Single-set cubical categories and their
formalisation with a proof assistant

Philippe Malbos®, Tanguy Massacrier!, Georg Struth?

LUniversité Claude Bernard Lyon 1
2University of Sheffield

https://arxiv.org/abs/2401.10553
https://www.isa-afp.org/entries/CubicalCategories.html

1/33

Single-set cubical categories

@ Cubical sets and categories are a categorical description of cubes, their faces
and their compositions. They provide a language used for:
o studying homotopy,
o studying higher-dimensional rewriting,
e modelling concurrency using higher dimensional automata,
e modelling homotopy type theory.
@ We want to study the process of formalisation. We present an alternative,

single-set, description of cubical categories.

@ A single-set approach is easier to formalise and to compute with. We use the
proof assistant Isabelle to formalise these categories and to help us find
their definition.

2/33

Computational models

The geometry of computations is cubical

We want to study computations in an algebraic structure using rewriting.

Example: expressions in (N, +).

We replace equalities by oriented arrows:
1+41—2
Compare relations:

1+1+1

7\

2+1 = 1+2

NS

3/33

Computational models

The geometry of computations is cubical

Example: expressions in (N, +).

Compare relations between relations:

14142 ——— 143

S e

1+1+1+1 1+2+1

242 4

S e

2+141 ——3+1

@ Cubical categories provide a language for formalising computations.

@ We apply it to abstract rewriting systems in a forthcoming work.
4/33

Cubical categories

Cubical categories

Definition (Brown, Higgins, 1981):
@ A cubical w-category is the data of:
o a set Cy of k-cells for k € N,
o face maps 0y : Ck — Ch_1 for 1 < i< kand a € {—,+},
o degeneracies ¢, : Ck—1 — Ci for 1 < i < k,
e compositions % ; : Cx Xk iCx — Ci for 1 < i < k,

satisfying some compatibility conditions.

(’)1’~1 ‘9;,1 81:1
C C C Cr_ C
0 ﬁ(rﬁ: 1 . 2 k—1 . k
1,1 a2,2 ak,k

@ A cubical n-category is the same but we forget the structure after dimension
n.

5/33

Cubical categories

Cells and dimensions

The shapes of cells are as follows:

@ 0-cells are points,

o 1-cells, x_f y
@ 2-cells, ’

el @@{

6/33

Cubical categories

Face maps

In every direction /, there are two faces: 0, ; = 0;

-~ (source) and 3Zi =05
(target).

0707 x——507 0 x
I

-

7/33

Cubical categories

Compositions

When faces 9 ;A = 9, ;B of two k-cells coincide

b e

then we can x j-compose them by 'glueing’ them along direction /.

e

J A*k’,‘B J
—_— —

8/33

Cubical categories

Degeneracies

From a O-cell x we get an identity 1-cell.

X €1,1
[— X — X

From a 1-cell we get two degenerate 2-cells.

x5y
|
62,1/‘ XT)y
x5y
62;\\N
X=X
f J/f
y=y

The degeneracies € ; are the identities for the %, j-composition.
) 9/33

Cubical categories

The categories Cub,

A functor F : C — D is a family of maps Fy : Cx — Dy preserving the structure
(face maps, degeneracies, compositions).

This defines the categories Cub, for n € NU {w}.

10/33

Cubical categories

Connections and equivalence with globular

categories

Connections are 'twisted’ degeneracies. They bend the wires between different

directions.
—i+1 - —
N s e
! —

X

By adding functors, this defines the categories Cub! for n € NU {w}.

Theorem (Al-Agl, Brown, Steiner, 2001)

For n € NU {w}, Cubl, ~ Cat,,.

11/33

Single-set cubical categories

From classical to single-set

@ Alternative model of cubical categories.

