Homotopical characterization of strong contextuality

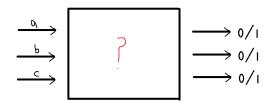
Aziz Kharoof University of Haifa

April 15, 2024

(日) (四) (문) (문) (문)

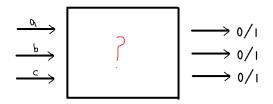
Based on arXiv:2311.14111 joint with Cihan Okay.

Experiments in quantum physics:



(中) (문) (문) (문) (문)

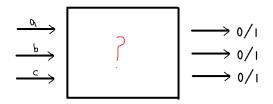
Experiments in quantum physics:



• We can do the three experiments (together) as much as we want

<ロト <四ト <注入 <注下 <注下 <

Experiments in quantum physics:



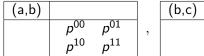
• We can do the three experiments (together) as much as we want

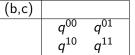
(日) (四) (里) (里)

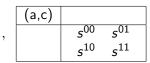
æ

• Every time we can measure just two of them.

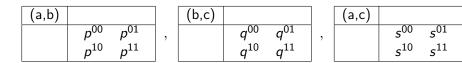
So we get the following probability tables:







So we get the following probability tables:

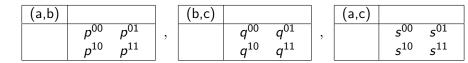


We always have

$$p^{00} + p^{01} = s^{00} + s^{01}$$
 , $p^{00} + p^{10} = q^{00} + q^{01}$, $q^{00} + q^{10} = s^{00} + s^{10}$

(日) (四) (문) (문) (문)

So we get the following probability tables:



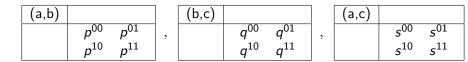
We always have

$$p^{00} + p^{01} = s^{00} + s^{01}$$
, $p^{00} + p^{10} = q^{00} + q^{01}$, $q^{00} + q^{10} = s^{00} + s^{10}$

The tables not always coming from a global probability table:

(a,b,c)	(0,0,0)	(0, 0, 1)	 (1, 1, 1)	
	<i>r</i> ₁	<i>r</i> ₂	 r ₈	

So we get the following probability tables:



We always have

$$p^{00} + p^{01} = s^{00} + s^{01}$$
, $p^{00} + p^{10} = q^{00} + q^{01}$, $q^{00} + q^{10} = s^{00} + s^{10}$

The tables not always coming from a global probability table:

(a,b,c)	(0,0,0)	(0, 0, 1)	 (1, 1, 1)	
	r_1	<i>r</i> ₂	 r ₈	

(日) (四) (문) (문) (문)

In this the tables called *contextual* tables.

Topological discription

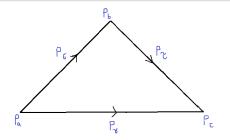


Figure: $p_{\sigma}, p_{\tau}, p_{\gamma} \in D(\mathbb{Z}_2 \times \mathbb{Z}_2), p_a, p_b, p_c \in D(\mathbb{Z}_2)$

Topological discription

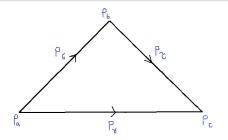


Figure: $p_{\sigma}, p_{\tau}, p_{\gamma} \in D(\mathbb{Z}_2 \times \mathbb{Z}_2), p_a, p_b, p_c \in D(\mathbb{Z}_2)$

Or using commutative diagrams:

$$\{\sigma, \tau, \gamma\} \xrightarrow{p_1} D(\mathbb{Z}_2 \times \mathbb{Z}_2)$$

$$\begin{array}{c} d_0 \\ d_0 \\ \downarrow d_1 \\ \{a, b, c\} \end{array} \xrightarrow{p_0} D(\mathbb{Z}_2)$$

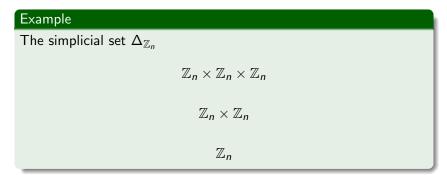
◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Simplicial distributions

A simplicial set X is a collection of sets $X_0, X_1, X_2, ...$ with a face and degeneracy maps. In X_n we have the *n*-simplices.

