Single-set cubical categories and their formalisation with a proof assistant

Philippe Malbos ${ }^{1}$, Tanguy Massacrier ${ }^{1}$, Georg Struth ${ }^{2}$
${ }^{1}$ Université Claude Bernard Lyon 1
${ }^{2}$ University of Sheffield
https://arxiv.org/abs/2401.10553
https://www.isa-afp.org/entries/CubicalCategories.html

Single-set cubical categories

- Cubical sets and categories are a categorical description of cubes, their faces and their compositions. They provide a language used for:
- studying homotopy,
- studying higher-dimensional rewriting,
- modelling concurrency using higher dimensional automata,
- modelling homotopy type theory.
- We want to study the process of formalisation. We present an alternative, single-set, description of cubical categories.
- A single-set approach is easier to formalise and to compute with. We use the proof assistant Isabelle to formalise these categories and to help us find their definition.

The geometry of computations is cubical

We want to study computations in an algebraic structure using rewriting.

Example: expressions in ($\mathbb{N},+$).

We replace equalities by oriented arrows:

$$
1+1 \longrightarrow 2
$$

Compare relations:

The geometry of computations is cubical

Example: expressions in $(\mathbb{N},+$).

Compare relations between relations:

- Cubical categories provide a language for formalising computations.
- We apply it to abstract rewriting systems in a forthcoming work.

Cubical categories

Definition (Brown, Higgins, 1981):

- A cubical ω-category is the data of:
- a set \mathcal{C}_{k} of k-cells for $k \in \mathbb{N}$,
- face maps $\partial_{k, i}^{\alpha}: \mathcal{C}_{k} \rightarrow \mathcal{C}_{k-1}$ for $1 \leq i \leq k$ and $\alpha \in\{-,+\}$,
- degeneracies $\epsilon_{k, i}: \mathcal{C}_{k-1} \rightarrow \mathcal{C}_{k}$ for $1 \leq i \leq k$,
- compositions $\star_{k, i}: \mathcal{C}_{k} \times_{k, i} \mathcal{C}_{k} \rightarrow \mathcal{C}_{k}$ for $1 \leq i \leq k$, satisfying some compatibility conditions.
- A cubical n-category is the same but we forget the structure after dimension n.

Cells and dimensions

The shapes of cells are as follows:

- 0-cells are points,
- 1-cells,

$$
x \xrightarrow{f} y
$$

- 2-cells,

- 3-cells,

Face maps

In every direction i, there are two faces: $\partial_{k, i}^{-}=\partial_{i}^{-}$(source) and $\partial_{k, i}^{+}=\partial_{i}^{+}$ (target).

Compositions

When faces $\partial_{k, i}^{+} A=\partial_{k, i}^{-} B$ of two k-cells coincide

then we can $\star_{k, i}$-compose them by 'glueing' them along direction i.

Degeneracies

From a 0 -cell x we get an identity 1-cell.

$$
x=x
$$

From a 1-cell we get two degenerate 2 -cells.

The degeneracies $\epsilon_{k, i}$ are the identities for the $\star_{k, i}$-composition.

The categories Cub $_{n}$

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is a family of maps $F_{k}: \mathcal{C}_{k} \rightarrow \mathcal{D}_{k}$ preserving the structure (face maps, degeneracies, compositions).

This defines the categories Cub $_{n}$ for $n \in \mathbb{N} \cup\{\omega\}$.

Connections and equivalence with globular categories

Connections are 'twisted' degeneracies. They bend the wires between different directions.

By adding functors, this defines the categories $\mathrm{Cub}_{n}^{\ulcorner }$for $n \in \mathbb{N} \cup\{\omega\}$.

Theorem (Al-Agl, Brown, Steiner, 2001)

For $n \in \mathbb{N} \cup\{\omega\}$, Cub $_{n}^{\Gamma} \simeq$ Cat $_{n}$.

From classical to single-set

- Alternative model of cubical categories.
- Idea: the low dimensional cells are already encoded in higher dimensions as identity cells, the degeneracies.

