THIS 1S YOUR MACHINE LEARNING SYSTETM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT
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What is this paper about?

Categorical Deep Learning: An Algebraic Theory of Architectures

Bruno Gavranovi¢” 2 Paul Lessard "' Andrew Dudzik *3
Tamara von Glehn?® Jodo G.M. Araiijo’ Petar Veli¢kovié**

Abstract

We present our position on the elusive quest for
a general-purpose framework for specifying and
studying deep learning architectures. Our opin-
ion is that the key attempts made so far lack a
coherent bridge between specifying constraints
which models must satisfy and specifying their
implementations. Focusing on building a such
a bridge, we propose to apply category theory—
precisely, the universal algebra of monads val-
ued in a 2-category of parametric maps—as a
single theory elegantly subsuming both of these
flavours of neural network design. To defend our
position, we show how this theory recovers con-
straints induced by geometric deep learning, as
well as implementations of many architectures
drawn from the diverse landscape of neural net-
works, such as RNNs. We also illustrate how

tha thanr: naturally annradac manu ctandard ~an

neural networks can be specified in a top-down man-
ner, wherein models are described by the constraints they
should satisfy (e.g. in order to respect the structure of the
data they process). Alternatively, a bottom-up approach
describes models by their implementation, i.e. the se-
quence of tensor operations required to perform their for-
ward/backward pass.

1.1. Our opinion

It is our opinion that ample effort has already been given to
both the top-down and bottom-up approaches in isolation,
and that there hasn’t been sufficiently expressive theory to
address them both simultaneously. If we want a general
guiding framework for all of deep learning, this needs to
change. To substantiate our opinion, we survey a few ongo-
ing efforts on both sides of the divide.

One of the most successful examples of the top-down
framework is geometric deep learning (Bronstein et al.,




Summary

® Theory covering numerous deep learning architectures
® A natural step forward from Geometric Deep Learning
® | essabout CT, more about application

® Exciting things ahead
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What is Deep Learning?

® Science and engineering of finding structure in unstructured
data

® |terative function optimisation from a input-output samples

® Requirement: differentiability




GUPERVISED LEARNING WITH NEURAL NETWORKS
IN-ONE SLIDE:
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What’e heen done ¢n far? |

Backprop as Functor:
A compositional perspective on supervised

learning
Brendan Fon Categorical Foundations of Gradient-Based Learning
8
Department of M: G.S.H. CRUTTWELL, Mount Allison University, Canada
Massachusetts Institute BRUNO GAVRANOVIC and NEIL GHANI, University of Strathclyde, UK

PAUL WILSON and FABIO ZANASI, University College London, UK

We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses,
parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory
and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad,
and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy,
shedding new light on their similarities and differences. Our approach to gradient-based learning has examples
generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be
realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our

framework with an implementation in Python.
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Neural networks as parametric lenses. ..
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... and supervised learning as its composite\
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Building a Neural Network from First
Principles using Free Categories and
Para(Optic)

Apr 15,2024 - Zanzi Mihejevs - machine learning, categorical cybernetics, functional programming

Introduction

Category theory for machine learning has been a big topic recently, both with
dropping, and the

In this post we will look at how dependent types can allow us to almost effortlessly implement the
category theory directly, opening up a path to new generalisations.

I will be making heavy use of Tatsuya Hirose's code that implements the Para(Optic) construction in
Haskell. Our goal here is to show that when we make the category theory in the code explicit, it
becomes a powerful scaffolding that lets us structure our program.

Allin all, our goal is to formulate this: A simple neural network with static types enforcing the
parameters and input and output dimensions.

import Data.Fin
import Data.Vect




...where to now?

® Deep Learning is not just about backprop

® Key problem in deep learning:

® Designing the architecture of a neural network: structure of
its forward pass




What’s wrong with the above picture?

® |mage data contains spatial information (Width/height/color
encoding)

® By squashing it into a list, we erase information useful for
learning

® Structure is useful for learning!
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Invariance \
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Images taken from these notes.


https://www.doc.ic.ac.uk/~bkainz/teaching/DL/notes/equivariance.pdf




Structure enables learning

® \We encode priors into architecture, specifying how weights
are reused in multiple places: weight tying

® \Weight tying reduces parameter count

® FEnableslearning, as a feature has to be only learned once




Network architectures can today be...

Recurrent Topological
Autoregressive Convolutional
Graph Autoencoding
Recursive

Generative-Adversarial




Networks today can be... \







GPT2

345 million




GPT3

175 billion




1.73 trillion




GPT4

That's >700GB of storage just for weights.




GPT4

It cost $63M dollars to train.




GPT4

Completely inscrutable.




How can we understand them?

® Numerous issues:

Explainability
Fairness

Regulation

Hallucinations

® There's large scale deployment of these models in practice




The goal?

® Providing a language that can help us understand existing,
and design new architectures

® \What kind of logics/theories is neural network using in
coming to its conclusions?

