Monoidal Meta-Theorem

David Forsman
david.forsman@uclouvain.be
Université catholique de Louvain

$$
15.4 .2024
$$

Outline

(1) Introduction
(2) Coherence
(3) Universal Algebra

4 Soundness \& Completeness

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup\{\phi\}$ (cartesian/symmetric) monoidal σ-theory and let C be a (cartesian/symmetric) monoidal category. Then

$$
E \vDash_{\text {Set }} \phi \text { implies } E \vDash_{c} \phi .
$$

Example

Example (Eckmann-Hilton Argument)

Let $\sigma=\left(S=\{a\}, M=\left\{+,+^{\prime}: a a \rightarrow a ; 0^{\prime}, 0:() \rightarrow a\right\}\right)$

Example

Example (Eckmann-Hilton Argument)

Let $\sigma=\left(S=\{a\}, M=\left\{+,+^{\prime}: a a \rightarrow a ; 0^{\prime}, 0:() \rightarrow a\right\}\right)$ and E consists of

$$
\begin{array}{rlr}
x+0 & \approx x, & 0+x \approx x, \\
x+0^{\prime} & \approx x, & 0^{\prime}+^{\prime} x \approx x, \\
(x+y)+^{\prime}(z+w) & \approx\left(x{+^{\prime}}^{\prime} z\right)+\left(y+^{\prime} w\right) &
\end{array}
$$

Example

Example (Eckmann-Hilton Argument)

Let $\sigma=\left(S=\{a\}, M=\left\{+,+^{\prime}: a a \rightarrow a ; 0^{\prime}, 0:() \rightarrow a\right\}\right)$ and E consists of

$$
\begin{aligned}
x+0 & \approx x, & 0+x \approx x, \\
x+0^{\prime} & \approx x, & 0^{\prime}+^{\prime} x \approx x, \\
(x+y)+^{\prime}(z+w) & \approx\left(x{+^{\prime}}^{\prime} z\right)+\left(y+^{\prime} w\right) &
\end{aligned}
$$

- $E \vDash_{\text {Set }} T$, for $T=$ $\left\{x+^{\prime} y \approx x+y, e \approx e^{\prime}, x+y \approx y+x,(x+y)+z \approx x+(y+z)\right\}$.

Example

Example (Eckmann-Hilton Argument)

Let $\sigma=\left(S=\{a\}, M=\left\{+,+^{\prime}: a a \rightarrow a ; 0^{\prime}, 0:() \rightarrow a\right\}\right)$ and E consists of

$$
\begin{aligned}
x+0 & \approx x, & 0+x \approx x, \\
x+0^{\prime} & \approx x, & 0^{\prime}+^{\prime} x \approx x, \\
(x+y)+^{\prime}(z+w) & \approx\left(x{+^{\prime}}^{\prime} z\right)+\left(y+^{\prime} w\right) &
\end{aligned}
$$

- $E \vDash_{\text {Set }} T$, for $T=$ $\left\{x+^{\prime} y \approx x+y, e \approx e^{\prime}, x+y \approx y+x,(x+y)+z \approx x+(y+z)\right\}$.
- $E \vDash_{C} T$ for all symmetric monoidal categories C.

Non-Examples

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \not \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \not \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

$C=$ Set $^{o p}$ be equipped with its cocartesian structure, $E \not \forall c f \approx g$:

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

$C=$ Set $^{o p}$ be equipped with its cocartesian structure, $E \not \forall c f \approx g$:

- $m(a)=\{1,2,3\}$

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \not \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

$C=$ Set $^{o p}$ be equipped with its cocartesian structure, $E \not \forall c f \approx g$:

- $m(a)=\{1,2,3\}$
- $m(f)(x, y)=\min (3, x+y)$, for $x, y \in m(a)$, and $m(g) \equiv 3$.

Non-Examples

Example

Choose $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow()\})$. Now $\emptyset \vDash_{\text {Set }} f \approx g$ and $\emptyset \forall_{\mathbf{A b}} f \approx g$, where $\mathbf{A b}$ is the monoidal category of abelian groups.

Example

Set $\sigma=(S=\{a\}, M=\{f, g: a \rightarrow a a\})$ and

$C=$ Set $^{o p}$ be equipped with its cocartesian structure, $E \not \forall c f \approx g$:

- $m(a)=\{1,2,3\}$
- $m(f)(x, y)=\min (3, x+y)$, for $x, y \in m(a)$, and $m(g) \equiv 3$.
- $m \vDash E$ but $m \nLeftarrow f \approx g$.

Magmoidal structures

Definition (Structures on Magmoid)

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories.