@ Idea: the low dimensional cells are already encoded in higher dimensions as

identity cells, the degeneracies.
— — _
E=Ro o M%C"@ﬁ

12/33

Single-set cubical categories

From classical to single-set

o Easier to compute with, because we only have one set containing all the cells.
We don't treat the cells of different dimensions separately, but all at once.
e For instance: a functor is only a function F : S — T respecting face maps,

symmetries and compositions.
E=X X - Tl G
L < |n

PAE—B P ... DG D,

@ Easier to formalise in a proof assistant, because the dimension of cells is not
captured with types but functionally through fixed-point properties.
@ We formalised single-set cubical categories in Isabelle. Isabelle used to

develop their axiomatisation.
13/33

Single-set cubical categories

Dimension 1

Definition (MaclLane, 1971):
A single-set category S is the data of:
@ aset S of cells,
o face maps §~ : S — S (source) and 67 : S — S (target),
@ partially defined composition map ® from S xS to S,
where x ® y is defined if and only if 67x = §~y, in which case

S (x®y)=106x, Fxey)=4dty,
X ®0tx=x, 07X ® x= X,
x@(y®z)=x®(y®2)

76 x=80"x=0"0"x,

STotTx=6tx=6"5"x.

14/33

Single-set cubical categories

Dimension 1

The fixed points of the face maps
S={xeS | x=x}={xeS |stx=x}

are the identity arrows for the composition, and they correspond to the 0O-cells in

classical categories.

15/33

Single-set cubical categories

Single-set cubical categories

Definition:

@ A single-set cubical w-category S is the data of:

o a family of single-set categories (S, 6, , 57, ®;)i>1,
e symmetries s; : S — S for i > 1,

o reverse symmetries §;: S — S for i > 1,

satisfying some compatibility conditions.

@ A single-set cubical n-category is the same but we forget the structure after
dimension n.

16/33

Single-set cubical categories

Faces

The faces are themselves cells:

L
— 5= - — st
0; 5J-X 0; x || 6; 5jx
. 0 o
[; y
. i X X i X
I JE— Sy —
storx | arx | 576
o o

17/33

Single-set cubical categories

Symmetries

Let's recall that every 1-cell can be seen as a degenerate 2-cell in two ways.
x — y X — x
| | |l
X =Y y ==Yy

We need a way to identify them: symmetries.

The symmetries exchange directions: s; sends identities for ®;-composition to

identities for ®;,1-composition.

18/33

Single-set cubical categories

Lattice of fixed points

How do we recover low-dimensional cells?

Define S’ = {x € S | §"x = x}, the set of fixed points for the face maps in

direction i, and S' = N;

e S'. We get inclusions forming a lattice.

Example in dimension 2

Stz } O-cells H_H

VA .

} 1-cells HHH J,ij,

\ / } 2-cells Il

19/33

Single-set cubical categories

Lattice of fixed points

Example in dimension 3.

0-cells 1-cells 2-cells 3-cells

20/33

Single-set cubical categories

Lattice of fixed points

Example in dimension w.

&o° CH

SL23. o §234... o, §3.45,..

0-cells 1-cells 2-cells w-cells

21/33

Single-set cubical categories

The categories SCub, and SCub]

@ A functor F : S — 7T is a map preserving the structure.
This defines the categories SCub, for n € NU {w}.

@ As before, we can add connections to the structure: maps 7 : & — S for
i>1and a € {—,+} satisfying some conditions.
Adding functors, we get categories SCub) for n € NU {w}.

22/33

Single-set cubical categories

Equivalence with classical cubical categories

@ We can recover the low-dimensional structure using the fixed points of the

face maps, hence:

Theorem

For n € NU {w}, SCub, ~ Cub, and SCub) ~ Cub'.

@ lIsabelle was used to find the definition of single-set cubical categories and to

prove the above equivalence.

23/33

Single-set cubical categories

Experimental mathematics with Isabelle

How did we find the definition of single-set cubical categories?
@ We tried to copy the classical cubical axioms. Example:
O ialwix =x forxin Cr_y o 5;117%:? for x in S’
symmetries had to be introduced

@ We added all the axioms needed to show the equivalence of categories.

@ We used Isabelle automated proof search tools to show the redundancy of

some axioms, and removed them from the definition. Example:

Ol ¢ = ex—1,i0_1 ~ not needed in single-set

@ It simplified the proof of the equivalence.

24/33

Conclusion and perspectives

Conclusion and perspectives

We introduced a single-set axiomatisation of cubical categories.

We showed they are equivalent to classical cubical categories.

We implemented their definition in Isabelle.

We can require our cells to be invertible. This gives the categories Cub(rmp)
and SCub(”mp), to which we extended our results.