® Can we use any kind of structural theory for this?
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Geometric Deep Learning

Geometric Deep Learning
Grids, Groups, Graphs,
Geodesics, and Gauges

Michael M. Bronstein', Joan Bruna?, Taco Cohen?, Petar Veli¢ckovié¢?

May 4, 2021




Geometric Deep Learning

® Studies stability of inputs under transformation

Invariance
=
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Architectures as equivariant maps

® Transformations we can do to an input datapoint = group

actions

® Maps which preserve these actions = group action
homomorphisms




A bit more formally

® | et G beagroup, and consider a G-action on X, and a G-action
onyY

® A map f:X->Y is G-equivariant if for all g:G and x:X it holds that

flgw» z)=grv f(z)




Group of...

Translation
Rotation
Scaling
Reflection

Permutation
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How do we use this in neural networks?

® By instantiating the diagram in the appropriate category,
such as FVect, we can represent maps as matrices.

® Then the equation flgw» z)=g> f(z) gives rise to an

equation between matrices, specifying a weight tying
scheme.
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GDL covers a wide array of architectures \

Group convolutional neural networks
Graph neural networks

Topological neural networks

® GCenerally, GDL has been a successful story




But... \

Major flaw:

only covers equivariance with respect to
invertible operations




GDL cannot handle

® Recursion

® Transition functions of an automaton/dynamical system
® Aggregation step of a dynamic programming algorithm
® Programs which write to or read from external memory

How do we bridge this formalism with data types, general
algorithms, branching, and other concepts from CS?




More generally...

® How do we specify the kinds of reasoning networks use?

® \We want networks to
o Reason algorithmically
o Form plans, and then execute them
o Use (co)inductive reasoning

® .. and dosoin verifiable, and explainable ways.
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In other words. ..

<
Normal machine learning

Train your network

in Keras ~—
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Category theory mental gymnastics
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: Algebras
Group actions — for the

group action monad

Algebra homomorphisms
for the
group action monad

l

Equivariant maps




In other words,

G x X GxY




In other words,

Gxf
Gx X +yG xY




In many ways, a trivial step

® But one which completely captures the idea of equivariance

® .. and allows usto generalise in the right way:
o Getrid of invertibility: G only needs to be a monoid for Gx- to be a monad
o Capture more structured operations: We didn't need a monad.




Endofunctors work too!

® Consider the endofunctor1+ A x -:Set -> Set
o The set List(A), together with the map 1+ A x List(A) -> List(A) is its algebra

® Consider the endofunctor A + (-)A2 : Set -> Set

o The set BTree(A) of binary trees with A-labelled nodes, together with the
map A + BTree(A)A2 -> BTree(A) is its algebra
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Folds as algebra homomorphisms - Lists \

1+AX [,

1+ A x List(A) » 1+ Ax X

[Nn.cons]l l["‘o 5 |

List(A) = > X

Here fr is implemented by recursion on input, structural in nature:

fr(Nil) = ro(e)
Iy Consth.2)) =»i(h, ()
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Folds as algebra homomorphisms - Trees \

A 2
A + Tree(A)? He L A4 X2
[Leaf,Node]l J{[ﬁnﬁ]
Tree(A)? = > X

Here fr is implemented by recursion on input, structural in nature:

fr(Leaf(a))
fr(Node(l, 7))

7'0((1»)

r1 (fr(l) fl(l))




Coalgebras!

® \We can dualise the entire story

® Take the endofunctor Ax-:Set -> Set
o Stream(A) is its coalgebra, together with the map Stream(A)->AxStream(A)

® Take the endofunctor [I, O x -]: Set -> Set
o The set of Mealy machines with inputs | and outputs O is its coalgebra
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NN cells as (co)algebras of 2-endofunctors!

Folding recurrent Unolding recurrent Recursive Full recurrent “Moore machine”
neural network neural network neural network neural network neural network
1+AxS B A+ S? S 8

l(P-cell’C“‘) l(R(CG“mce"n)) l(P,ceu'CS”) l(P,cellMea'y) l(P,ceuM“'e)
S OXS S (I -0 x58) Ox(I—S9)

P P ) P, O
P 0 P P
s S S X S S
s s A X ) X
X
A I

Figure 1: Parametric (co)algebras provide a high-level framework for describing structured computation in neural networks.




