# Single-set cubical categories and their formalisation with a proof assistant

Philippe Malbos<sup>1</sup>, Tanguy Massacrier<sup>1</sup>, Georg Struth<sup>2</sup>

<sup>1</sup>Université Claude Bernard Lyon 1 <sup>2</sup>University of Sheffield

https://arxiv.org/abs/2401.10553 https://www.isa-afp.org/entries/CubicalCategories.html

# Single-set cubical categories

- Cubical sets and categories are a categorical description of cubes, their faces and their compositions. They provide a language used for:
  - studying homotopy,
  - studying higher-dimensional rewriting,
  - modelling concurrency using higher dimensional automata,
  - modelling homotopy type theory.
- We want to study the process of formalisation. We present an alternative, single-set, description of cubical categories.
- A single-set approach is easier to formalise and to compute with. We use the proof assistant **Isabelle** to formalise these categories and to help us find their definition.

# The geometry of computations is cubical

We want to study computations in an algebraic structure using rewriting.

Example: expressions in  $(\mathbb{N}, +)$ .

We replace equalities by oriented arrows:

 $1+1 \longrightarrow 2$ 

Compare relations:



## The geometry of computations is cubical

#### Example: expressions in $(\mathbb{N}, +)$ .

Compare relations between relations:



- Cubical categories provide a language for formalising computations.
- We apply it to abstract rewriting systems in a forthcoming work.

## **Cubical categories**

Definition (Brown, Higgins, 1981):

- A cubical *w*-category is the data of:
  - a set  $\mathcal{C}_k$  of k-cells for  $k \in \mathbb{N}$ ,
  - face maps  $\partial_{k,i}^{\alpha} : \mathcal{C}_k \to \mathcal{C}_{k-1}$  for  $1 \leq i \leq k$  and  $\alpha \in \{-,+\}$ ,
  - degeneracies  $\epsilon_{k,i} : \mathcal{C}_{k-1} \to \mathcal{C}_k$  for  $1 \leq i \leq k$ ,
  - compositions  $\star_{k,i} : \mathcal{C}_k \times_{k,i} \mathcal{C}_k \to \mathcal{C}_k$  for  $1 \leq i \leq k$ ,

satisfying some compatibility conditions.

$$\mathcal{C}_{0} \xleftarrow[]{\partial_{\mathbf{i},\mathbf{1}}^{-}}_{\partial_{\mathbf{i},\mathbf{1}}^{+}} \mathcal{C}_{1} \xleftarrow[]{\partial_{\mathbf{2},\mathbf{2}}^{-}}_{\partial_{\mathbf{2},\mathbf{2}}^{+}} \mathcal{C}_{2} \qquad \dots \qquad \mathcal{C}_{k-1} \xleftarrow[]{\partial_{k,k}^{-}}_{\partial_{k,k}^{+}} \mathcal{C}_{k} \qquad \dots$$

• A cubical *n*-category is the same but we forget the structure after dimension

## Cells and dimensions

The shapes of cells are as follows:

- 0-cells are points,
- 1-cells,



• 2-cells,



• 3-cells,



#### Face maps

In every direction *i*, there are two faces:  $\partial_{k,i}^- = \partial_i^-$  (source) and  $\partial_{k,i}^+ = \partial_i^+$  (target).



#### Compositions

When faces  $\partial_{k,i}^+ A = \partial_{k,i}^- B$  of two *k*-cells coincide



then we can  $\star_{k,i}$ -compose them by 'glueing' them along direction *i*.

$$\downarrow \xrightarrow{A \star_{k,i} B} \downarrow \downarrow$$

#### Degeneracies

From a 0-cell x we get an identity 1-cell.

From a 1-cell we get two degenerate 2-cells.  $\overset{\epsilon_{1,1}}{\longmapsto}$  x = x



The degeneracies  $\epsilon_{k,i}$  are the identities for the  $\star_{k,i}$ -composition.

#### The categories Cub<sub>n</sub>

A functor  $F : C \to D$  is a family of maps  $F_k : C_k \to D_k$  preserving the structure (face maps, degeneracies, compositions).

This defines the categories  $\operatorname{Cub}_n$  for  $n \in \mathbb{N} \cup \{\omega\}$ .

# Connections and equivalence with globular categories

Connections are 'twisted' degeneracies. They bend the wires between different directions.