These (n, p)-categories are used in rewriting. Indeed an (w, p)-category C
presents the p-category obtained by quotienting by the equivalence
generated by the (p + 1)-cells.

X — —— — —y

Finding such presentations by free well-behaved (w, p)-categories, called
resolutions, is a goal of higher-dimensional rewriting. In a forthcoming work

we study the case p = 0, that is abstract rewriting systems.
25/33

Conclusion and perspectives

Conclusion and perspectives

Next we want to study higher-dimensional rewriting properties in the single-set

cubical setting:

@ normalisation strategies, which are deterministic choices of reduction paths

from one cell to another reduced one,

@ proofs of Church-Rosser theorem and Newman's lemma, which characterise

confluence properties of rewriting systems,

@ polygraphic resolutions of higher categories.

Thank you.

26/33

Appendix 1: single-set cubical w-category

A single-set cubical w-category consists of a family of single-set categories
(S,0;,6,®@;)ien, with symmetry maps s; : S — S and reverse symmetry maps
51 S — S for each i € N,. These satisfy, for all w,x,y,z€ S and i,j € N,

(i) o067 = o) 6¢ if i # .

(ii) 00 (x®jy) =02x®; 08y if i #jand Aj(x,y),

(i) (w®ix)®;(y®iz)=(wy)®(x®;z)ifi#j, Ai(w,x), Ai(y,z), Aj(w,y) and

Aj(x,z),

(iv) s/(S') C 8™ and 5(S'*Y) C S,

(v) §isix=xand s;5;y =y if x€ S" and y € S,
(vi) 0 six = sjEJ‘.fo and §%'sjx = 507 x if i # j,j+1and x € S,

(vii) si(x®it1y) =six®;siy and si(x®;jy) = six®; siy if j#i,i+1, x,y € S and Aj(x,y),
(viii) s;x = x if x € S'TNS™HL,

(ix) sisix =sjsix if [i—j|>2and x €S NS,

(x) 3keNVi>k+1, xe8"

27/33

Appendix 2: with connections

A single-set cubical w-category with connections is a single-set cubical
w-category S with connection maps v : S — S, for all i € N and av € {—, +}.
These satisfy, for all i,j € N,
(i) 89ex = x, % 4% x = 5jx and 5;1%{& = yfg,ax ifi#£j,j+1landxecd,
(i) ifj#i,i+1and x,y €S, then
Aip1(x,y) = 7T (x®iy1y) = (7 x ®ig1 six) @i (x Qig1 ¥ y),
Ajp1(xy) = v (x®ir1y) = (v x®ix1¥) i (siy ®iv17; ¥),
Aj(x,y) = 7 (x®y) =7"x @y,

(iii) vx = x if x € SHiHL,
(iv) 'y’.'*'x ®jy1 7, X = x and 'y’.'*'x ®jv; x =sixif x € S,
(V) vy x = 'yjﬁfy;"x if i —j| >2and x € 8™,

.] i1
(Vi) sitasive x =Psipax if x € SV
28/33

Isabelle

Appendix 3

Fle EdR Search Markers Folding View Uiites Macros Plugins Help

B3 @

File Browser Documentation | 4 /&

subsection <Semi-cubical ω-categories>

text <We first define a class for cubical ω-categories without symmetries.>

class semi_cubical omega category = icategory +
assumes face_comm: "i # j = 901 aocdj

and
and

and
begin

)[Lemma

#j=DDjxy=091a((X®jey) =01ax®jedlay"
interchange: "i # j = DDiwx = DDiyz = DD jwy = DD j

= (W ®vie X) ®vje (Y ®vie 2)
fin_fix: "3k. vi. k < i — fFx i x"

(W @sje y) @vie (X @sje 2)"

SaloaUL a1e35 PPEPIS Sinsay UpieasiadAH | 4@

fin_fix_var: "fin_dim x"

by (simp add: local.fin_fix)

lemma pcomp_face_func DD: "i # j = DD j x y = DD j
by (metis comp_apply icat.st local local.face_ comm)

(01iax) (@1iay)"

lemma comp_face_func: "i # j = (00 1 a) (X Osje y) C O 1 a X Osje 0 1 ay"