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
(x \otimes y) \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z)
$$

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
\begin{aligned}
(x \otimes y) & \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z) \\
I & \otimes x \xrightarrow{\lambda_{x}} x
\end{aligned}
$$

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
\begin{aligned}
(x \otimes y) & \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z) \\
I & \otimes x \xrightarrow{\lambda_{x}} x \\
x & \otimes I \xrightarrow{\rho_{x}} x
\end{aligned}
$$

(Associator)
(Left unitor)
(Right unitor)

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
\begin{aligned}
(x \otimes y) & \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z) \\
I & \otimes x \xrightarrow{\lambda_{x}} x \\
x & \otimes I \xrightarrow{\rho_{x}} x \\
x & \otimes y \xrightarrow{\gamma_{x, y}} y \otimes x
\end{aligned}
$$

(Braiding/Symmetror)

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
\begin{aligned}
&(x \otimes y) \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z) \\
& I \otimes x \xrightarrow{\lambda_{x}} x \\
& x \otimes I \xrightarrow{\rho_{x}} x \\
& x \otimes y \xrightarrow{\gamma_{x, y}} y \otimes x \\
& x \xrightarrow{I_{x}} I
\end{aligned}
$$

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$
\begin{aligned}
&(x \otimes y) \otimes z \xrightarrow{\alpha_{x, y, z}} x \otimes(y \otimes z) \\
& I \otimes x \xrightarrow{\lambda_{x}} x \\
& x \otimes I \xrightarrow{\rho_{x}} x \\
& x \otimes y \xrightarrow{\gamma_{x, y}} y \otimes x \\
& x \xrightarrow{!_{x}} I \\
& x \xrightarrow{\delta_{x}} x \otimes x
\end{aligned}
$$

Free Monoid and Pointed Magma

Free Monoid and Pointed Magma

Let X be a set.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

$$
x, e \in X^{*}, \text { for } x \in X \mid
$$

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

$$
x, e \in X^{*}, \text { for } x \in X \mid(x y) \in X^{*} \text { for } x, y \in X^{*} .
$$

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

$$
x, e \in X^{*}, \text { for } x \in X \mid(x y) \in X^{*} \text { for } x, y \in X^{*} .
$$

- The function $\tau: X^{*} \rightarrow(X \sqcup\{e\})^{+}$is defined by the removal of parenthesis. Right bracketing of a word defines a section $r b:(X \sqcup\{e\})^{+} \rightarrow X^{*}$ to τ.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

$$
x, e \in X^{*}, \text { for } x \in X \mid(x y) \in X^{*} \text { for } x, y \in X^{*} .
$$

- The function $\tau: X^{*} \rightarrow(X \sqcup\{e\})^{+}$is defined by the removal of parenthesis. Right bracketing of a word defines a section $r b:(X \sqcup\{e\})^{+} \rightarrow X^{*}$ to τ.
- We denote by $I_{v}=\left\{i<I(v) \mid v_{i} \neq e\right\}$ the set of essential indices of $v \in X^{*}$.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^{+}is the set $\bigsqcup_{n \in \mathbb{N}} X^{n}$ of finite lists over X, where $X^{n}=\{f:[n] \rightarrow X\}$ and $[n]=\{i \in \mathbb{N} \mid i<n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $1: X^{+} \rightarrow \mathbb{N}$.
- The free pointed magma X^{*} over X as a set is defined recursively:

$$
x, e \in X^{*}, \text { for } x \in X \mid(x y) \in X^{*} \text { for } x, y \in X^{*} .
$$

- The function $\tau: X^{*} \rightarrow(X \sqcup\{e\})^{+}$is defined by the removal of parenthesis. Right bracketing of a word defines a section $r b:(X \sqcup\{e\})^{+} \rightarrow X^{*}$ to τ.
- We denote by $I_{v}=\left\{i<I(v) \mid v_{i} \neq e\right\}$ the set of essential indices of $v \in X^{*}$.
- Let $X=\{x, y\}$. The set of essential indices of

$$
v=\left((x e)(y(e x)) \in X^{*} \text { is } I_{v}=\{0,2,4\} \text { and } \tau(v)=\right.\text { xeyex. }
$$

Free Completions

Definition (Cartesian Monoidal Completion)

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $\mathrm{CM}(I)$ of I as follows:

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $\operatorname{Obj}(I)^{*}$.

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $\operatorname{Obj}(I)^{*}$.
- A morphism $v \rightarrow w$ consists of a pair (θ, f), where $\theta: I_{w} \rightarrow I_{v}$ is a function and f is a family of morphisms $f_{i}: v_{\theta(i)} \rightarrow w_{i}$ for $i \in I_{w}$.

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $\operatorname{Obj}(I)^{*}$.
- A morphism $v \rightarrow w$ consists of a pair (θ, f), where $\theta: I_{w} \rightarrow I_{v}$ is a function and f is a family of morphisms $f_{i}: v_{\theta(i)} \rightarrow w_{i}$ for $i \in I_{w}$.
- The composition is the natural one.

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $\operatorname{Obj}(I)^{*}$.
- A morphism $v \rightarrow w$ consists of a pair (θ, f), where $\theta: I_{w} \rightarrow I_{v}$ is a function and f is a family of morphisms $f_{i}: v_{\theta(i)} \rightarrow w_{i}$ for $i \in I_{w}$.
- The composition is the natural one.

The category $\mathrm{CM}(I)$ has a cartesian monoidal structure.