From classical to single-set

- Easier to compute with, because we only have one set containing all the cells. We don't treat the cells of different dimensions separately, but all at once.
- For instance: a functor is only a function $F: \mathcal{S} \rightarrow \mathcal{T}$ respecting face maps, symmetries and compositions.

- Easier to formalise in a proof assistant, because the dimension of cells is not captured with types but functionally through fixed-point properties.
- We formalised single-set cubical categories in Isabelle. Isabelle used to develop their axiomatisation.

Dimension 1

Definition (MacLane, 1971):

A single-set category \mathcal{S} is the data of:

- a set \mathcal{S} of cells,
- face maps $\delta^{-}: \mathcal{S} \rightarrow \mathcal{S}$ (source) and $\delta^{+}: \mathcal{S} \rightarrow \mathcal{S}$ (target),
- partially defined composition map \otimes from $\mathcal{S} \times \mathcal{S}$ to \mathcal{S}, where $x \otimes y$ is defined if and only if $\delta^{+} x=\delta^{-} y$, in which case

$$
\begin{aligned}
& \delta^{-}(x \otimes y)= \delta^{-} x, \\
& x \otimes \delta^{+} x= x, \\
& x \otimes(y \otimes z)=x \otimes(y \otimes z) \\
& \delta^{+}(x \otimes y)=\delta^{+} y \\
& \delta^{-} \delta^{-} x=\delta^{-} x=\delta^{+} \delta^{-} x \\
& \delta^{+} \delta^{+} x=\delta^{+} x=\delta^{-} \delta^{+} x
\end{aligned}
$$

Dimension 1

The fixed points of the face maps

$$
\mathcal{S}^{\delta}=\left\{x \in \mathcal{S} \mid \delta^{-} x=x\right\}=\left\{x \in \mathcal{S} \mid \delta^{+} x=x\right\}
$$

are the identity arrows for the composition, and they correspond to the 0 -cells in classical categories.

Single-set cubical categories

Definition:

- A single-set cubical ω-category \mathcal{S} is the data of:
- a family of single-set categories $\left(\mathcal{S}, \delta_{i}^{-}, \delta_{i}^{+}, \otimes_{i}\right)_{i \geq 1}$,
- symmetries $s_{i}: \mathcal{S} \rightarrow \mathcal{S}$ for $i \geq 1$,
- reverse symmetries $\tilde{s}_{i}: \mathcal{S} \rightarrow \mathcal{S}$ for $i \geq 1$,
satisfying some compatibility conditions.
- A single-set cubical n-category is the same but we forget the structure after dimension n.

Faces

The faces are themselves cells:

Symmetries

Let's recall that every 1-cell can be seen as a degenerate 2 -cell in two ways.

We need a way to identify them: symmetries.

The symmetries exchange directions: s_{i} sends identities for \otimes_{i}-composition to identities for \otimes_{i+1}-composition.

Lattice of fixed points

How do we recover low-dimensional cells?
Define $\mathcal{S}^{i}=\left\{x \in \mathcal{S} \mid \delta_{i}^{ \pm} x=x\right\}$, the set of fixed points for the face maps in direction i, and $\mathcal{S}^{\prime}=\bigcap_{i \in I} \mathcal{S}^{i}$. We get inclusions forming a lattice.

Example in dimension 2.

\} 0-cells
\} 1-cells
\} 2-cells

Lattice of fixed points

Example in dimension 3.

0-cells 1-cells 2-cells 3-cells

Lattice of fixed points

Example in dimension ω.

$$
\begin{aligned}
& \mathcal{S}^{1,2,3, \ldots} \hookrightarrow \mathcal{S}^{2,3,4, \ldots} \hookrightarrow \mathcal{S}^{3,4,5, \ldots} \longleftrightarrow \ldots \\
& 0 \text {-cells } \text { 1-cells } \quad \text { 2-cells }
\end{aligned}
$$

The categories $S C u b_{n}$ and $S C u b_{n}^{\gamma}$

- A functor $F: \mathcal{S} \rightarrow \mathcal{T}$ is a map preserving the structure.

This defines the categories SCub_{n} for $n \in \mathbb{N} \cup\{\omega\}$.

