monad of Vect $_{k}^{\mathrm{fd}} \hookrightarrow$ Vect $_{k}$ is the double dualisation monad.
- The codensity monad of FinGrp $\hookrightarrow \mathbf{G r p}$ is the profinite completion monad, whose algebras are profinite groups.

A universal property of the pushforward

The comparison transformation $\kappa^{G, T}: G_{*} T \circ G \rightarrow G T$ of the Kan extension gives a functor $K^{G, T}$ making the following square commute

$$
\begin{array}{lll}
\mathcal{C}^{T} \xrightarrow{K^{G, T}} & \mathcal{D}^{G_{*} T} \\
\downarrow^{U^{T}} & & \downarrow^{G_{* *}} \\
\mathcal{C} \xrightarrow{G} & \mathcal{D}
\end{array}
$$

We can hence see $K^{G, T}$ as an arrow in CAT $/ \mathcal{D}$.

A universal property of the pushforward

The comparison transformation $\kappa^{G, T}: G_{*} T \circ G \rightarrow G T$ of the Kan extension gives a functor $K^{G, T}$ making the following square commute

$$
\begin{array}{ll}
\mathcal{C}^{T} \xrightarrow{K^{G, T}} & \mathcal{D}^{G_{*} T} \\
\downarrow^{U^{T}} & \\
\mathcal{C} \xrightarrow{G} & \downarrow^{U_{* * T}}
\end{array}
$$

We can hence see $K^{G, T}$ as an arrow in CAT/D.
Recall that we have a functor $\mathbf{A l g}: \operatorname{Mnd}(\mathcal{D})^{\mathrm{op}} \rightarrow \mathbf{C A T} / \mathcal{D}$, which sends a monad S on \mathcal{D} to its category of algebras, \mathcal{D}^{S}. Then:

Theorem

$K^{G, T}$ is a universal arrow from $G U^{T}$ to Alg.

A universal property of the pushforward

Theorem (continued)

More explicitly, we have an isomorphism, natural in S,

$$
\operatorname{Mnd}(\mathcal{D})\left(S, G_{*} T\right) \cong(\mathbf{C A T} / \mathcal{D})\left(\begin{array}{cc}
\mathcal{C}^{T} & \mathcal{D}^{S} \\
\downarrow G U^{T} & \downarrow U^{S} \\
\mathcal{D} & \mathcal{D}
\end{array}\right)
$$

sending θ to $\boldsymbol{A l g}(\theta) \circ K^{G, T}$. Hence, $U^{G_{*} T}$ is the universal monadic replacement of $G U^{\top}$.

A universal property of the pushforward

Theorem (continued)

More explicitly, we have an isomorphism, natural in S,

$$
\operatorname{Mnd}(\mathcal{D})\left(S, G_{*} T\right) \cong(\mathbf{C A T} / \mathcal{D})\left(\begin{array}{cc}
\mathcal{C}^{T} & \mathcal{D}^{S} \\
\downarrow G U^{T} & \downarrow U^{S} \\
\mathcal{D} & \mathcal{D}
\end{array}\right)
$$

sending θ to $\operatorname{Alg}(\theta) \circ K^{G, T}$. Hence, $U^{G_{*} T}$ is the universal monadic replacement of $G U^{\top}$.

Putting $G \mapsto G U^{T}$ and $T \mapsto 1$ in the last sentence, we get:

Corollary

$G_{*} T \cong\left(G U^{T}\right)_{*}$, i.e. $G_{*} T$ is the codensity monad of $U G^{T}$.

Some functoriality properties

Proposition

If $G_{*} T$ exists for all $T \in \operatorname{Mnd}(\mathcal{C})$, then G_{*} becomes a functor $\operatorname{Mnd}(\mathcal{C}) \rightarrow \operatorname{Mnd}(\mathcal{D})$.

This is the case, for example, if \mathcal{C} is small and \mathcal{D} is complete.

Some functoriality properties

Proposition

If $G_{*} T$ exists for all $T \in \operatorname{Mnd}(\mathcal{C})$, then G_{*} becomes a functor $\operatorname{Mnd}(\mathcal{C}) \rightarrow \operatorname{Mnd}(\mathcal{D})$.

