Pushing monads forward

Adrián Doña Mateo
15 Apr 2024
University of Edinburgh
1. Pushforward monads

2. Pushing forward along $\text{FinSet} \leftrightarrow \text{Set}$

3. The codensity monad of $\text{Field} \leftrightarrow \text{Ring}$
Pushforward monads
Let T be a monad on \mathcal{C} and $G : \mathcal{C} \to \mathcal{D}$. Under what conditions do we get a monad on \mathcal{D}?
Let T be a monad on C and $G: C \to D$. Under what conditions do we get a monad on D?

Well-known answer

If $F \dashv G$, then GTF is a monad on D.

If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.
Pushing a monad forward along a functor

Let T be a monad on \mathcal{C} and $G: \mathcal{C} \to \mathcal{D}$. Under what conditions do we get a monad on \mathcal{D}?

Well-known answer

If $F \dashv G$, then GTF is a monad on \mathcal{D}.

If T is the identity monad, then this is the usual monad induced by the adjunction $F \dashv G$.

Little-known answer

If a certain Kan extension exists, then we get a monad on \mathcal{D}.
The pushforward monad

Even when $G : C \to D$ doesn’t have a left adjoint, we can consider the following right Kan extension.
The pushforward monad

Even when $G : \mathcal{C} \to \mathcal{D}$ doesn’t have a left adjoint, we can consider the following right Kan extension.

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow T & \kappa_{G,T} & \downarrow \text{Ran}_G GT \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}
\]
The pushforward monad

Even when $G : \mathcal{C} \to \mathcal{D}$ doesn’t have a left adjoint, we can consider the following right Kan extension.

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow T & & \downarrow \text{Ran}_G GT \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array}
\]

\textbf{Definition}

The \textbf{pushforward} of T along G is $G_* T := \text{Ran}_G GT$, when the latter exists.
Even when $G : \mathcal{C} \to \mathcal{D}$ doesn’t have a left adjoint, we can consider the following right Kan extension.

\[\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow T & \underset{\kappa^G,T}{\swarrow} & \downarrow \text{Ran}_G GT \\
\mathcal{C} & \xrightarrow{G} & \mathcal{D}
\end{array} \]

Definition

The **pushforward** of T along G is $G_\ast T := \text{Ran}_G GT$, when the latter exists.

This comes with a monad structure, which I will now describe.
We have a strict monoidal category $\mathcal{K}(G, T)$, where objects are pairs (S, σ) fitting into a diagram

$$
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{G} & \mathcal{D} \\
\downarrow T & & \downarrow S \\
\mathcal{C} & \xleftarrow{G} & \mathcal{D}
\end{array}
$$

and a morphism $(S, \sigma) \to (S', \sigma')$ is a natural transformation $\alpha: S \Rightarrow S'$ such that $\sigma = \sigma' \circ \alpha G$.

The monad structure
The monoid structure

The monoidal product of \((S, \sigma)\) and \((S', \sigma')\) and the monoidal unit are

\[
\begin{array}{ccc}
C & \xrightarrow{G} & D \\
\downarrow T & \sigma' & \downarrow S' \\
C & \xrightarrow{T} & D \\
\end{array}
\]

\[
\begin{array}{ccc}
\mu^T & \leftarrow & C \\
\downarrow T & \sigma & \downarrow S \\
C & \xrightarrow{T} & D \\
\end{array}
\]

and

\[
\begin{array}{ccc}
C & \xrightarrow{G} & D \\
\downarrow \eta^T & 1_C & \downarrow 1_D \\
C & \xrightarrow{G} & D \\
\end{array}
\]
The monoidal product of \((S, \sigma)\) and \((S', \sigma')\) and the monoidal unit are

\[
\begin{align*}
\text{Ran}_G GT & \text{ is, by definition, the terminal object of } \mathcal{K}(G, T), \text{ and hence it has a unique monoid structure. This gives it a canonical monad structure.}
\end{align*}
\]
Proposition

If G has a left adjoint F, then $G_\ast T = GTF$.
Proposition

If G has a left adjoint F, then $G^*T = GTF$.