@~ |Output|Query [Sledgehammer Symbols
138.1 (3601/76028)

Provers: cvcd verit z3 e spass vampire Zipperposition

Appendix 3: Isabelle

Prover: ready v

SaU0aUL 21835 PLEPIS Sinsay LpieasiadAn

Fle Edt Search Markers Foking View Utites Macros Plugns Help
EdE & ¢ XDE RGP OEIE BE & @ ¢
@l @ biisabel ¥ | puge [Continuouschecking gy
£ | |text <Next we define a class for cubical ω-categories.>
£. |class cubical_omega_category = semi_cubical_omega_category + symmetry ops +
'§ assumes sym_type: "oo i (face fix i) C face fix (i + 1)"
2 and inv_sym type: "¢9 i (face fix (i + 1)) C face fix i"
r§ and sym_inv_sym: "fFx (i + 1) x = o i (¢ 1 x) =
= and inv_sym sym: "fFx i x = v i (¢ 1 x) = x"
and sym facel: "ffx i x = 9 i a (¢ 1 x) =0 i (0 (i+1)ax)"
and sym face2: "1 # j = 1 #j+1 = fXjx=01ia (cjXx)=0cj(@iax)"
and sym func: "i # j = fFfx i x = ffFx iy = DD j x y =
ol (X ®jey) =(if j =1+ 1then o ix ®is ociyelseocix ®jeoiy)"
and sym_fix: "fFx i x = fFx (i + 1) x = o 1 x = x"
and sym _sym braid: "diffSup i j 2 = fFfx i x = fFfx j x = ¢ i (¢ j X) =0] (¢ 1 x)"
begin
text <First we prove variants of the axioms.>
lemma sym type var: "fFx i x = fFx (i + 1) (¢ 1 x)"
by (meson image_subset iff local.face_fix_prop local.sym_type)
Provers: cvca verit 23 @ spass vampire zipperposition = | Citsarproofs mrymethods © Apply | cancel | tocare | 00%
8/~ Output Query Sledgehammer Symbols
3341 (11052/76028) (sabelle fsabelle,UTF-8-sabele) 11+ 0 UG NI 160/512M8 M- 237/990MiB

10:20 P

30/33

Appendix 3: Isabelle

Fle Edt Search Markers Foking View Utites Macros Plugns Help
E3E & ¢ XDE RGP OEIE BE & @ ¢
@l @ biisabel ¥ | puge [Continuouschecking gy
< [Prover: ready ~
2| [text <We define a class for cubical ω-categories with connections.> z
£o |class cubicaliomegaicategory connections = cubical omega category + connection_ops + 3
'§ assumes connjacel "fFXx j x = 9 j a (I' j a x) = 7
g and conn_face2: "fFx j x = 9 (j + 1) a (I' j a x) =0 j x" H
r§ and conn_face3: "i # j — 1 # j +1 = fFx j x dia(TjpAx)=T7p@1ax)" g
= and conn_cornerl: "fFx i x = fFx iy = DD (i + 1) x y = I' 1 tt (x & (i + 1)¢ y) = (' 1 tt z
and conn_corner2: "fFx i x = fFx iy = DD (i + 1) x y = T i ff (x @s(i + 1)e y) = (I' i ff 2
and conn_corner3: "j #1i A j#i+1= flIxix = fIx iy = DD jxy = T1a (X @jey) L
and conn_fix: "fFx i x = fFx (1 + 1) x = ' 1 a x = x" §
and conn_zigzagl: "fFx i x = T i tt x ®s(i + 1) I' i ff x = x" &
and conn_zigzag2: "fFx i x = I' i tt x ®@vie ' i ff x = 0 i x"
and conn_conn_braid: "diffSup i j 2 —= fFx j x = flx i x = T'ia (' j 8 x) =0T] 8 (I'ia:
and conn_shift: "fFfx i x = fFx (1 + 1) x = o (1 +1) (¢ 1 (I (i + 1) (\X)—le\ (o (1+]
begin
< |lemma conn_face4: "fFx j X = 9 j o (I' j () x) =0 (j + 1) a x"
by (smt (z3) local.conn_facel local.conn _zigzag2 local.face comm var local.locality local.pcomp_|
Provers: cvc verlt z3 @ spass vampire zipperposition = | Citsarproofs mrymethods © Apply | cancel | tocare | 00%
8/~ |Output|Query Sledgehammer Symbols
1203,1 (43438/76028) (isabelle isabelle,UTF-8-sabele) | 11 m o UG NMIIA03/5 1218 MEL: 306/1531Mi8 1020 PM