Simplicial distributions

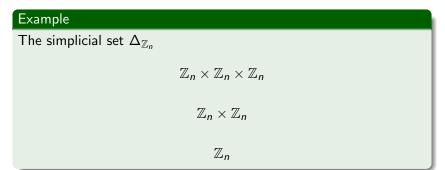
A simplicial set X is a collection of sets $X_0, X_1, X_2, ...$ with a face and degeneracy maps. In X_n we have the *n*-simplices.



<ロト <四ト <注入 <注下 <注下 <

Simplicial distributions

A simplicial set X is a collection of sets $X_0, X_1, X_2, ...$ with a face and degeneracy maps. In X_n we have the *n*-simplices.



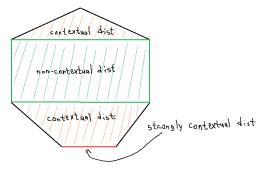
Definition: A simplicial distribution is a simplicial map

$$p: X \to D(\Delta_{\mathbb{Z}_n})$$

X is the measurement space and $\Delta_{\mathbb{Z}_n}$ is the outcome space.

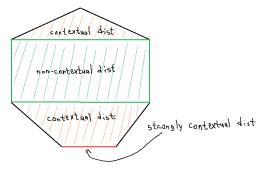
Given a measurement space X. The set of all the simplicial distributions $p: X \to D(\Delta_{\mathbb{Z}_n})$ form a polytope.

Given a measurement space X. The set of all the simplicial distributions $p: X \to D(\Delta_{\mathbb{Z}_n})$ form a polytope.



(日) (四) (코) (코) (코) (코)

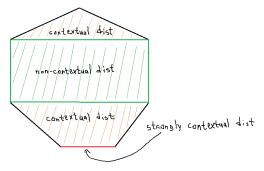
Given a measurement space X. The set of all the simplicial distributions $p: X \to D(\Delta_{\mathbb{Z}_n})$ form a polytope.



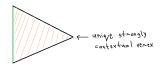
The simplest (non-classic) example when the measurement space X is a circle with one edge, and the outcome space is $\Delta_{\mathbb{Z}_2}$:

(日) (國) (필) (필) (필) 표

Given a measurement space X. The set of all the simplicial distributions $p: X \to D(\Delta_{\mathbb{Z}_n})$ form a polytope.



The simplest (non-classic) example when the measurement space X is a circle with one edge, and the outcome space is $\Delta_{\mathbb{Z}_2}$:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

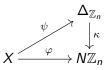
$\Delta_{\mathbb{Z}_n}$ as a path space of the nerve of \mathbb{Z}_n

Fact: As a topological space, $\Delta_{\mathbb{Z}_n}$ is the set of paths in $N\mathbb{Z}_n$ that start at some fixed point. We have a map $\kappa : \Delta_{\mathbb{Z}_n} \to N\mathbb{Z}_n$, send the path to it's terminal point.

$\Delta_{\mathbb{Z}_n}$ as a path space of the nerve of \mathbb{Z}_n

Fact: As a topological space, $\Delta_{\mathbb{Z}_n}$ is the set of paths in $N\mathbb{Z}_n$ that start at some fixed point. We have a map $\kappa : \Delta_{\mathbb{Z}_n} \to N\mathbb{Z}_n$, send the path to it's terminal point.

A simplicial map $\varphi: X \to N\mathbb{Z}_n$ is said to be *null-homotopic* if there is a simplicial map $\psi: X \to \Delta_{\mathbb{Z}_n}$ such that the following diagram commutes

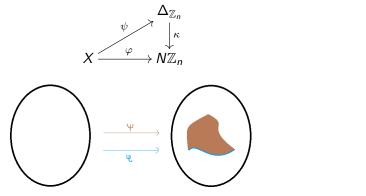


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$\Delta_{\mathbb{Z}_n}$ as a path space of the nerve of \mathbb{Z}_n

Fact: As a topological space, $\Delta_{\mathbb{Z}_n}$ is the set of paths in $N\mathbb{Z}_n$ that start at some fixed point. We have a map $\kappa : \Delta_{\mathbb{Z}_n} \to N\mathbb{Z}_n$, send the path to it's terminal point.