Proof sketch. This follows from the fact that right Kan extending along a right adjoint is the same as precomposing with the left adjoint:

$$G^*T = \text{Ran}_G GT = GTF$$
Recall the limit formula for a right Kan extension:

$$(\text{Ran}_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Recall the limit formula for a right Kan extension:

$$(\text{Ran}_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

- Let $G : 0 \to D$ and D have a terminal object $\mathbb{1}$. Then $G \ast 1$ is constant at $\mathbb{1}$ with its unique monad structure.
Some easy examples

Recall the limit formula for a right Kan extension:

$$(\text{Ran}_G GT)(d) = \lim_{d \to Gc} GTc,$$

where the limit is indexed by the comma category $(d \downarrow G)$.

Examples

- Let $G : 0 \to D$ and D have a terminal object 1. Then $G \cdot 1$ is constant at 1 with its unique monad structure.
- Let $d : 1 \to D$ and D have powers. Then $A \cdot 1$ is the endomorphism monad of d, given by $d' \mapsto [D(d', d), d]$.
Codensity monads

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G^*1_{\mathcal{C}}$ exists, it is called the codensity monad of G.</td>
</tr>
</tbody>
</table>
Codensity monads

Definition
For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G_* \mathbf{1}_\mathcal{C}$ exists, it is called the codensity monad of G.

Many codensity monads have been studied in the literature.

Examples
- The codensity monad of $\mathbf{FinSet} \hookrightarrow \mathbf{Set}$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces.
Codensity monads

Definition

For any functor $G : \mathcal{C} \to \mathcal{D}$, if $G_*1_\mathcal{C}$ exists, it is called the **codensity monad** of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of $\text{FinSet} \hookrightarrow \text{Set}$ is the *ultrafilter monad*, whose algebras are compact Hausdorff spaces.

- The codensity monad of $\text{Vect}_{k}^{\text{fd}} \hookrightarrow \text{Vect}_{k}$ is the *double dualisation monad*.
Codensity monads

Definition

For any functor $G: \mathcal{C} \to \mathcal{D}$, if $G_*1_\mathcal{C}$ exists, it is called the **codensity monad** of G.

Many codensity monads have been studied in the literature.

Examples

- The codensity monad of $\text{FinSet} \hookrightarrow \text{Set}$ is the *ultrafilter monad*, whose algebras are compact Hausdorff spaces.

- The codensity monad of $\text{Vect}^{\text{fd}}_k \hookrightarrow \text{Vect}_k$ is the *double dualisation monad*.

- The codensity monad of $\text{FinGrp} \hookrightarrow \text{Grp}$ is the *profinite completion monad*, whose algebras are profinite groups.
A universal property of the pushforward

The comparison transformation $\kappa^{G,T} : G_* T \circ G \rightarrow G T$ of the Kan extension gives a functor $K^{G,T}$ making the following square commute

$\begin{array}{ccc}
CT & \xrightarrow{K^{G,T}} & DG_* T \\
\downarrow U^T & & \downarrow U^{G_* T} \\
C & \xrightarrow{G} & D
\end{array}$

We can hence see $K^{G,T}$ as an arrow in CAT/D.
A universal property of the pushforward

The comparison transformation $\kappa_{G, T}^G : G_* T \circ G \to G T$ of the Kan extension gives a functor $K_{G, T}$ making the following square commute

$$
\begin{array}{ccc}
C^T & \xrightarrow{K_{G, T}^G} & D^{G_* T} \\
\downarrow U^T & & \downarrow U^{G_* T} \\
C & \xrightarrow{G} & D
\end{array}
$$

We can hence see $K_{G, T}^G$ as an arrow in CAT/\mathcal{D}.