- As before, we can add connections to the structure: maps $\gamma_{i}^{\alpha}: \mathcal{S} \rightarrow \mathcal{S}$ for $i \geq 1$ and $\alpha \in\{-,+\}$ satisfying some conditions.
Adding functors, we get categories SCub $_{n}^{\gamma}$ for $n \in \mathbb{N} \cup\{\omega\}$.

Equivalence with classical cubical categories

- We can recover the low-dimensional structure using the fixed points of the face maps, hence:

Theorem

For $n \in \mathbb{N} \cup\{\omega\}, \mathrm{SCub}_{n} \simeq \mathrm{Cub}_{n}$ and $\mathrm{SCub}_{n}^{\gamma} \simeq \mathrm{Cub}_{n}^{\Gamma}$.

- Isabelle was used to find the definition of single-set cubical categories and to prove the above equivalence.

Experimental mathematics with Isabelle

How did we find the definition of single-set cubical categories?

- We tried to copy the classical cubical axioms. Example:

$$
\partial_{k, i+1}^{\alpha} \Gamma_{k, i}^{\alpha} x=x \quad \text { for } x \text { in } \mathcal{C}_{k-1} \quad \rightsquigarrow \quad \delta_{i+1}^{\alpha} \gamma_{i}^{\alpha} x=\underset{\uparrow}{s_{i} x} \quad \text { for } x \text { in } \mathcal{S}^{i}
$$ symmetries had to be introduced

- We added all the axioms needed to show the equivalence of categories.
- We used Isabelle automated proof search tools to show the redundancy of some axioms, and removed them from the definition. Example:

$$
\partial_{k, i}^{\alpha} \Gamma_{k, i}^{-\alpha}=\epsilon_{k-1, i} \partial_{k-1, i}^{\alpha} \quad \rightsquigarrow \quad \text { not needed in single-set }
$$

- It simplified the proof of the equivalence.

Conclusion and perspectives

- We introduced a single-set axiomatisation of cubical categories.
- We showed they are equivalent to classical cubical categories.
- We implemented their definition in Isabelle.
- We can require our cells to be invertible. This gives the categories $\mathrm{Cub}_{(n, p)}^{\ulcorner }$ and $\mathrm{SCub}_{(n, p)}^{\gamma}$, to which we extended our results.
- These (n, p)-categories are used in rewriting. Indeed an (ω, p)-category \mathcal{C} presents the p-category obtained by quotienting by the equivalence generated by the $(p+1)$-cells.

Finding such presentations by free well-behaved (ω, p)-categories, called resolutions, is a goal of higher-dimensional rewriting. In a forthcoming work we study the case $p=0$, that is abstract rewriting systems.

Conclusion and perspectives

Next we want to study higher-dimensional rewriting properties in the single-set cubical setting:

- normalisation strategies, which are deterministic choices of reduction paths from one cell to another reduced one,
- proofs of Church-Rosser theorem and Newman's lemma, which characterise confluence properties of rewriting systems,
- polygraphic resolutions of higher categories.

Thank you.