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $\operatorname{Obj}(I)^{*}$.
- A morphism $v \rightarrow w$ consists of a pair (θ, f), where $\theta: I_{w} \rightarrow I_{v}$ is a function and f is a family of morphisms $f_{i}: v_{\theta(i)} \rightarrow w_{i}$ for $i \in I_{w}$.
- The composition is the natural one.

The category $\mathrm{CM}(I)$ has a cartesian monoidal structure.
Furthermore, $\mathrm{CM}(I)$ has two wide subcategories the symmetric monoidal completion $\mathrm{SM}(I)$ and the monoidal completion $\mathrm{M}(I)$ of I defined by morhpisms $(\theta, f),(\phi, g)$, respectively, where θ is a bijection and ϕ is an increasing bijection.

Relevant Coherence Theorems

Relevant Coherence Theorems

The categories $\mathrm{CM}(I), \mathrm{SM}(I)$ and $\mathrm{M}(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $\mathrm{CM}(I)$.

Relevant Coherence Theorems

The categories $\mathrm{CM}(I), \mathrm{SM}(I)$ and $\mathrm{M}(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $\mathrm{CM}(I)$.

Theorem (Coherence Theorem)

Let F:I \rightarrow UC be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C.

Relevant Coherence Theorems

The categories $\mathrm{CM}(I), \mathrm{SM}(I)$ and $\mathrm{M}(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $\mathrm{CM}(I)$.

Theorem (Coherence Theorem)

Let F:I \rightarrow UC be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\bar{F}: T(I) \rightarrow C$ extending F, where $T(I)=(C / S) M(I)$.

Relevant Coherence Theorems

The categories $\mathrm{CM}(I), \mathrm{SM}(I)$ and $\mathrm{M}(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $\mathrm{CM}(I)$.

Theorem (Coherence Theorem)

Let $F: I \rightarrow$ UC be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\bar{F}: T(I) \rightarrow C$ extending F, where $T(I)=(C / S) M(I)$.
In addition, if F is constant on all hom-sets, then \bar{F} is constant on hom-sets $\operatorname{Hom}(v, w)$, where the directed path components $\left[v_{i}\right], i \in I_{v}$, are pairwise disjoint in I.

Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.

Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.
Consider exponential the transposition $I \rightarrow\left[C^{\prime}, C\right]$ of the evaluation functor $C^{\prime} \times I \rightarrow C$. We attain a strict functor $T(I) \rightarrow\left[C^{\prime}, C\right]$. Thus each arrow in $T(I)$ can be considered a natural transformation.

Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.
Consider exponential the transposition $I \rightarrow\left[C^{\prime}, C\right]$ of the evaluation functor $C^{\prime} \times I \rightarrow C$. We attain a strict functor $T(I) \rightarrow\left[C^{\prime}, C\right]$. Thus each arrow in $T(I)$ can be considered a natural transformation.
As an example, we have a unique morphism $\alpha:((x y) z) \rightarrow(x(y z))$ in $T(\{x, y, z\})$. Thus we attain a natural transformation between two functors $C^{3} \cong C^{l} \rightrightarrows C$, which is the whole associator itself.

Signature of Universal Algebra

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.
We will often just denote $\sigma=(S, M)$ or $\sigma=(S, M, V)$.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.
We will often just denote $\sigma=(S, M)$ or $\sigma=(S, M, V)$.
Notation:
- $x: s \in V$.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.
We will often just denote $\sigma=(S, M)$ or $\sigma=(S, M, V)$.
Notation:
- $x: s \in V$.
- $f: a \rightarrow b \in M$.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^{+} \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.
We will often just denote $\sigma=(S, M)$ or $\sigma=(S, M, V)$.
Notation:
- $x: s \in V$.
- $f: a \rightarrow b \in M$.
- If $a=()$, then $f: b \in M$.

Introduction
Coherence
Universal Algebra

Models of Universal Algebra

Models of Universal Algebra

Definition (σ-Model and Morphism)
Let $\sigma=(S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

Models of Universal Algebra

Definition (σ-Model and Morphism)
Let $\sigma=(S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_{1}: S \rightarrow \operatorname{Obj}(C)$ and

Models of Universal Algebra

Definition (σ-Model and Morphism)
Let $\sigma=(S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_{1}: S \rightarrow \operatorname{Obj}(C)$ and
- $m_{2}: M \rightarrow \operatorname{Mor}(C)$, where $m_{2}(f): \overline{m_{1}}(r b(a)) \rightarrow m_{1}(b)$ for all $f: a \rightarrow b \in M$.