Recall that we have a functor $\text{Alg} : \text{Mnd}(\mathcal{D})^\text{op} \to \text{CAT}/\mathcal{D}$, which sends a monad S on \mathcal{D} to its category of algebras, \mathcal{D}^S. Then:

Theorem

$K_{G, T}^G$ is a universal arrow from GU^T to Alg.

More explicitly, we have an isomorphism, natural in S,

$$\text{Mnd}(\mathcal{D})(S, G_* T) \cong (\text{CAT} / \mathcal{D}) \begin{pmatrix} \mathcal{C}^T & \mathcal{D}^S \\ \downarrow_{G^T} & \downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{pmatrix}$$

sending θ to $\text{Alg}(\theta) \circ K^{G, T}$. Hence, $U^{G_* T}$ is the universal monadic replacement of GU^T.
A universal property of the pushforward

Theorem (continued)

More explicitly, we have an isomorphism, natural in S,

$$\text{Mnd}(\mathcal{D})(S, G_* T) \cong (\text{CAT}/\mathcal{D}) \begin{pmatrix} \mathcal{C}^T & \mathcal{D}^S \\ \Downarrow_{G^T U} & \Downarrow_{U^S} \\ \mathcal{D} & \mathcal{D} \end{pmatrix}$$

sending θ to $\text{Alg}(\theta) \circ K^{G, T}$. Hence, $U^{G_* T}$ is the universal monadic replacement of $G^T U$.

Putting $G \mapsto G^T U$ and $T \mapsto 1$ in the last sentence, we get:

Corollary

$G_* T \cong (G^T U)_* 1$, i.e. $G_* T$ is the codensity monad of UG^T.
Some functoriality properties

Proposition

If $G_* T$ exists for all $T \in \text{Mnd}(\mathcal{C})$, then G_* becomes a functor $\text{Mnd}(\mathcal{C}) \to \text{Mnd}(\mathcal{D})$.

This is the case, for example, if \mathcal{C} is small and \mathcal{D} is complete.
Some functoriality properties

Proposition
If $G_\ast T$ exists for all $T \in \text{Mnd}(\mathcal{C})$, then G_\ast becomes a functor $\text{Mnd}(\mathcal{C}) \to \text{Mnd}(\mathcal{D})$.

This is the case, for example, if \mathcal{C} is small and \mathcal{D} is complete.

If we further have $H : \mathcal{D} \to \mathcal{E}$, then:

Proposition
If H preserves limits, or if G is a right adjoint, then

$$(HG)_\ast T \simeq H_\ast (G_\ast T),$$

and both of these conditions are sharp.
Pushing forward along $\text{FinSet} \rightarrow \text{Set}$
Consider the following endofunctors of \textbf{Set}:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
Consider the following endofunctors of \textbf{Set}:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.

- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.
Consider the following endofunctors of \textbf{Set}:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.
- The covariant powerset functor \mathcal{P} has a monad structure, whose algebras are complete lattices.
Consider the following endofunctors of \textbf{Set}:

- For a finite set E, the functor $P_E := (-) + E$ has a monad structure, whose algebras are E-pointed sets.
- For a finite monoid M, the functor $A_M := M \times (-)$ has a monad structure, whose algebras are (left) M-sets.
- The covariant powerset functor \mathcal{P} has a monad structure, whose algebras are complete lattices.

Each of these monads preserves finiteness, so they descend to monads on \textbf{FinSet}, which we denote P^f_E, A^f_M and \mathcal{P}^f, respectively.
Let \(i : \text{FinSet} \hookrightarrow \text{Set} \) denote the obvious inclusion. What is \(i_* \mathcal{T}^f \), for \(\mathcal{T}^f \) each of the monads in the previous slide?
Pushing forward along $\text{FinSet} \hookrightarrow \text{Set}$

Let $i: \text{FinSet} \hookrightarrow \text{Set}$ denote the obvious inclusion. What is $i_* T^f$, for T^f each of the monads in the previous slide?