This is the case, for example, if \mathcal{C} is small and \mathcal{D} is complete.
If we further have $H: \mathcal{D} \rightarrow \mathcal{E}$, then:

Proposition

If H preserves limits, or if G is a right adjoint, then

$$
(H G)_{*} T \cong H_{*}\left(G_{*} T\right)
$$

and both of these conditions are sharp.

Pushing forward along FinSet \hookrightarrow Set

Some monads on Set and FinSet

Consider the following endofunctors of Set:

- For a finite set E, the functor $P_{E}:=(-)+E$ has a monad structure, whose algebras are E-pointed sets.

Some monads on Set and FinSet

Consider the following endofunctors of Set:

- For a finite set E, the functor $P_{E}:=(-)+E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_{M}:=M \times(-)$ has a monad structure, whose algebras are (left) M-sets.

Some monads on Set and FinSet

Consider the following endofunctors of Set:

- For a finite set E, the functor $P_{E}:=(-)+E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_{M}:=M \times(-)$ has a monad structure, whose algebras are (left) M-sets.
- The covariant powerset functor \mathcal{P} has a monad structure, whose algebras are complete lattices.

Some monads on Set and FinSet

Consider the following endofunctors of Set:

- For a finite set E, the functor $P_{E}:=(-)+E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_{M}:=M \times(-)$ has a monad structure, whose algebras are (left) M-sets.
- The covariant powerset functor \mathcal{P} has a monad structure, whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to monads on FinSet, which we denote P_{E}^{f}, A_{M}^{f} and \mathcal{P}^{f}, respectively.

Pushing forward along FinSet \hookrightarrow Set

Let i : FinSet \hookrightarrow Set denote the obvious inclusion. What is $i_{*} T^{f}$, for T^{f} each of the monads in the previous slide?

Pushing forward along FinSet \hookrightarrow Set

Let i : FinSet \hookrightarrow Set denote the obvious inclusion. What is $i_{*} T^{f}$, for T^{f} each of the monads in the previous slide?

The unit $\eta^{T^{f}}$ is always a map of monads $1 \rightarrow T^{f}$. Using the functoriality of i_{*}, get a map of monads $i_{*} 1 \rightarrow i_{*} T^{f}$.

Pushing forward along FinSet \hookrightarrow Set

Let i : FinSet \hookrightarrow Set denote the obvious inclusion. What is $i_{*} T^{f}$, for T^{f} each of the monads in the previous slide?

The unit $\eta^{T^{f}}$ is always a map of monads $1 \rightarrow T^{f}$. Using the functoriality of i_{*}, get a map of monads $i_{*} 1 \rightarrow i_{*} T^{f}$. Recall that $U:=i_{*} 1$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces.

Pushing forward along FinSet \hookrightarrow Set

Let i : FinSet \hookrightarrow Set denote the obvious inclusion. What is $i_{*} T^{\mathrm{f}}$, for T^{f} each of the monads in the previous slide?

The unit $\eta^{T^{f}}$ is always a map of monads $1 \rightarrow T^{f}$. Using the functoriality of i_{*}, get a map of monads $i_{*} 1 \rightarrow i_{*} T^{f}$. Recall that $U:=i_{*} 1$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces.

Moreover, each T^{f} is the restriction of a monad T on Set, which gives a map of monads $T \rightarrow i_{*} T^{f}$.

Pushing forward along FinSet \hookrightarrow Set

Let i : FinSet \hookrightarrow Set denote the obvious inclusion. What is $i_{*} T^{f}$, for T^{f} each of the monads in the previous slide?

The unit $\eta^{T^{f}}$ is always a map of monads $1 \rightarrow T^{f}$. Using the functoriality of i_{*}, get a map of monads $i_{*} 1 \rightarrow i_{*} T^{f}$. Recall that $U:=i_{*} 1$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces.

Moreover, each T^{f} is the restriction of a monad T on Set, which gives a map of monads $T \rightarrow i_{*} T^{f}$.

Intuition

Thus, $i_{*} T^{\mathrm{f}}$-algebras have an underlying T-algebra structure and compact Hausdorff topology, which are compatible in some way.

Proposition

U preserves finite coproducts. In particular,

$$
U P_{E} \cong P_{E} U \quad \text { and } \quad U A_{M} \cong A_{M} U
$$

Moreover, these isomorphisms are distributive laws.