Models of Universal Algebra

Definition (σ-Model and Morphism)

Let $\sigma=(S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_{1}: S \rightarrow \operatorname{Obj}(C)$ and
- $m_{2}: M \rightarrow \operatorname{Mor}(C)$, where $m_{2}(f): \overline{m_{1}}(r b(a)) \rightarrow m_{1}(b)$ for all $f: a \rightarrow b \in M$.
A σ-model morphism $m \rightarrow n$ in C consists of a family f of morphisms $f_{s}: m(s) \rightarrow n(s), s \in S$, where for all morphism symbols $\alpha: a \rightarrow b$ we have a commuting diagram

$$
\begin{array}{ll}
m(r b(a)) \xrightarrow{m(\alpha)} m(b) \\
f_{r b(a)} \downarrow & \downarrow_{b} \\
n(r b(a)) \xrightarrow[n(\alpha)]{ } n(b)
\end{array}
$$

Terms of Universal Algebra

Definition (Terms)

Terms of Universal Algebra

Definition (Terms)

Let $\sigma=(S, M, V)$ be a signature. The typed set of σ-terms
Term $\rightarrow S$ is defined recursively as follows:

Terms of Universal Algebra

Definition (Terms)

Let $\sigma=(S, M, V)$ be a signature. The typed set of σ-terms
Term $\rightarrow S$ is defined recursively as follows:

- $x, c \in$ Term for constant symbols $c \in M$ and $x \in V$ (the type is preserved).

Terms of Universal Algebra

Definition (Terms)

Let $\sigma=(S, M, V)$ be a signature. The typed set of σ-terms
Term $\rightarrow S$ is defined recursively as follows:

- $x, c \in$ Term for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
- $f\left(t_{0}, \ldots, t_{n}\right): b \in \operatorname{Term}$ for $f: a_{0} \ldots a_{n} \rightarrow b \in M$ and $t_{0}: a_{0}, \ldots, t_{n}: a_{n} \in$ Term.

Terms of Universal Algebra

Definition (Terms)

Let $\sigma=(S, M, V)$ be a signature. The typed set of σ-terms
Term $\rightarrow S$ is defined recursively as follows:

- $x, c \in$ Term for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
- $f\left(t_{0}, \ldots, t_{n}\right): b \in \operatorname{Term}$ for $f: a_{0} \ldots a_{n} \rightarrow b \in M$ and $t_{0}: a_{0}, \ldots, t_{n}: a_{n} \in$ Term.

We define $\tau:$ Term $\rightarrow V^{+}$. For a term $t \in$ Term we form the list
of variables $\tau(t)=\left\{\begin{array}{l}(), \text { if } t=c \\ v, \text { if } t=v \\ \tau\left(t_{1}\right) \cdots \tau\left(t_{n}\right), \text { if } t=f\left(t_{1}, \ldots, t_{n}\right) .\end{array}\right.$

Terms of Universal Algebra

Definition (Context)

Let $\sigma=(S, M, V)$ be a signature. An element v of V^{+}is called a context if no variable repeats in v.

Terms of Universal Algebra

Definition (Context)

Let $\sigma=(S, M, V)$ be a signature. An element v of V^{+}is called a context if no variable repeats in v. Furthermore, we define for a term t :

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.

Terms of Universal Algebra

Definition (Context)

Let $\sigma=(S, M, V)$ be a signature. An element v of V^{+}is called a context if no variable repeats in v. Furthermore, we define for a term t :

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.

Terms of Universal Algebra

Definition (Context)

Let $\sigma=(S, M, V)$ be a signature. An element v of V^{+}is called a context if no variable repeats in v. Furthermore, we define for a term t :

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t)=v$.

Terms of Universal Algebra

Definition (Context)

Let $\sigma=(S, M, V)$ be a signature. An element v of V^{+}is called a context if no variable repeats in v. Furthermore, we define for a term t :

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t)=v$.
- The term t is called a monoidal term, if $\tau(t)$ is a context.

Monoidal terms can be constructed recursively.

Theories of Universal Algebra

Theories of Universal Algebra

Definition (Equation \& Theory)

Let σ be a signature.

- For σ-terms $t_{1}, t_{2}: s$, we call $t_{1} \approx t_{2}$ a σ-equation.

Theories of Universal Algebra

Definition (Equation \& Theory)

Let σ be a signature.

- For σ-terms t_{1}, t_{2} : s, we call $t_{1} \approx t_{2}$ a σ-equation.
- A set of σ-equations E is called a σ-theory.

Theories of Universal Algebra

Definition (Equation \& Theory)

Let σ be a signature.

- For σ-terms t_{1}, t_{2} : s, we call $t_{1} \approx t_{2}$ a σ-equation.
- A set of σ-equations E is called a σ-theory.
- A σ-equation $t_{1} \approx t_{2}$ is called (symmetric) monoidal if t_{1} and t_{2} have a common (symmetric) monoidal context.

Theories of Universal Algebra

Definition (Equation \& Theory)

Let σ be a signature.

- For σ-terms t_{1}, t_{2} : s, we call $t_{1} \approx t_{2}$ a σ-equation.
- A set of σ-equations E is called a σ-theory.
- A σ-equation $t_{1} \approx t_{2}$ is called (symmetric) monoidal if t_{1} and t_{2} have a common (symmetric) monoidal context.
- A set of (symmetric) monoidal σ-equation is called (symmetric) monoidal σ-theory.

Canonical Morphisms

Canonical Morphisms

Let m be a σ-model in a (cartesian/symmetric) monoidal category C.

Canonical Morphisms

Let m be a σ-model in a (cartesian/symmetric) monoidal category C.

- We attain a strict functor $\bar{m}: \operatorname{Free}(V) \rightarrow C$ from $V \xrightarrow{\text { typing }} S \xrightarrow{m} \operatorname{Obj}(C)$.