The unit η^T is always a map of monads $1 \rightarrow T$. Using the functoriality of i_*, get a map of monads $i_1 \rightarrow i_* T^f$.

Recall that $\mathcal{U} = i_* 1$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces. Moreover, each T^f is the restriction of a monad T on Set, which gives a map of monads $T \rightarrow i_* T^f$.

Intuition

Thus, $i_* T^f$-algebras have an underlying T-algebra structure and compact Hausdorff topology, which are compatible in some way.
Let $i: \text{FinSet} \hookrightarrow \text{Set}$ denote the obvious inclusion. What is $i_* T^f$, for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \rightarrow T^f$. Using the functoriality of i_*, get a map of monads $i_* 1 \rightarrow i_* T^f$. Recall that $U := i_* 1$ is the ultrafilter monad, whose algebras are compact Hausdorff spaces.
Let $i : \text{FinSet} \hookrightarrow \text{Set}$ denote the obvious inclusion. What is $i_* T^f$, for T^f each of the monads in the previous slide?

The unit η^{T^f} is always a map of monads $1 \rightarrow T^f$. Using the functoriality of i_*, get a map of monads $i_! 1 \rightarrow i_* T^f$. Recall that $U := i_* 1$ is the **ultrafilter monad**, whose algebras are compact Hausdorff spaces.

Moreover, each T^f is the restriction of a monad T on Set, which gives a map of monads $T \rightarrow i_* T^f$.

Intuition: Thus, $i_* T^f$-algebras have an underlying T-algebra structure and compact Hausdorff topology, which are compatible in some way.
Pushing forward along $\text{FinSet} \hookrightarrow \text{Set}$

Let $i: \text{FinSet} \hookrightarrow \text{Set}$ denote the obvious inclusion. What is $i_* T^f$, for T^f each of the monads in the previous slide?

The unit η^T is always a map of monads $1 \rightarrow T^f$. Using the functoriality of i_*, get a map of monads $i_* 1 \rightarrow i_* T^f$. Recall that $U := i_* 1$ is the **ultrafilter monad**, whose algebras are compact Hausdorff spaces.

Moreover, each T^f is the restriction of a monad T on Set, which gives a map of monads $T \rightarrow i_* T^f$.

Intuition

Thus, $i_* T^f$-algebras have an underlying T-algebra structure and compact Hausdorff topology, which are compatible in some way.
The case of P_E^f and A_M^f

Proposition

U preserves finite coproducts. In particular, $U P_E \cong P_E U$ and $U A_M \cong A_M U$.

Moreover, these isomorphisms are distributive laws.
The case of P_E^f and A_M^f

Proposition

U preserves finite coproducts. In particular,

$$UP_E \cong P_E U \quad \text{and} \quad UA_M \cong A_M U.$$

Moreover, these isomorphisms are distributive laws.

This makes UP_E and UA_M monads on \textbf{Set}, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.
The case of P_{E}^{f} and A_{M}^{f}

Proposition

U preserves finite coproducts. In particular,

$$UP_{E} \cong P_{E}U \quad \text{and} \quad UA_{M} \cong A_{M}U.$$

Moreover, these isomorphisms are distributive laws.

This makes UP_{E} and UA_{M} monads on \textbf{Set}, whose algebras are E-pointed compact Hausdorff spaces, and compact Hausdorff spaces with a continuous (left) M-action, respectively.