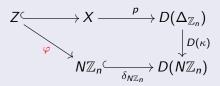
A simplicial map $\varphi: X \to N\mathbb{Z}_n$ is said to be *null-homotopic* if there is a simplicial map $\psi: X \to \Delta_{\mathbb{Z}_n}$ such that the following diagram commutes



æ

Proposition:

Given a simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_n})$. If there is a subspace $Z \subseteq X$ and a simplicial map $\varphi: Z \to N\mathbb{Z}_n$ which is not null-homotopic, such that



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

then $p: X \to D(\Delta_{\mathbb{Z}_n})$ is strongly contextual.

A *compository* (Compositories and Gleaves by C.Flori and T.Fritz) is a simplicial set equipped with a composition operation: m-simplex and n-simplex which have a common k-simplex face

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

turns into an (m + n - k)-simplex.

A *compository* (Compositories and Gleaves by C.Flori and T.Fritz) is a simplicial set equipped with a composition operation:

m-simplex and *n*-simplex which have a common *k*-simplex face turns into an (m + n - k)-simplex.

This compositions satisfying certain axioms from which we get associativity and other nice properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A *compository* (Compositories and Gleaves by C.Flori and T.Fritz) is a simplicial set equipped with a composition operation:

m-simplex and *n*-simplex which have a common *k*-simplex face turns into an (m + n - k)-simplex.

This compositions satisfying certain axioms from which we get associativity and other nice properties.

Example

Given a small category **C**. The nerve *N***C** is a "trivial" compository.

A *compository* (Compositories and Gleaves by C.Flori and T.Fritz) is a simplicial set equipped with a composition operation:

m-simplex and *n*-simplex which have a common *k*-simplex face turns into an (m + n - k)-simplex.

This compositions satisfying certain axioms from which we get associativity and other nice properties.

Example

Given a small category **C**. The nerve *N***C** is a "trivial" compository.

Proposition:

Given a small category **C**. The simplicial set D(NC) is a compository.

A *compository* (Compositories and Gleaves by C.Flori and T.Fritz) is a simplicial set equipped with a composition operation:

m-simplex and *n*-simplex which have a common *k*-simplex face turns into an (m + n - k)-simplex.

This compositions satisfying certain axioms from which we get associativity and other nice properties.

Example

Given a small category **C**. The nerve *N***C** is a "trivial" compository.

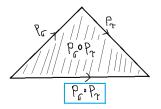
Proposition:

Given a small category **C**. The simplicial set D(NC) is a compository.

 $\Delta_{\mathbb{Z}_2}$ is the nerve of

Simplicial distribution as a category

The composition that we need:

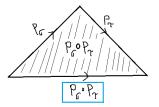


・ロト ・御ト ・モト ・モト

2

Simplicial distribution as a category

The composition that we need:

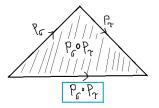


If the measurement space X is 1-skeletal (directed graph), we can think about a simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_n})$ as a category. We denote this category by $\mathbf{C}(X, p)$.

< □ > < @ > < 注 > < 注 > ... 注

Simplicial distribution as a category

The composition that we need:



If the measurement space X is 1-skeletal (directed graph), we can think about a simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_n})$ as a category. We denote this category by $\mathbf{C}(X, p)$.

Proposition

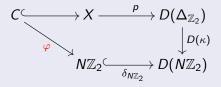
A simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_2})$ is strongly contextual if and only if there is $a \in X_0$ and $A \in \mathbf{C}(X, p)(a, a)$ such that A is the unique strongly contextual as a simplicial distribution on the one edge circle.

The homotopical characterization

Using the Proposition above, we get the following result:

Theorem

Let X be a 1-skeletal measurement space. A simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_2})$ is strongly contextual if and only if there is a circle $C \subseteq X$ and a simplicial map $\varphi: C \to N\mathbb{Z}_2$ which is not null-homotopic, such that



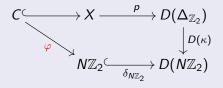
◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The homotopical characterization

Using the Proposition above, we get the following result:

Theorem

Let X be a 1-skeletal measurement space. A simplicial distribution $p: X \to D(\Delta_{\mathbb{Z}_2})$ is strongly contextual if and only if there is a circle $C \subseteq X$ and a simplicial map $\varphi: C \to N\mathbb{Z}_2$ which is not null-homotopic, such that



Thank you for listening