Canonical Morphisms

Let m be a σ-model in a (cartesian/symmetric) monoidal category C.

- We attain a strict functor $\bar{m}: \operatorname{Free}(V) \rightarrow C$ from $V \xrightarrow{\text { typing }} S \xrightarrow{m} \operatorname{Obj}(C)$.
- For a (cartesian/symmetric) context $v \in V^{*}$ of $w \in V^{*}$, we define

$$
m_{v, w}=\bar{m}(!): \bar{m}(v) \rightarrow \bar{m}(w)
$$

where! is the unique morphism $v \rightarrow w$ in Free (V).

Canonical Morphisms

Let m be a σ-model in a (cartesian/symmetric) monoidal category C.

- We attain a strict functor \bar{m} : $\operatorname{Free}(V) \rightarrow C$ from $V \xrightarrow{\text { typing }} S \xrightarrow{m} \operatorname{Obj}(C)$.
- For a (cartesian/symmetric) context $v \in V^{*}$ of $w \in V^{*}$, we define

$$
m_{v, w}=\bar{m}(!): \bar{m}(v) \rightarrow \bar{m}(w)
$$

where! is the unique morphism $v \rightarrow w$ in Free(V).

- We call $m_{v, w}: m_{v} \rightarrow m_{w}$ a canonical morphism.

Term-Morphism

Term-Morphism

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v \in V^{*}$ be a (cartesian/symmetric) monoidal context for a term t.

Term-Morphism

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v \in V^{*}$ be a (cartesian/symmetric) monoidal context for a term t.
We define the term morphism $m_{v}(t): m_{v} \rightarrow m(b)$ of t in context v as follows:

Term-Morphism

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v \in V^{*}$ be a (cartesian/symmetric) monoidal context for a term t.
We define the term morphism $m_{v}(t): m_{v} \rightarrow m(b)$ of t in context v as follows:

- $m_{v} \xrightarrow{m_{v, e}} I \xrightarrow{m(c)} m(b)$ for $t=c$

Term-Morphism

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v \in V^{*}$ be a (cartesian/symmetric) monoidal context for a term t.
We define the term morphism $m_{v}(t): m_{v} \rightarrow m(b)$ of t in context v as follows:

- $m_{v} \xrightarrow{m_{v, e}} I \xrightarrow{m(c)} m(b)$ for $t=c$
- $m_{v} \xrightarrow{m_{v, x}} m_{x}$ for $t=x$

Term-Morphism

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v \in V^{*}$ be a (cartesian/symmetric) monoidal context for a term t.
We define the term morphism $m_{v}(t): m_{v} \rightarrow m(b)$ of t in context v as follows:

- $m_{v} \xrightarrow{m_{v, e}} I \xrightarrow{m(c)} m(b)$ for $t=c$
- $m_{v} \xrightarrow{m_{v, x}} m_{x}$ for $t=x$

$$
m_{v} \xrightarrow{m_{v, v_{1} \cdots v_{n}}} m_{v_{1}} \otimes \cdots \otimes m_{v_{n}}
$$

- $m_{v}(t) \downarrow$

$$
m(b) \longleftarrow \stackrel{m}{a}^{\downarrow}
$$

$$
v_{i}=\operatorname{rb}\left(\tau\left(t_{i}\right)\right), i \leq n
$$

Logical Entailment

Lemma (Partial Context Independence)

Logical Entailment

Lemma (Partial Context Independence)
Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^{*}$ be (cartesian/symmetric) monoidal contexts for terms $t, t_{1}, t_{2}: b$ and v is a context for w. Then the following assertions hold:

Logical Entailment

Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^{*}$ be (cartesian/symmetric) monoidal contexts for terms $t, t_{1}, t_{2}: b$ and v is a context for w. Then the following assertions hold:

- The diagram

commutes.

Logical Entailment

Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^{*}$ be (cartesian/symmetric) monoidal contexts for terms $t, t_{1}, t_{2}: b$ and v is a context for w. Then the following assertions hold:

- The diagram

commutes.
- If the equation $m_{w}\left(t_{1}\right)=m_{w}\left(t_{2}\right)$ holds, so does $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$.

Logical Entailment

Definition (Satisfiability and Entailment)

Logical Entailment

Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C, we define:

- Model m satisfies (symmetric) monoidal equation $t_{1} \approx t_{2}$, iff $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$ for some (symmetric) monoidal context v. We then denote $m \vDash t_{1} \approx t_{2}$.

Logical Entailment

Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C, we define:

- Model m satisfies (symmetric) monoidal equation $t_{1} \approx t_{2}$, iff $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$ for some (symmetric) monoidal context v. We then denote $m \vDash t_{1} \approx t_{2}$.
- (Symmetric) monoidal theory E entails ϕ in C, if $m \vDash E$ implies $m \vDash \phi$ for all σ-models m in C. This is denoted $E \not{ }^{\prime} \subset \phi$.