These seem to fit the bill for $i^{*}P_{E}^{f}$ and $i^{*}A_{M}^{f}$-algebras!
The case of P^f_E and A^f_M

Theorem

We have isomorphisms of monads

$$i_*P^f_E \cong UP_E \quad \text{and} \quad i_*A^f_M \cong UA_M.$$
The case of P^f_E and A^f_M

Theorem

We have isomorphisms of monads

$$i_* P^f_E \cong UP_E \quad \text{and} \quad i_* A^f_M \cong UA_M.$$

Proof sketch. A general construction gives a transformation $\alpha : UP_E \to i_* P^f_E$. For $X \in \textbf{Set}$, this is

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N,$$

where, for $f : X \to N$, we have $\lambda_f \alpha_X = \lambda_{P Ef}$.
The case of P^f_E and A^f_M

Theorem

We have isomorphisms of monads

$$i_* P^f_E \simeq UP_E \quad \text{and} \quad i_* A^f_M \simeq UA_M.$$

Proof sketch. A general construction gives a transformation $\alpha : UP_E \to i_* P^f_E$. For $X \in \textbf{Set}$, this is

$$\alpha_X : \lim_{P_EX \to N} N \to \lim_{X \to N} P_EN,$$

where, for $f : X \to N$, we have $\lambda_f \alpha_X = \lambda_{P Ef}$. We will construct an inverse for α_X.

Proof sketch.

\[\alpha_{X} : \lim_{P_{E}X \to N} N \to \lim_{X \to N} P_{E}N. \]

For \(f : X \to N \), we have \(\lambda_{f} \alpha_{X} = \lambda_{P_{E}f} \). We will construct an inverse for \(\alpha_{X} \).
The case of P^f_E and A^f_M

Proof sketch.

$$\alpha_X : \lim_{P^f_EX \to N} N \to \lim_{X \to N} P^f_EN.$$

For $f : X \to N$, we have $\lambda_f \alpha_X = \lambda_{P^f_E}$. We will construct an inverse for α_X.

Given $x \in i_*P^f_EX$, consider the diagram

\[
\begin{array}{ccc}
X & \xrightarrow{f} & N \\
\downarrow! & & \downarrow! \\
1 & \xrightarrow{P^f_E!} & P^f_E1 \\
\end{array}
\]

We see that $\lambda_f x \in E$ iff $\lambda_! x \in E$.

The case of P_E^f and A_M^f

Proof sketch.

$$\alpha_X : \lim_{P_E X \to N} N \to \lim_{X \to N} P_E N.$$

For $f : X \to N$, we have $\lambda_f \alpha_X = \lambda_{P_E^f}$. We will construct an inverse for α_X.

Given $x \in i_* P_E^f X$, consider the diagram

```
X \xrightarrow{f} N \\
\downarrow ! \quad \downarrow ! \\
1 \quad \downarrow P_E! \\
\quad P_E 1 \ni \lambda_{!} x
```

We see that $\lambda_f x \in E$ iff $\lambda_{!} x \in E$. Hence, either x is constant at $\lambda_{!} x \in E$, or x can be seen as an element of UX. This gives an element of $P_E UX \simeq UP_E X$.
The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P}. But there is a well known monad on \textbf{Set} that restricts to \mathcal{P}^f on \textbf{FinSet}, the filter monad F.
The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P}. But there is a well known monad on \textbf{Set} that restricts to \mathcal{P}^f on \textbf{FinSet}, the filter monad F. This gives us a map $F \to i_*\mathcal{P}^f$, and:

Theorem

This map is an isomorphism of monads $F \simeq i_*\mathcal{P}^f$.
The case of \mathcal{P}^f

There is no distributive law between U and \mathcal{P}. But there is a well known monad on \textbf{Set} that restricts to \mathcal{P}^f on \textbf{FinSet}, the filter monad F. This gives us a map $F \to i_* \mathcal{P}^f$, and:

Theorem

This map is an isomorphism of monads $F \cong i_* \mathcal{P}^f$.