By adding functors, this defines the categories  $\operatorname{Cub}_n^{\Gamma}$  for  $n \in \mathbb{N} \cup \{\omega\}$ .

Theorem (Al-Agl, Brown, Steiner, 2001)

For  $n \in \mathbb{N} \cup \{\omega\}$ ,  $\mathsf{Cub}_n^{\Gamma} \simeq \mathsf{Cat}_n$ .

#### From classical to single-set

- Alternative model of cubical categories.
- Idea: the low dimensional cells are already encoded in higher dimensions as identity cells, the degeneracies.



#### From classical to single-set

- Easier to compute with, because we only have one set containing all the cells. We don't treat the cells of different dimensions separately, but all at once.
  - For instance: a functor is only a function F : S → T respecting face maps, symmetries and compositions.



- Easier to formalise in a proof assistant, because the dimension of cells is not captured with types but functionally through fixed-point properties.
- We formalised single-set cubical categories in Isabelle. Isabelle used to develop their axiomatisation.

#### **Dimension** 1

#### Definition (MacLane, 1971):

A single-set category S is the data of:

- a set S of cells,
- face maps  $\delta^- : S \to S$  (source) and  $\delta^+ : S \to S$  (target),
- partially defined composition map  $\otimes$  from  $S \times S$  to S,

where  $x \otimes y$  is defined if and only if  $\delta^+ x = \delta^- y$ , in which case

$$\begin{split} \delta^{-}(x\otimes y) &= \delta^{-}x, & \delta^{+}(x\otimes y) = \delta^{+}y, \\ x\otimes \delta^{+}x &= x, & \delta^{-}x\otimes x &= x, \\ & x\otimes (y\otimes z) &= x\otimes (y\otimes z) \\ & \delta^{-}\delta^{-}x &= \delta^{-}x &= \delta^{+}\delta^{-}x, \\ & \delta^{+}\delta^{+}x &= \delta^{+}x &= \delta^{-}\delta^{+}x. \end{split}$$

#### **Dimension** 1

The fixed points of the face maps

$$\mathcal{S}^{\delta} = \{ x \in \mathcal{S} \mid \delta^{-}x = x \} = \{ x \in \mathcal{S} \mid \delta^{+}x = x \}$$

are the identity arrows for the composition, and they correspond to the 0-cells in classical categories.



# Single-set cubical categories

#### Definition:

- A single-set cubical  $\omega$ -category S is the data of:
  - a family of single-set categories  $(\mathcal{S}, \delta_i^-, \delta_i^+, \otimes_i)_{i \ge 1}$ ,
  - symmetries  $s_i : S \to S$  for  $i \ge 1$ ,
  - reverse symmetries  $\tilde{s}_i : S \to S$  for  $i \ge 1$ ,

satisfying some compatibility conditions.

• A single-set cubical *n*-category is the same but we forget the structure after dimension *n*.

#### Faces

The faces are themselves cells:



## **Symmetries**

Let's recall that every 1-cell can be seen as a degenerate 2-cell in two ways.



We need a way to identify them: symmetries.

The symmetries exchange directions:  $s_i$  sends identities for  $\otimes_i$ -composition to identities for  $\otimes_{i+1}$ -composition.

#### Lattice of fixed points

How do we recover low-dimensional cells?

Define  $S^i = \{x \in S \mid \delta_i^{\pm} x = x\}$ , the set of fixed points for the face maps in direction *i*, and  $S^I = \bigcap_{i \in I} S^i$ . We get inclusions forming a lattice.

# Example in dimension 2. $S^{1,2} \qquad \} \text{ 0-cells}$ $S^{1} \xrightarrow{s_{1}} S^{2} \qquad \} \text{ 1-cells}$ $S^{1} \xrightarrow{s_{2}} S^{2} \qquad \} \text{ 1-cells}$ $S^{1} \xrightarrow{s_{3}} S^{2} \qquad \} \text{ 2-cells}$

19/33

#### Lattice of fixed points

#### **Example in dimension** 3.



0-cells 1-cells 2-cells 3-cells

#### Lattice of fixed points

#### **Example in dimension** $\omega$ **.**



The categories  $SCub_n$  and  $SCub_n^{\gamma}$ 

- A functor F : S → T is a map preserving the structure. This defines the categories SCub<sub>n</sub> for n ∈ N ∪ {ω}.
- As before, we can add connections to the structure: maps γ<sub>i</sub><sup>α</sup> : S → S for i ≥ 1 and α ∈ {−, +} satisfying some conditions.
  Adding functors, we get categories SCub<sub>n</sub><sup>γ</sup> for n ∈ ℕ ∪ {ω}.