Appendix 1: single-set cubical ω-category

A single-set cubical ω-category consists of a family of single-set categories $\left(\mathcal{S}, \delta_{i}^{-}, \delta_{i}^{+}, \otimes_{i}\right)_{i \in \mathbb{N}_{+}}$with symmetry maps $s_{i}: \mathcal{S} \rightarrow \mathcal{S}$ and reverse symmetry maps $\tilde{s}_{i}: \mathcal{S} \rightarrow \mathcal{S}$ for each $i \in \mathbb{N}_{+}$. These satisfy, for all $w, x, y, z \in \mathcal{S}$ and $i, j \in \mathbb{N}_{+}$,
(i) $\delta_{i}^{\alpha} \delta_{j}^{\beta}=\delta_{j}^{\beta} \delta_{i}^{\alpha}$ if $i \neq j$,
(ii) $\delta_{i}^{\alpha}\left(x \otimes_{j} y\right)=\delta_{i}^{\alpha} x \otimes_{j} \delta_{i}^{\alpha} y$ if $i \neq j$ and $\Delta_{j}(x, y)$,
(iii) $\left(w \otimes_{i} x\right) \otimes_{j}\left(y \otimes_{i} z\right)=\left(w \otimes_{j} y\right) \otimes_{i}\left(x \otimes_{j} z\right)$ if $i \neq j, \Delta_{i}(w, x), \Delta_{i}(y, z), \Delta_{j}(w, y)$ and $\Delta_{j}(x, z)$,
(iv) $s_{i}\left(\mathcal{S}^{i}\right) \subseteq \mathcal{S}^{i+1}$ and $\tilde{s}_{i}\left(\mathcal{S}^{i+1}\right) \subseteq \mathcal{S}^{i}$,
(v) $\tilde{s}_{i} s_{i} x=x$ and $s_{i} \tilde{s}_{i} y=y$ if $x \in \mathcal{S}^{i}$ and $y \in \mathcal{S}^{i+1}$,
(vi) $\delta_{j}^{\alpha} s_{j} x=s_{j} \delta_{j+1}^{\alpha} \times$ and $\delta_{i}^{\alpha} s_{j} x=s_{j} \delta_{i}^{\alpha} \times$ if $i \neq j, j+1$ and $x \in \mathcal{S}^{j}$,
(vii) $s_{i}\left(x \otimes_{i+1} y\right)=s_{i} x \otimes_{i} s_{i} y$ and $s_{i}\left(x \otimes_{j} y\right)=s_{i} x \otimes_{j} s_{i} y$ if $j \neq i, i+1, x, y \in \mathcal{S}^{i}$ and $\Delta_{j}(x, y)$,
(viii) $s_{i} x=x$ if $x \in \mathcal{S}^{i} \cap \mathcal{S}^{i+1}$,
(ix) $s_{i} s_{j} x=s_{j} s_{i} x$ if $|i-j| \geq 2$ and $x \in \mathcal{S}^{i} \cap \mathcal{S}^{j}$,
(x) $\exists k \in \mathbb{N} \forall i \geq k+1, x \in \mathcal{S}^{i}$.

Appendix 2: with connections

A single-set cubical ω-category with connections is a single-set cubical ω-category \mathcal{S} with connection maps $\gamma_{i}^{\alpha}: \mathcal{S} \rightarrow \mathcal{S}$, for all $i \in \mathbb{N}_{+}$and $\alpha \in\{-,+\}$. These satisfy, for all $i, j \in \mathbb{N}_{+}$,
(i) $\delta_{j}^{\alpha} \gamma_{j}^{\alpha} x=x, \delta_{j+1}^{\alpha} \gamma_{j}^{\alpha} x=s_{j} x$ and $\delta_{i}^{\alpha} \gamma_{j}^{\beta} x=\gamma_{j}^{\beta} \delta_{i}^{\alpha} x$ if $i \neq j, j+1$ and $x \in \mathcal{S}^{j}$,
(ii) if $j \neq i, i+1$ and $x, y \in \mathcal{S}^{i}$, then

$$
\begin{aligned}
\Delta_{i+1}(x, y) & \Rightarrow \gamma_{i}^{+}\left(x \otimes_{i+1} y\right)=\left(\gamma_{i}^{+} x \otimes_{i+1} s_{i} x\right) \otimes_{i}\left(x \otimes_{i+1} \gamma_{i}^{+} y\right), \\
\Delta_{i+1}(x, y) & \Rightarrow \gamma_{i}^{-}\left(x \otimes_{i+1} y\right)=\left(\gamma_{i}^{-} x \otimes_{i+1} y\right) \otimes_{i}\left(s_{i} y \otimes_{i+1} \gamma_{i}^{-} y\right), \\
\Delta_{j}(x, y) & \Rightarrow \gamma_{i}^{\alpha}\left(x \otimes_{j} y\right)=\gamma_{i}^{\alpha} x \otimes_{j} \gamma_{i}^{\alpha} y,
\end{aligned}
$$

(iii) $\gamma_{i}^{\alpha} x=x$ if $x \in \mathcal{S}^{i, i+1}$,
(iv) $\gamma_{i}^{+} x \otimes_{i+1} \gamma_{i}^{-} x=x$ and $\gamma_{i}^{+} x \otimes_{i} \gamma_{i}^{-} x=s_{i} x$ if $x \in \mathcal{S}^{i}$,
(v) $\gamma_{i}^{\alpha} \gamma_{j}^{\beta} x=\gamma_{j}^{\beta} \gamma_{i}^{\alpha} x$ if $|i-j| \geq 2$ and $x \in \mathcal{S}^{i, j}$,
(vi) $s_{i+1} s_{i} \gamma_{i+1}^{\alpha} x=\gamma_{i}^{\alpha} s_{i+1} x$ if $x \in \mathcal{S}^{i, i+1}$.