The algebras for F are *continuous lattices*, which are a certain kind of complete lattices with a compatible compact Hausdorff topology.
The codensity monad of Field \rightarrow Ring
For this last section, let $i: \text{Field} \to \text{Ring}$ be the obvious inclusion, and let $K := i_*1$ be its codensity monad.
The monad K

For this last section, let $i : \text{Field} \to \text{Ring}$ be the obvious inclusion, and let $K := i_\ast 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn’t have products). Our general theory tells us that U^K is its monadic replacement.
The monad K

For this last section, let $i : \text{Field} \to \text{Ring}$ be the obvious inclusion, and let $K := i_* 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn’t have products). Our general theory tells us that U^K is its monadic replacement.

For $R \in \text{Ring}$, we have

$$KR = \lim_{R \to k} k.$$
The monad K

For this last section, let $i : \text{Field} \to \text{Ring}$ be the obvious inclusion, and let $K := i_\ast 1$ be its codensity monad. Recall that i is famously not monadic (since, for instance, Field doesn’t have products). Our general theory tells us that U^K is its monadic replacement.

For $R \in \text{Ring}$, we have

$$KR = \lim_{R \to k} k.$$

Any map from a ring to a field factors through a fraction field $\text{Frac}(R/p)$ for a unique prime ideal p. This means that:

$$KR \cong \prod_{p \in \text{Spec } R} \text{Frac}(R/p).$$
The monad K

The unit η^K_R embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on $\text{Spec } R$.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The multiplication μ^K_R only depends on those components indexed by $p \in \text{Spec } R$ corresponding to principal ultrafilters.
The monad K

The unit η^K_R embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on $\text{Spec } R$.

To understand μ^K_R, we need to understand $\text{Spec } KR$.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.
The monad K

The unit η^K_R embodies the philosophy of modern algebraic geometry: it realises an element $r \in R$ as a (dependent) function on $\text{Spec } R$.

To understand μ^K_R, we need to understand $\text{Spec } KR$.

Proposition

The prime ideals of a product of fields are all maximal, and they correspond to ultrafilters on the indexing set.

The multiplication μ^K_R only depends on those components indexed by $p \in \text{Spec } KR$ corresponding to *principal ultrafilters*.
The category of K-algebras

What might the K-algebras be?
The category of K-algebras

What might the K-algebras be?

- The functor $K^{i,1} : \text{Field} \to \text{Ring}^K$ tells us that each field is a K-algebra.
The category of K-algebras

What might the K-algebras be?

- The functor $K^{i,1}: \text{Field} \to \text{Ring}^K$ tells us that each field is a K-algebra.
- Since Ring is complete, Ring^K is complete and the forgetful functor U^K creates limits.
The category of K-algebras

What might the K-algebras be?

- The functor $K^{i,1} : \text{Field} \to \text{Ring}^K$ tells us that each field is a K-algebra.
- Since \text{Ring} is complete, Ring^K is complete and the forgetful functor U^K creates limits.

\text{Field} has equalisers, but not products. It turns out that this is all it’s missing!
What might the K-algebras be?

- The functor $K^{i,1} : \text{Field} \to \text{Ring}^K$ tells us that each field is a K-algebra.
- Since Ring is complete, Ring^K is complete and the forgetful functor U^K creates limits.

Field has equalisers, but not products. It turns out that this is all it’s missing!

Theorem

There is an isomorphism of categories over Ring

$$\text{Ring}^K \cong \text{Prod}(\text{Field})$$
Pushing forward to Set

Let R denote the free ring monad on \textbf{Set}. What happens if we push K forward along U^R?

\[
\begin{array}{ccc}
\text{Prod}(\text{Field}) & \xrightarrow{\top} & \text{Ring} \\
& \xleftarrow{FK} & \xrightarrow{FR} \text{Set} \\
& \xrightarrow{UK} & \xrightarrow{UR} \text{Set}
\end{array}
\]

Since we are pushing forward along a right adjoint, $U^R \ast (i \ast 1) \sim = (U^R i) \ast 1$, so this gives the codensity monad of $U^R i$: $\text{Field} \rightarrow \text{Set}$.