## Equivalence with classical cubical categories

• We can recover the low-dimensional structure using the fixed points of the face maps, hence:

#### Theorem

For  $n \in \mathbb{N} \cup \{\omega\}$ ,  $\mathsf{SCub}_n \simeq \mathsf{Cub}_n$  and  $\mathsf{SCub}_n^{\gamma} \simeq \mathsf{Cub}_n^{\Gamma}$ .

• Isabelle was used to find the definition of single-set cubical categories and to prove the above equivalence.

#### Experimental mathematics with Isabelle

How did we find the definition of single-set cubical categories?

• We tried to copy the classical cubical axioms. Example:

 $\partial_{k,i+1}^{\alpha}\Gamma_{k,i}^{\alpha}x = x \quad \text{for } x \text{ in } \mathcal{C}_{k-1} \qquad \rightsquigarrow \qquad \delta_{i+1}^{\alpha}\gamma_{i}^{\alpha}x = s_{i}x \quad \text{for } x \text{ in } \mathcal{S}^{i}$ symmetries had to be introduced

- We added all the axioms needed to show the equivalence of categories.
- We used Isabelle automated proof search tools to show the redundancy of some axioms, and removed them from the definition. Example:

 $\partial_{k,i}^{\alpha} \Gamma_{k,i}^{-\alpha} = \epsilon_{k-1,i} \partial_{k-1,i}^{\alpha} \quad \text{volthematical number of non-needed in single-set}$ 

• It simplified the proof of the equivalence.

#### **Conclusion and perspectives**

- We introduced a single-set axiomatisation of cubical categories.
- We showed they are equivalent to classical cubical categories.
- We implemented their definition in Isabelle.
- We can require our cells to be invertible. This gives the categories Cub<sup>Γ</sup><sub>(n,p)</sub> and SCub<sup>γ</sup><sub>(n,p)</sub>, to which we extended our results.
- These (n, p)-categories are used in rewriting. Indeed an (ω, p)-category C presents the p-category obtained by quotienting by the equivalence generated by the (p + 1)-cells.

$$x \longrightarrow \longleftrightarrow \longrightarrow \ldots \longrightarrow y$$

Finding such presentations by free well-behaved  $(\omega, p)$ -categories, called resolutions, is a goal of higher-dimensional rewriting. In a forthcoming work we study the case p = 0, that is abstract rewriting systems.

#### **Conclusion and perspectives**

Next we want to study higher-dimensional rewriting properties in the single-set cubical setting:

- normalisation strategies, which are deterministic choices of reduction paths from one cell to another reduced one,
- proofs of Church-Rosser theorem and Newman's lemma, which characterise confluence properties of rewriting systems,
- polygraphic resolutions of higher categories.

Thank you.

#### Appendix 1: single-set cubical $\omega$ -category

A single-set cubical  $\omega$ -category consists of a family of single-set categories  $(\mathcal{S}, \delta_i^-, \delta_i^+, \otimes_i)_{i \in \mathbb{N}_+}$  with symmetry maps  $s_i : \mathcal{S} \to \mathcal{S}$  and reverse symmetry maps  $\tilde{s}_i : \mathcal{S} \to \mathcal{S}$  for each  $i \in \mathbb{N}_+$ . These satisfy, for all  $w, x, y, z \in \mathcal{S}$  and  $i, j \in \mathbb{N}_+$ , (i)  $\delta_i^{\alpha} \delta_i^{\beta} = \delta_i^{\beta} \delta_i^{\alpha}$  if  $i \neq j$ ,