Examples of Theories

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma=(S \times S, M=$ $\left.\left\{o_{a, b, c}:(b, c)(a, b) \rightarrow(a, c), i d_{a}:() \rightarrow(a, a) \mid a, b, c \in S\right\}\right)$.

Examples of Theories

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma=(S \times S, M=$ $\left.\left\{o_{a, b, c}:(b, c)(a, b) \rightarrow(a, c), i d_{a}:() \rightarrow(a, a) \mid a, b, c \in S\right\}\right)$. Fix the theory E consisting of

$$
\begin{aligned}
\left(h \circ_{b, c, d} g\right) \circ_{a, b, d} f & \approx h \circ_{a, c, d}\left(g \circ_{a, b, c} f\right) \\
f \circ_{a, a, b} i d_{a} & \approx f \\
i d_{b} \circ_{a, b, b} f & \approx f
\end{aligned}
$$

for all $a, b, c, d \in S$ and distinct variable symbols $f:(a, b), g:(b, c)$ and $h:(c, d)$.

Examples of Theories

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma=(S \times S, M=$ $\left.\left\{o_{a, b, c}:(b, c)(a, b) \rightarrow(a, c), i d_{a}:() \rightarrow(a, a) \mid a, b, c \in S\right\}\right)$. Fix the theory E consisting of

$$
\begin{aligned}
\left(h \circ_{b, c, d} g\right) \circ_{a, b, d} f & \approx h \circ_{a, c, d}\left(g \circ_{a, b, c} f\right) \\
f \circ_{a, a, b} i d_{a} & \approx f \\
i d_{b} \circ_{a, b, b} f & \approx f
\end{aligned}
$$

for all $a, b, c, d \in S$ and distinct variable symbols
$f:(a, b), g:(b, c)$ and $h:(c, d)$.
The σ-models satisfying E in a monoidal category C are exactly C-enriched categories with S being the set of objects.

Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma=\left(S^{+} \times S, M\right)$

Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma=\left(S^{+} \times S, M\right)$, where M consists of morphism symbols
$\circ_{a^{1}, \ldots, a^{n}, b, c}:(b, c)\left(a^{1}, b_{1}\right) \cdots\left(a^{n}, b_{n}\right) \rightarrow\left(a^{1} \cdots a^{n}, c\right)$ and $i d_{d}:(d, d)$ for $a^{1}, \ldots, a^{n}, b=b_{1} \cdots b_{n} \in S^{+}$and $c, d \in S$.

Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma=\left(S^{+} \times S, M\right)$, where M consists of morphism symbols
$\circ_{a^{1}, \ldots, a^{n}, b, c}:(b, c)\left(a^{1}, b_{1}\right) \cdots\left(a^{n}, b_{n}\right) \rightarrow\left(a^{1} \cdots a^{n}, c\right)$ and $i d_{d}:(d, d)$ for $a^{1}, \ldots, a^{n}, b=b_{1} \cdots b_{n} \in S^{+}$and $c, d \in S$. Let E consist of the following equations
$\bigcirc h \circ\left(g_{n} \circ\left(f_{1}^{n}, \ldots, f_{m_{n}}^{n}\right), \ldots, g_{1} \circ\left(f_{1}^{1}, \ldots, f_{m_{1}}^{1}\right)\right) \approx\left(h \circ\left(g_{n}, \ldots, g_{1}\right)\right) \circ\left(f_{1}^{n}, \ldots, f_{m_{1}}^{1}\right)$

- $f \circ(i d, \ldots, i d) \approx f$
- id $\circ f \approx f$
for a suitable choice of sorts and distinct variable symbols h, g_{i}, f_{j}^{i} for $i \leq n$ and $j \leq m_{i}$.

Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma=\left(S^{+} \times S, M\right)$, where M consists of morphism symbols
$\circ_{a^{1}, \ldots, a^{n}, b, c}:(b, c)\left(a^{1}, b_{1}\right) \cdots\left(a^{n}, b_{n}\right) \rightarrow\left(a^{1} \cdots a^{n}, c\right)$ and $i d_{d}:(d, d)$ for $a^{1}, \ldots, a^{n}, b=b_{1} \cdots b_{n} \in S^{+}$and $c, d \in S$. Let E consist of the following equations
$\bigcirc h \circ\left(g_{n} \circ\left(f_{1}^{n}, \cdots, f_{m_{n}}^{n}\right)\right.$
,$g_{1} \circ\left(f_{1}^{1}\right.$,
,$\left.\left.f_{m_{1}}^{1}\right)\right) \approx\left(h \circ\left(g_{n}\right.\right.$,
,$\left.\left.g_{1}\right)\right) \circ\left(f_{1}^{n}, \ldots, f_{m_{1}}^{1}\right)$

- $f \circ(i d, \ldots, i d) \approx f$
- id $\circ f \approx f$
for a suitable choice of sorts and distinct variable symbols h, g_{i}, f_{j}^{i} for $i \leq n$ and $j \leq m_{i}$. Models for E in a symmetric monoidal category V are exactly the V-enriched multi-categories with S as the set of objects. A single object V-enriched multi-category is then an V-enriched operad.