Proposition $\text{Prod}(\text{Field})$ has and U^K preserves reflective coequalisers.
Let R denote the free ring monad on \textbf{Set}. What happens if we push K forward along U^R?

Since we are pushing forward along a right adjoint,

$$U_*(i_\ast 1) \cong (U^R i)_\ast 1,$$

so this gives the codensity monad of $U^R i : \textbf{Field} \to \textbf{Set}$.
Let R denote the free ring monad on \textbf{Set}. What happens if we push K forward along U^R?

Since we are pushing forward along a right adjoint,

$$U^R(i_*1) \cong (U^R i)_*1,$$

so this gives the codensity monad of $U^R i : \textbf{Field} \to \textbf{Set}$.

Proposition

$\text{Prod}(\textbf{Field})$ has and $U^R U^K$ preserves reflective coequalisers.
Pushing forward to Set

Corollary

$$U^R U^K : \text{Prod(Field)} \to \text{Set}$$ is monadic.
Corollary

\[U^R U^K : \text{Prod}(\text{Field}) \to \text{Set} \] is monadic.

Corollary

The theory of products of fields is the ‘smallest’ algebraic theory containing the theory of fields.
Corollary

\(U^R U^K : \text{Prod(\text{Field})} \rightarrow \text{Set} \) is monadic.

The theory of products of fields is the ‘smallest’ algebraic theory containing the theory of fields.

This is an \textit{infinitary theory} with many interesting operations. For example, there are \(n\)-ary operations that vanish on all fields with fewer than \(n\) algebraically independent elements.
Thank you!

Definition

A **filter** on a set X is a collection $\mathcal{F} \subseteq \mathcal{P}X$ such that

- $X \in \mathcal{F}$;
- if $A \subseteq B$ and $A \in \mathcal{F}$, then $B \in \mathcal{F}$;
- if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

An **ultrafilter** on X is a filter \mathcal{U} such that

- for each $A \subseteq X$, exactly one of A and $X \setminus A$ is in \mathcal{U}.

For example, for $A \subseteq X$, the collection $\uparrow A := \{B \subseteq X \mid A \subseteq B\}$ is a filter on X. For $x \in X$, $\uparrow \{x\}$ is an ultrafilter.
• Constants: $\mathbb{Q} \times F_2 \times F_3 \times F_5 \times F_7 \times \cdots$

Given a field k, with char $k = p$. The constant c in k is just c_p.
Operations in Prod(Field)

- n-ary operations: $\prod_{p \in \text{Spec} \mathbb{Z}[t_1, \ldots, t_n]} \text{Frac}(\mathbb{Z}[t_1, \ldots, t_n]/p)$

Let k be a field, and θ an n-ary operation θ. A choice of n elements of k is equivalent to a ring homomorphism $h: \mathbb{Z}[t_1, \ldots, t_n] \to k$. Then $p := \ker h$ is a prime ideal of $\mathbb{Z}[t_1, \ldots, t_n]$, and applying θ to the elements $h(t_1), \ldots, h(t_n)$ gives the image of θ_p under the rightmost morphism of

$$
\begin{array}{c}
\mathbb{Z}[t_1, \ldots, t_n] \xrightarrow{q} \mathbb{Z}[t_1, \ldots, t_n]/p \xrightarrow{l} \text{Frac}(\mathbb{Z}[t_1, \ldots, t_n]/p) \\
\downarrow h \quad \downarrow \quad \downarrow \\
k \quad k \quad k \quad k
\end{array}
$$
Let $\tau \in \prod_{p \in \text{Spec } \mathbb{Z}[t]} \text{Frac}(\mathbb{Z}[t]/p)$ be the unary operation with

- for each $p = 0$ or prime, set $\tau_{(t,p)} = 1$;
- $\tau_p = 0$ for every other $p \in \text{Spec } \mathbb{Z}[t]$.

For k a field and $x \in k$, $\tau(x) = 1$ iff x is transcendental over the prime subfield of k.