- (ii)  $\delta_i^{\alpha}(x \otimes_j y) = \delta_i^{\alpha} x \otimes_j \delta_i^{\alpha} y$  if  $i \neq j$  and  $\Delta_j(x, y)$ ,
- (iii)  $(w \otimes_i x) \otimes_j (y \otimes_i z) = (w \otimes_j y) \otimes_i (x \otimes_j z)$  if  $i \neq j$ ,  $\Delta_i(w, x)$ ,  $\Delta_i(y, z)$ ,  $\Delta_j(w, y)$  and  $\Delta_j(x, z)$ ,
- (iv)  $s_i(\mathcal{S}^i) \subseteq \mathcal{S}^{i+1}$  and  $\tilde{s}_i(\mathcal{S}^{i+1}) \subseteq \mathcal{S}^i$ ,
- (v)  $\tilde{s}_i s_i x = x$  and  $s_i \tilde{s}_i y = y$  if  $x \in S^i$  and  $y \in S^{i+1}$ ,
- (vi)  $\delta_i^{\alpha} s_j x = s_j \delta_{j+1}^{\alpha} x$  and  $\delta_i^{\alpha} s_j x = s_j \delta_i^{\alpha} x$  if  $i \neq j, j+1$  and  $x \in S^j$ ,
- (vii)  $s_i(x \otimes_{i+1} y) = s_i x \otimes_i s_i y$  and  $s_i(x \otimes_j y) = s_i x \otimes_j s_i y$  if  $j \neq i, i+1, x, y \in S^i$  and  $\Delta_j(x, y)$ ,
- (viii)  $s_i x = x$  if  $x \in S^i \cap S^{i+1}$ ,
- (ix)  $s_i s_j x = s_j s_i x$  if  $|i j| \ge 2$  and  $x \in S^i \cap S^j$ ,
- (x)  $\exists k \in \mathbb{N} \ \forall i \geq k+1, x \in S^i$ .

#### Appendix 2: with connections

A single-set cubical  $\omega$ -category with connections is a single-set cubical  $\omega$ -category S with connection maps  $\gamma_i^{\alpha} : S \to S$ , for all  $i \in \mathbb{N}_+$  and  $\alpha \in \{-,+\}$ . These satisfy, for all  $i, j \in \mathbb{N}_+$ ,

- (i)  $\delta_j^{\alpha} \gamma_j^{\alpha} x = x$ ,  $\delta_{j+1}^{\alpha} \gamma_j^{\alpha} x = s_j x$  and  $\delta_i^{\alpha} \gamma_j^{\beta} x = \gamma_j^{\beta} \delta_i^{\alpha} x$  if  $i \neq j, j+1$  and  $x \in S^j$ ,
- (ii) if  $j \neq i, i+1$  and  $x, y \in S^i$ , then

 $\begin{aligned} \Delta_{i+1}(x,y) &\Rightarrow \gamma_i^+(x \otimes_{i+1} y) = (\gamma_i^+ x \otimes_{i+1} s_i x) \otimes_i (x \otimes_{i+1} \gamma_i^+ y), \\ \Delta_{i+1}(x,y) &\Rightarrow \gamma_i^-(x \otimes_{i+1} y) = (\gamma_i^- x \otimes_{i+1} y) \otimes_i (s_i y \otimes_{i+1} \gamma_i^- y), \\ \Delta_j(x,y) &\Rightarrow \gamma_i^\alpha(x \otimes_j y) = \gamma_i^\alpha x \otimes_j \gamma_i^\alpha y, \end{aligned}$ 

(iii)  $\gamma_i^{\alpha} x = x \text{ if } x \in S^{i,i+1}$ , (iv)  $\gamma_i^{+} x \otimes_{i+1} \gamma_i^{-} x = x \text{ and } \gamma_i^{+} x \otimes_i \gamma_i^{-} x = s_i x \text{ if } x \in S^i$ , (v)  $\gamma_i^{\alpha} \gamma_j^{\beta} x = \gamma_j^{\beta} \gamma_i^{\alpha} x \text{ if } |i-j| \ge 2 \text{ and } x \in S^{i,j}$ , (vi)  $s_{i+1} s_i \gamma_{i+1}^{\alpha} x = \gamma_i^{\alpha} s_{i+1} x \text{ if } x \in S^{i,i+1}$ .

#### Appendix 3: Isabelle



#### Appendix 3: Isabelle



 Output Query Sledgehammer S 334,1 (11052/76028)

(isabelle,isabelle,UTF-8-Isabelle) | n m r o UG

#### Appendix 3: Isabelle



#### Appendix 3: Isabelle



1598.1 (67709/76028)

(isabelle,isabelle,UTF-8-Isabelle) i n m r o UG VM: 349/512MiB ML: 496/1685MiB 10:21 PM

#### Appendix 3: Isabelle