Appendix 3: Isabelle

Appendix 3: Isabelle

```
File Edit Search Markers Folding View Utitites Macros Plugins Help
```



```
D OubicalCategories.thy [-/Dossiers Tanguy/Cours/These//Projets/Projets GitLab/isabelle//)
    text <Next we define a class for cubical $\omega$-categories.,
    class cubical_omega_category = semi_cubical_omega_category + symmetry_ops +
        assumes sym_type: "\sigma\sigma i (face_fix i) \subseteq face_fix (i + 1)"
        and inv_sym_type: "\vartheta\vartheta i (face_fix (i + 1)) \subseteq face_fix i"
        and sym_inv_sym: "fFx (i + 1) x\Longrightarrow\sigma i (\vartheta i x) =- ""
        and inv_sym_sym: "fFx i x \Longrightarrow v i (\sigma i x) = x"
        and sym_facel: "fFx i x \Longrightarrow\partial i \alpha (\sigma i x) =\sigma i (\partial (i + l) \alpha x)"
        and sym_face2: "i f j m i f j + 1\Longrightarrow fFx j x \Longrightarrow \partial i \alpha (\sigma j x) = \sigma j (\partial i \alpha x)"
        and sym_func: "i f j \Longrightarrow fFx i x \Longrightarrow fFx i y \Longrightarrow DD j x y \Longrightarrow 
                            \sigma i (x &&j* y) = (if j = i + 1 then \sigmai x &oi* \sigma i y else \sigmai x |sj* \sigma i y)"
        and sym fix: "fFx i x C fFx (i + 1) x \Longrightarrow % i x = x"
        and sym_sym_braid: "diffSup i j 2\LongrightarrowfFx i x m fFx jx m % i (\sigma jx)=\sigma j (\sigmaix)"
    begin
    text <First we prove variants of the axioms.>
    lemma sym_type_var: "fFx i x \Longrightarrow fFx (i + 1) (\sigma i x)"
        by (meson image_subset_iff local.face_fix_prop local.sym_type)

\section*{Appendix 3: Isabelle}
```

File Edit Search Markers Folding View Utities Macros Plugins Help

```

```

DCubicalCategories:thy [-/Dossiers Tanguy/Cours/These/Projets/PTojets GitLab/sabelle/]
text <We define a class for cubical ω-categories with connections.,
class cubical_omega_category_connections = cubical_omega_category + connection_ops +
assumes conn_facel: "fFx j x m j \alpha (\Gamma j \alpha x) = x"
and conn_face2: "fFx j x \Longrightarrow\partial (j +1) \alpha (\Gamma j \alpha x)=\sigma j x"
and conn_face3: "i f j \Longrightarrow i f j + 1\Longrightarrow fFx jx m \partial i \alpha (\Gamma j \betax)= Г j \beta (\partial i \alpha x)"
and conn_cornerl: "fFx i x C fFx i y \LongrightarrowDD (i + 1) x y \Longrightarrow \Gamma i tt (x \otimess(i + 1)e y) = (\Gamma i tt
and conn_corner2: "fFx i x \Longrightarrow fFx i y \Longrightarrow DD (i + 1) x y \Longrightarrow \Gamma i ff (x \otimess(i + 1)e y) = (\Gamma i ff

```