Proposition

U preserves finite coproducts. In particular,

$$
U P_{E} \cong P_{E} U \quad \text { and } \quad U A_{M} \cong A_{M} U
$$

Moreover, these isomorphisms are distributive laws.

This makes $U P_{E}$ and $U A_{M}$ monads on Set, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.

The case of P_{E}^{f} and A_{M}^{f}

Proposition

U preserves finite coproducts. In particular,

$$
U P_{E} \cong P_{E} U \quad \text { and } \quad U A_{M} \cong A_{M} U .
$$

Moreover, these isomorphisms are distributive laws.

This makes $U P_{E}$ and $U A_{M}$ monads on Set, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for $i_{*} P_{E}^{f}$ and $i_{*} A_{M^{-}}^{f}$-algebras!

The case of P_{E}^{f} and A_{M}^{f}

Theorem

We have isomorphisms of monads

$$
i_{*} P_{E}^{f} \cong U P_{E} \quad \text { and } \quad i_{*} A_{M}^{f} \cong U A_{M}
$$

The case of P_{E}^{f} and A_{M}^{f}

Theorem

We have isomorphisms of monads

$$
i_{*} P_{E}^{f} \cong U P_{E} \quad \text { and } \quad i_{*} A_{M}^{f} \cong U A_{M}
$$

Proof sketch. A general construction gives a transformation $\alpha: U P_{E} \rightarrow i_{*} P_{E}^{\mathrm{f}}$. For $X \in$ Set, this is

$$
\alpha_{X}: \lim _{P_{E} X \rightarrow N} N \rightarrow \lim _{X \rightarrow N} P_{E} N,
$$

where, for $f: X \rightarrow N$, we have $\lambda_{f} \alpha_{X}=\lambda_{P_{E} f}$.

The case of P_{E}^{f} and A_{M}^{f}

Theorem

We have isomorphisms of monads

$$
i_{*} P_{E}^{f} \cong U P_{E} \quad \text { and } \quad i_{*} A_{M}^{f} \cong U A_{M}
$$

Proof sketch. A general construction gives a transformation $\alpha: U P_{E} \rightarrow i_{*} P_{E}^{f}$. For $X \in$ Set, this is

$$
\alpha_{X}: \lim _{P_{E} X \rightarrow N} N \rightarrow \lim _{X \rightarrow N} P_{E} N
$$

where, for $f: X \rightarrow N$, we have $\lambda_{f} \alpha_{X}=\lambda_{P_{E} f}$. We will construct an inverse for α_{X}.

The case of P_{E}^{f} and A_{M}^{f}

Proof sketch.

$$
\alpha_{X}: \lim _{P_{E} X \rightarrow N} N \rightarrow \lim _{X \rightarrow N} P_{E} N
$$

For $f: X \rightarrow N$, we have $\lambda_{f} \alpha_{X}=\lambda_{P_{E} f}$. We will construct an inverse for α_{X}.

The case of P_{E}^{f} and A_{M}^{f}

Proof sketch.

$$
\alpha_{X}: \lim _{P_{E} X \rightarrow N} N \rightarrow \lim _{X \rightarrow N} P_{E} N .
$$

For $f: X \rightarrow N$, we have $\lambda_{f} \alpha_{X}=\lambda_{P_{E} f}$. We will construct an inverse for α_{X}.

Given $x \in i_{*} P_{E}^{f} X$, consider the diagram

We see that $\lambda_{f} x \in E$ iff $\lambda_{!} x \in E$.

The case of P_{E}^{f} and A_{M}^{f}

Proof sketch.

$$
\alpha_{X}: \lim _{P_{E} X \rightarrow N} N \rightarrow \lim _{X \rightarrow N} P_{E} N .
$$

For $f: X \rightarrow N$, we have $\lambda_{f} \alpha_{X}=\lambda_{P_{E} f}$. We will construct an inverse for α_{X}.

Given $x \in i_{*} P_{E}^{f} X$, consider the diagram

We see that $\lambda_{f} x \in E$ iff $\lambda_{!} x \in E$. Hence, either x is constant at $\lambda_{!} x \in E$, or x can be seen as an element of $U X$. This gives an element of $P_{E} U X \cong U P_{E} X$.

The case of \mathcal{P}^{f}

There is no distributive law between U and \mathcal{P}. But there is a well known monad on Set that restricts to \mathcal{P}^{f} on FinSet, the filter monad F.