Substitution

Definition (Renaming)

Substitution

Definition (Renaming)

Let $\sigma=(S, M, V)$ be a signature and let $v=v_{1} \cdots v_{n}$ be a context, where $v_{1}, \ldots, v_{n} \in V$. A function $s: \operatorname{Var}(v)=\left\{v_{1}, \ldots, v_{n}\right\} \rightarrow$ Term that preserves the typing is called a renaming of variables in v.

Substitution

Definition (Renaming)

Let $\sigma=(S, M, V)$ be a signature and let $v=v_{1} \cdots v_{n}$ be a context, where $v_{1}, \ldots, v_{n} \in V$. A function $s: \operatorname{Var}(v)=\left\{v_{1}, \ldots, v_{n}\right\} \rightarrow$ Term that preserves the typing is called a renaming of variables in v. The renaming s is called monoidal renaming, if the terms $s\left(v_{i}\right), i \leq n$, are monoidal and the variable sets $\operatorname{Var}\left(\tau s\left(v_{i}\right)\right), i \leq n$, are pairwise disjoint.

Substitution

Definition (Renaming)

Let $\sigma=(S, M, V)$ be a signature and let $v=v_{1} \cdots v_{n}$ be a context, where $v_{1}, \ldots, v_{n} \in V$. A function $s: \operatorname{Var}(v)=\left\{v_{1}, \ldots, v_{n}\right\} \rightarrow$ Term that preserves the typing is called a renaming of variables in v. The renaming s is called monoidal renaming, if the terms $s\left(v_{i}\right), i \leq n$, are monoidal and the variable sets $\operatorname{Var}\left(\tau s\left(v_{i}\right)\right), i \leq n$, are pairwise disjoint.

Any renaming $s: \operatorname{Var}(v) \rightarrow$ Term extends uniquely to a typing preserving function $\bar{s}:$ Term $_{v} \rightarrow$ Term, where

$$
\bar{s}(t)=\left\{\begin{array}{l}
c, \text { if } t=c \\
s(x), \text { if } t=x \\
f\left(\bar{s}\left(t_{1}\right), \ldots, \bar{s}\left(t_{n}\right)\right), \text { if } t=f\left(t_{1}, \ldots, t_{n}\right),
\end{array} \quad \text { for } t \in \operatorname{Term}_{v}\right.
$$

Furthermore, if s is a monoidal renaming, then \bar{s} maps monoidal terms to monoidal terms.

Synatactic deduction

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.
(2) $t \approx t \in D_{E}$ for all monoidal terms t.

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.
(2) $t \approx t \in D_{E}$ for all monoidal terms t.
(3) If $t_{1} \approx t_{2} \in D_{E}$, then $t_{2} \approx t_{1} \in D_{E}$.

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.
(2) $t \approx t \in D_{E}$ for all monoidal terms t.
(3) If $t_{1} \approx t_{2} \in D_{E}$, then $t_{2} \approx t_{1} \in D_{E}$.
(9) If $t_{1} \approx t_{2}, t_{2} \approx t_{3} \in D_{E}$, then $t_{1} \approx t_{3} \in D_{E}$.

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.
(2) $t \approx t \in D_{E}$ for all monoidal terms t.
(3) If $t_{1} \approx t_{2} \in D_{E}$, then $t_{2} \approx t_{1} \in D_{E}$.
(9) If $t_{1} \approx t_{2}, t_{2} \approx t_{3} \in D_{E}$, then $t_{1} \approx t_{3} \in D_{E}$.
(5) Let $t_{1} \approx t_{2} \in D_{E}$. Let $s_{1}, s_{2}: \operatorname{Var}\left(t_{1}\right) \rightarrow$ Term be a monoidal renamings, where $s_{1}(x) \approx s_{2}(x) \in D_{E}$ for all $x \in \operatorname{Var}\left(t_{1}\right)$. Then $s\left(t_{1}\right) \approx s\left(t_{2}\right) \in D_{E}$.

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_{E} of all deduced equations from E as the smallest set satisfying the following conditions:
(1) $E \subset D_{E}$.
(2) $t \approx t \in D_{E}$ for all monoidal terms t.
(3) If $t_{1} \approx t_{2} \in D_{E}$, then $t_{2} \approx t_{1} \in D_{E}$.
(9) If $t_{1} \approx t_{2}, t_{2} \approx t_{3} \in D_{E}$, then $t_{1} \approx t_{3} \in D_{E}$.
(6) Let $t_{1} \approx t_{2} \in D_{E}$. Let $s_{1}, s_{2}: \operatorname{Var}\left(t_{1}\right) \rightarrow$ Term be a monoidal renamings, where $s_{1}(x) \approx s_{2}(x) \in D_{E}$ for all $x \in \operatorname{Var}\left(t_{1}\right)$. Then $s\left(t_{1}\right) \approx s\left(t_{2}\right) \in D_{E}$.

If $\phi \in D_{E}$, we write $E \vdash \phi$ and say that ϕ is syntactically deduced from E.

Soundness

Soundness

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v=v_{1} \ldots v_{n}$ is a (cartesian/symmetric) monoidal context for a term $t: b$. Assume that $s: \operatorname{Var}(v) \rightarrow$ Term is a (cartesian) monoidal renaming.