31/33

Appendix 3: Isabelle

Fle EdR Search Markers Folding View Uiites Macros Plugins Help

dE S =« 0 @ CEEE B & @ €

]

Purge | (2 Continuous cheding
[Prover: ready
text <Next we define the class of cubical $(\omega,0)$-categories with connections.>
class cubical_omega_zero_category_connections = cubical_omega_category_connections +
assumes ri_inv: "k > 1 = i < k - 1 = dim_bound k x = ri_inv_shell k i x = 3y. ri_inv i

begin

File Browser Documentation | ¢ /&

text <Finally, to show our axiomatisation at work we prove Proposition 2.4.7 from our companion pa
cell in an $(\omega,0)$-category is ri-invertible for each natural number i. This requires some ba

SaloaUL a1e35 PPEPIS Sinsay UpieasiadAH | 4@

lemma ri_inv_fix:
assumes "fFx i x"
shows "Jy. ri inv i xy
by (metis assms icat.st_local local.face compat_var local.icat.sscatml.10_absorb)

¢ [lemma ri_inv2:
assumes
assumes |
and "ri_inv_shell k i x
shows "3Jy. ri_inv i x y"

Provers: cvcd verit z3 e spass vampire Zipperposition ~ | lsarproofs (Trymethods | Apply | cancel | Locate | 00%

@~ |Output|Query [Sledgehammer Symbols
1598,1 (67709/76028) (isabelle,isabelle, UTF-8-sabelle) | 11+ o UG INMIBERSIEND MBS MIRIEMO6/1685MIB 1021 PM

32/33

Appendix 3: Isabelle

Fle EdR Search Markers Folding View Uiites Macros Plugins Help

By & ¢ XDE @ NEEE B &# @ ¢

]

25 [temma every dim k ri_inv:
< | assumes "dim bound k x"
2 shows *V: riinv i x y* using «dim bound k x>
§oolproof (induct k arbitrary: x)
£ case 0
&< | thus ?case
5 using ri_inv_fix by simp
£¢ [next
H case (Suc k)
{fix i
have "Jy. ri_inv i
o proof (cases "Suc k
case True
thus ?thesis
using Suc.prems ri_inv_fix by simp
next
case False
s {fix j
assume kAj# i
o hence ”d)m bound k (3 j (k -) (@ x))"
by (snt (23) Suc.prems antisyn conv2 le_add diff_inverse local.face_comn var local.face_compat var local.syncomp_face2 lo
o have "Jy. ri_inv i m jax)y
of proof (cases "j <
case True
obtain y where b: *ri dinv (i - 1) (£ (k - §) (3§ a x)) y*

using Suc.hyps a by force
have c: “dim_bound Kk y*
apply (rule_tac x = " j (k - §) (2 § a x)* in dim_ri_inv)
using a b by simp_all
hence d: "DD i (@] a x) (6 (k - §) y)"
by (smt (verit) False True a b h icid.ts_compat le_add_diff_inverse local,iDst local.icid.stopp.ts_compat local.inv_sym

hence e: “DD i (6 j (k -) y) (@] o x)"
by (smt (verit) False True b c dual order.refl h icid.ts compat le_add diff_inverse local.iDst local.icid.stopp.ts_comp
have f: "0 j a x ®ic © j (k- j) y =03 (k-3) (8] (k-3) (0] ax) @li-1ey)"

apply (subst inv_symcomp_compa)

8~ |Output|Query Sledgehammer|Symbols
1598,1 (67709/76028) (isabelle,isabelle, UTF-8-Isabelle) | nm 1 o UG IBII: 121/512MiB

Purge (2 Continuaus cheding

Prover: ready

ETT—
oo |

(N8 3/1685MiB

SaloaUL a1e35 PPEPIS Sinsay UpieasiadAH | 4@

10:25 M

33/33