The case of \mathcal{P}^{f}

There is no distributive law between U and \mathcal{P}. But there is a well known monad on Set that restricts to \mathcal{P}^{f} on FinSet, the filter monad F. This gives us a map $F \rightarrow i_{*} \mathcal{P}^{\mathrm{f}}$, and:

Theorem

This map is an isomorphism of monads $F \cong i_{*} \mathcal{P}^{f}$.

The case of \mathcal{P}^{f}

There is no distributive law between U and \mathcal{P}. But there is a well known monad on Set that restricts to \mathcal{P}^{f} on FinSet, the filter monad F. This gives us a map $F \rightarrow i_{*} \mathcal{P}^{\mathrm{f}}$, and:

Theorem

This map is an isomorphism of monads $F \cong i_{*} \mathcal{P}^{f}$.

The algebras for F are continuous lattices, which are a certain kind of complete lattices with a compatible compact Hausdorff topology.

The codensity monad of
Field \hookrightarrow Ring

The monad K

For this last section, let i : Field \rightarrow Ring be the obvious inclusion, and let $K:=i_{*} 1$ be its codensity monad.

The monad K

For this last section, let i : Field \rightarrow Ring be the obvious inclusion, and let $K:=i_{*} 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn't have products).
Our general theory tells us that U^{K} is its monadic replacement.

The monad K

For this last section, let i : Field \rightarrow Ring be the obvious inclusion, and let $K:=i_{*} 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn't have products).
Our general theory tells us that U^{K} is its monadic replacement.
For $R \in$ Ring, we have

$$
K R=\lim _{R \rightarrow k} k
$$

The monad K

For this last section, let i : Field \rightarrow Ring be the obvious inclusion, and let $K:=i_{*} 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn't have products).
Our general theory tells us that U^{K} is its monadic replacement.
For $R \in$ Ring, we have

$$
K R=\lim _{R \rightarrow k} k
$$

Any map from a ring to a field factors through a fraction field $\operatorname{Frac}(R / \mathfrak{p})$ for a unique prime ideal \mathfrak{p}. This means that:

$$
K R \cong \prod_{\mathfrak{p} \in \operatorname{Spec} R} \operatorname{Frac}(R / \mathfrak{p})
$$

The monad K

The unit η_{R}^{K} embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

The monad K

The unit η_{R}^{K} embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_{R}^{K}, we need to understand Spec $K R$.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The monad K

The unit η_{R}^{K} embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on Spec R.

To understand μ_{R}^{K}, we need to understand Spec $K R$.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The multiplication μ_{R}^{K} only depends on those components indexed by $\mathfrak{p} \in \operatorname{Spec} K R$ corresponding to principal ultrafilters.

The category of K-algebras

What might the K-algebras be?

The category of K-algebras

What might the K-algebras be?

- The functor $K^{i, 1}$: Field \rightarrow Ring K tells us that each field is a K-algebra.

The category of K-algebras

What might the K-algebras be?

- The functor $K^{i, 1}$: Field \rightarrow Ring K tells us that each field is a K-algebra.
- Since Ring is complete, Ring K is complete and the forgetful functor U^{K} creates limits.

The category of K-algebras

What might the K-algebras be?

- The functor $K^{i, 1}$: Field \rightarrow Ring K tells us that each field is a K-algebra.
- Since Ring is complete, Ring K is complete and the forgetful functor U^{K} creates limits.

Field has equalisers, but not products. It turns out that this is all it's missing!

The category of K-algebras

What might the K-algebras be?

- The functor $K^{i, 1}$: Field \rightarrow Ring K tells us that each field is a K-algebra.
- Since Ring is complete, Ring K is complete and the forgetful functor U^{K} creates limits.

Field has equalisers, but not products. It turns out that this is all it's missing!

Theorem
There is an isomorphism of categories over Ring

$$
\operatorname{Ring}^{K} \cong \operatorname{Prod}(\text { Field })
$$

Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we push K forward along U^{R} ?

Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we push K forward along U^{R} ?

Since we are pushing forward along a right adjoint,

$$
U_{*}^{R}\left(i_{*} 1\right) \cong\left(U^{R} i\right)_{*} 1
$$

so this gives the codensity monad of $U^{R} i$: Field \rightarrow Set.