```

 and conn fix: "fFx i x \Longrightarrow fFx (i+1) x \Longrightarrow \Gammai \alpha x = x"
 and conn_zigzagl: "fFx i x C \Gamma i tt x \otimes\otimes(i + 1)。 \Gamma i ff x = x"
 and conn_zigzag2: "fFx i x \Longrightarrow \Gamma i tt x \otimessi。 \Gamma i ff x = \sigma i x"
 and conn_conn_braid: "diffSup i j 2\LongrightarrowfFx j x m fFx i x m \Gamma i \alpha (\Gamma j \beta x)= \Gamma j \beta (\Gamma i \alpha :
 and conn_shift: "fFx i x \Longrightarrow fFx (i + 1) x\Longrightarrow\sigma (i + 1) (\sigma i (\Gamma (i + 1) \alpha x)) = \Gamma i \alpha (\sigma (i +
 begin
 lemma conn_face4: "fFx j x \Longrightarrow \partial j \alpha (\Gamma j (\neg\alpha) x) = \partial (j + 1) \alpha x"
 by (smt (z3) local.conn_face1 local.conn_zigzag2 local.face_comm_var local.locality local.pcomp

Appendix 3: Isabelle

```
File Edit Search Markers Folding View Utities Macros Plugins Help
```



```
text <Next we define the class of cubical $(\omega,0)$-categories with connections.>
```

text <Next we define the class of cubical $(\omega,0)$-categories with connections.>
class cubical_omega_zero_category_connections = cubical_omega_category_connections +
assumes ri_inv: "k \geq1\Longrightarrowi\leqk - 1 \Longrightarrow dim_bound k x \Longrightarrow ri_inv_shell k i x \Longrightarrow \existsy. ri_inv i;
begin
text <Finally, to show our axiomatisation at work we prove Proposition 2.4.7 from our companion pa
cell in an $(\omega,0)$-category is ri-invertible for each natural number i. This requires some ba
lemma ri_inv_fix:
assumes "f\overline{F}x i x"
shows "\existsy. ri_inv i x y"
by (metis assms icat.st_local local.face_compat_var local.icat.sscatml.l0_absorb)
lemma ri inv2:
assumes "k \geq 1"
assumes "dim_bound k x"
and "ri inv shell k i x"
shows "\existsy. ri__inv i x y"

Appendix 3: Isabelle

```
File Edit Search Markers Folding View Utitities Macros Plugins Help
```



```
a CubicalCategories,thy [~/Dossiers Tanguy/Cours/Theses/Projets/PTojets GitLab/sabelle/)
    lemma every_dim_k_ri inv:
        shows "\foralli, 斻 ri inv i x y" using <dim bound k x
    O proof (induct k arbitrary: x)
        case 0
        thus ?case
            using ri inv fix by simp
        next
        case (Suc k)
        {fix i
            have "\existsy. ri_inv i x y"
            proof (cases "Suc k \leqi")
            case True
            thus ?thesis
                    using Suc.prems ri_inv_fix by simp
            next
            case False
            {fix j c
                    assume h: "j \leqk^j f i"
                    hence a: "dim_bound k (\Sigmaj (k-j) (\partial j a x))"
                            by (smt (z3) Suc.prems antisym_conv2 le_add_diff_inverse local.face_comm_var local.face_compat_var local.symcomp_face2 lo
                    have "\existsy. ri_inv i (\partialj a x) y"
                    proof (cases " j < i")
                    case True
                            obtain y where b: "ri_inv (i - 1) ( \Sigma j (k - j) (0 j a x)) y"
                            using Suc.hyps a by force
                            have c: "dim bound k y"
                            apply (rule_tac x = "\sum j (k - j) (\partial j \alpha x)" in dim_ri_inv)
                            using a b by simp_all
                            hence d: "DD i ( }\partial\textrm{j}|x)(\Thetaj(k-j)y)
                            by (smt (verit) False True a b h icid.ts_compat le_add_diff_inverse local.iDst local.icid.stopp.ts_compat local.inv_sym
                    hence e: "DD i ( }\Theta\mathrm{ & (k - j) y) ( ( f 人 x)"
                            by (smt (verit) False True b c dual_order.refl h icid.ts_compat le_add_diff_inverse local.iDst local.icid.stopp.ts_comp
```



```
                            apply (subst inv_symcomp_comp4)
- Output Query Sledgehammer Symbols
1598,1 (67709/76028)```