The 2-category Para

® Neural networks have nonlinearities, and we often need to
explicitly track parameters

® |n 2-category Para, objects are still sets, buta map A->B is
now a parametric function, a choice of (P, f), where f:PxA->B

® Morphisms are composed by chaining their computations

P ‘Q J'P RQ

= f g H— = fg s
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Weight sharing happens automatically! \




Let’s recap

® Unified 2-dimensional categorical framework

® Capturing not only invertible group actions, but concepts
from computer science such as trees, lists, automata, and
general data types

® Allows us to talk about structural recursion in a principled
manner




Future work

® Coalgebra to algebra morphisms model dynamic
programming

solve subproblems

F(P) » F(S)

break into subproblems combine solutions

solve problem




Future work

® The prevalent paradigm of machine learning is that we bake
INn priors ourselves into neural networks

® The Transformer architecture, specifically, the Attention
mechanism challenges this assumption




Learning equivariance

The Lie Derivative for Measuring Learned Equivariance

Nate Gruver* Marc Finzi* Micah Goldblum Andrew Gordon Wilson
New York University

Abstract

Equivariance guarantees that a model’s predictions capture key symmetries in data.
When an image is translated or rotated, an equivariant model’s representation of that
image will translate or rotate accordingly. The success of convolutional neural networks
has historically been tied to translation equivariance directly encoded in their archi-
tecture. The rising success of vision transformers, which have no explicit architectural
bias towards equivariance, challenges this narrative and suggests that augmentations
and training data might also play a significant role in their performance. In order to
better understand the role of equivariance in recent vision models, we introduce the Lie
derivative, a method for measuring equivariance with strong mathematical foundations
and minimal hyperparameters. Using the Lie derivative, we study the equivariance
properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer
architectures. The scale of our analysis allows us to separate the impact of architecture
from other factors like model size or training method. Surprisingly, we find that many
violations of equivariance can be linked to spatial aliasing in ubiquitous network layers,
such as pointwise non-linearities, and that as models get larger and more accurate they
tend to display more equivariance, regardless of architecture. For example, transformers
can be more equivariant than convolutional neural networks after training.
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We can some equivariances, but not others

Transformer-Based Models Are Not Yet Perfect At Learning

Limits of Transformer Language Models on Learning Algorithmic Compositions to Emulate Structural Recursion

Shizhuo Dylan Zhang shizhuo2@illinois. edu
University of Illinois Urbana-Champaign

12 yic 12 1 Gi e b
Jonathan Thomm '~ Aleksandar Terzic Geell}an Karunaratne' Giacomo Camposampiero Curt Tigges R
Bernhard Schilkopf2*? Abbas Rahimi ! EleutherAl
Zory Zhang 20ryz2@illinois. edu
; s gz University of Illinois Urbana-Champaign
Abstract potheses on how well it learns a composition of them (within
o N o 5 the same training routine):
We analyze the Ldpdbllhue§ of Tmmfo'rmer lan- Stalla Biderman itellaQalithaiae
guage models on learning discrete algorithms. To . EleutherAl
this’ end. ‘we introdics two new: tasks demand: H1 A Transformer language model learns the composition Booz Allen Hamilton
ing the composition of several discrete sub-tasks. with a constant number of samples. Maxim Raginsky ihadim Ol iiois edis
On both training LLaMA models from scratch H2 A Transformer relearns the sub-tasks for the composi- University of lllinois Urbana-Champaign
and prompling on Gl_y_]"“ and Gemini Ve a tion and needs as many samples as the most difficult Talia Ringer tringerGillings oy
sure learning compositions of learned primitives. sub-task needs.

S P University of Illinois Urbana-Champaign
We observe that the compositional capabilities of

state-of-the-art Transformer language models are H3 A Transformer language model needs as many samples
very limited and sample-wise scale worse than re- as the sum of relearning all sub-tasks for learning the Abstract
learning all sub-tasks for a new algorithmic com- composition.
position. We also present a theorem in complexity H4 A Transformer lunguuge model needs more data sam- This paper investigates the ability of transformer-based models to learn structural recursion
theory, showmg that gradlent descent on memo- ) h> in H3 E ? from examples. Recursion is a universal concept in both natural and formal languages.
rizing feedforward models can be exponen[ia”y ples than in g Structural recursion is central to the programming language and formal mathematics tasks
data ;nemcien‘ where symbolic tools currently excel beyond neural models, such as inferring semantic r(‘ld»
: One can expect that an oplimul learner can solve a new tions between datatypes and emulating program behavior. We introduce a general frame-
e i s ¥ work that nicely connects the abstract concepts of structural recursion in the programming
comnncition of enh-tacks within a law constant nnmhber of k tl icely he al t pts of tural he prog 5

language domain to concrete sequence modeling problems and learned models’ behavior.

The framework includes a renresentation that cantures the ceneral simtar of structural re-




Interested in this? We're hiring.

® O'O Symbolica - new startup developing foundational

models for structured reasoning, at scale

® Raised $31M funding round
® Opening up offices in London, soon AUS

® Check out our job descriptions!
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Principal Category Theory Scientist - UK - Categorical Deep Learning

© Remote
(@ $165,000 - $230,000 per year - Full time

Senior Category Theory Scientist - UK - Categorical Deep Learning

@ Remote
(@ $115,000 - $140,000 per year - Full time

Category Theory Scientist - UK - Categorical Deep Learning

© Remote
(@ $75,000 - $100,000 per year - Full time




Always has been
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~ Wait, it's all
category theory?
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Transformer Decoder

Transformer Decoder

Transformer Decoder

Transformer Decoder

Transformer Decoder