Pushing forward to Set

Let R denote the free ring monad on Set. What happens if we push K forward along U^{R} ?

Since we are pushing forward along a right adjoint,

$$
U_{*}^{R}\left(i_{*} 1\right) \cong\left(U^{R} i\right)_{*} 1
$$

so this gives the codensity monad of $U^{R} i$: Field \rightarrow Set.

Proposition

Prod(Field) has and $U^{R} U^{K}$ preserves reflective coequalisers.

Pushing forward to Set

Corollary
$U^{R} U^{K}: \operatorname{Prod}($ Field $) \rightarrow$ Set is monadic.

Pushing forward to Set

Corollary

$U^{R} U^{K}: \operatorname{Prod}($ Field $) \rightarrow$ Set is monadic.

Corollary

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

Pushing forward to Set

Corollary

$U^{R} U^{K}: \operatorname{Prod}($ Field $) \rightarrow$ Set is monadic.

Corollary

The theory of products of fields is the 'smallest' algebraic theory containing the theory of fields.

This is an infinitary theory with many interesting operations. For example, there are n-ary operations that vanish on all fields with fewer than n algebraically independent elements.

Thank you!

References

J. F. Kennison and Dion Gildenhuys. "Equational completion, model induced triples and pro-objects". In: Journal of Pure and Applied Algebra 1.4 (1971), pp. 317-346.

Ross Street. "The formal theory of monads". In: Journal of Pure and Applied Algebra 2.2 (1972), pp. 149-168.

Tom Leinster. "Codensity and the ultrafilter monad". In: Theory and Applications of Categories 28.13 (July 2013), pp. 332-370.

Barry Devlin. "Codensity, compactness and ultrafilters". PhD thesis. University of Edinburgh, 2016.

Richard Garner. "The Vietoris Monad and Weak Distributive Laws". In: Applied Categorical Structures 28.2 (2020), pp. 339-354.

Filters and ultrafilters

Definition

A filter on a set X is a collection $\mathcal{F} \subseteq \mathcal{P} X$ such that

- $X \in \mathcal{F}$;
- if $A \subseteq B$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$;
- if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

An ultrafilter on X is a filter \mathcal{U} such that

- for each $A \subseteq X$, exactly one of A and $X \backslash A$ is in \mathcal{U}.

For example, for $A \subseteq X$, the collection $\uparrow A:=\{B \subseteq X \mid A \subseteq B\}$ is a filter on X. For $x \in X, \uparrow\{x\}$ is an ultrafilter.

Constants in Prod(Field)

- Constants: $\mathbb{Q} \times \mathbb{F}_{2} \times \mathbb{F}_{3} \times \mathbb{F}_{5} \times \mathbb{F}_{7} \times \cdots$

Given a field k, with char $k=p$. The constant c in k is just c_{p}.

Operations in Prod(Field)

- n-ary operations: $\prod_{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]} \operatorname{Frac}\left(\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] / \mathfrak{p}\right)$

Let k be a field, and θ an n-ary operation θ. A choice of n elements of k is equivalent to a ring homomorphism $h: \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] \rightarrow k$. Then $\mathfrak{p}:=$ ker h is a prime ideal of $\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right]$, and applying θ to the elements $h\left(t_{1}\right), \ldots, h\left(t_{n}\right)$ gives the image of $\theta_{\mathfrak{p}}$ under the rightmost morphism of

$$
\begin{gathered}
\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] \xrightarrow{q} \mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] / \mathfrak{p} \xrightarrow{l} \operatorname{Frac}\left(\mathbb{Z}\left[t_{1}, \ldots, t_{n}\right] / \mathfrak{p}\right) \\
\downarrow_{h} \\
k \xrightarrow{k}
\end{gathered}
$$

Operations in Prod(Field)

Let $\tau \in \prod_{\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[t]} \operatorname{Frac}(\mathbb{Z}[t] / \mathfrak{p})$ be the unary operation with

- for each $p=0$ or prime, set $\tau_{(t, p)}=1$;
- $\tau_{\mathfrak{p}}=0$ for every other $\mathfrak{p} \in \operatorname{Spec} \mathbb{Z}[t]$.

For k a field and $x \in k, \tau(x)=1$ iff x is transcendental over the prime subfield of k.