Soundness

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v=v_{1} \ldots v_{n}$ is a (cartesian/symmetric) monoidal context for a term $t: b$. Assume that $s: \operatorname{Var}(v) \rightarrow$ Term is a (cartesian) monoidal renaming.
Then for any (cartesian/symmetric) monoidal contexts $w, w_{1}, \ldots w_{n}$ for $s(t), s\left(v_{1}\right), \ldots, s\left(v_{n}\right)$, respectively, where w_{i} has its variables expressed in w for $i \leq n$, the equation holds

$$
m_{w}(s(t))=m_{v}(t) \circ m_{w_{1}}\left(s\left(v_{1}\right)\right) \otimes \ldots \otimes m_{w_{n}}\left(s\left(v_{n}\right)\right) \circ m_{w, w_{1} \cdots w_{n}}
$$

Soundness

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v=v_{1} \ldots v_{n}$ is a (cartesian/symmetric) monoidal context for a term $t: b$. Assume that $s: \operatorname{Var}(v) \rightarrow$ Term is a (cartesian) monoidal renaming.
Then for any (cartesian/symmetric) monoidal contexts $w, w_{1}, \ldots w_{n}$ for $s(t), s\left(v_{1}\right), \ldots, s\left(v_{n}\right)$, respectively, where w_{i} has its variables expressed in w for $i \leq n$, the equation holds

$$
m_{w}(s(t))=m_{v}(t) \circ m_{w_{1}}\left(s\left(v_{1}\right)\right) \otimes \ldots \otimes m_{w_{n}}\left(s\left(v_{n}\right)\right) \circ m_{w, w_{1} \cdots w_{n}}
$$

Theorem (Soundness)

Let $E \cup\{\phi\}$ be a (symmetric) monoidal σ-theory. Let C be a (symmetric) monoidal category. Then $E \vdash \phi$ implies $E \vDash_{c} \phi$.

Soundness

Proof．

Soundness

Proof.

Let $m \vDash E$ in C and denote by $T=\{\phi \mid m \vDash \phi\}$. For $D_{E} \subset T$, it suffices to show the substitution condition for T :

Soundness

Proof.

Let $m \vDash E$ in C and denote by $T=\{\phi \mid m \vDash \phi\}$. For $D_{E} \subset T$, it suffices to show the substitution condition for T : Assume that v is a (symmetric) monoidal context for terms $t_{1}, t_{2}: b$ and $t_{1} \approx t_{2} \in T$ and w is a (symmetric) monoidal context for $s_{1}(t), s_{2}(t)$ for monoidal renamings $s_{1}, s_{2}: \operatorname{Var}(v) \rightarrow$ Term where $s_{1}(x) \approx s_{2}(x) \in T$ for all $x \in \operatorname{Var}(v)$.

Soundness

Proof.

Let $m \vDash E$ in C and denote by $T=\{\phi \mid m \vDash \phi\}$. For $D_{E} \subset T$, it suffices to show the substitution condition for T : Assume that v is a (symmetric) monoidal context for terms $t_{1}, t_{2}: b$ and $t_{1} \approx t_{2} \in T$ and w is a (symmetric) monoidal context for $s_{1}(t), s_{2}(t)$ for monoidal renamings $s_{1}, s_{2}: \operatorname{Var}(v) \rightarrow$ Term where $s_{1}(x) \approx s_{2}(x) \in T$ for all $x \in \operatorname{Var}(v)$. By the Substitution Lemma, we have

$$
\begin{aligned}
m_{w}\left(s_{1}\left(t_{1}\right)\right) & =m_{v}\left(t_{1}\right) \circ m_{w_{1}}\left(s_{1}\left(v_{1}\right)\right) \otimes \ldots \otimes m_{w_{n}}\left(s_{1}\left(v_{n}\right)\right) \circ m_{w, w_{1} \cdots w_{n}} \\
& =m_{v}\left(t_{2}\right) \circ m_{w_{1}}\left(s_{2}\left(v_{1}\right)\right) \otimes \ldots \otimes m_{w_{n}}\left(s_{2}\left(v_{n}\right)\right) \circ m_{w, w_{1} \cdots w_{n}} \\
& =m_{w}\left(s_{2}\left(t_{2}\right)\right)
\end{aligned}
$$

for $w_{i}=\tau\left(s_{1}\left(v_{i}\right)\right), i \leq n$. Hence $s_{1}\left(t_{1}\right) \approx s_{2}\left(t_{2}\right) \in T$.

Modified Lindebaum-Tarski-algebras

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ term model n and the monoidal E-model m in Set as follows:

- $n(s)=\{*, t \mid t: s$ is a monoidal term $\}$

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ term model n and the monoidal E-model m in Set as follows:

- $n(s)=\{*, t \mid t: s$ is a monoidal term $\}$ and $m(s)=n(s) / \sim_{s}$, where $\sim_{s}=\left\{\left(t_{1}, t_{2}\right),(*, *) \mid E \vdash t_{1} \approx t_{2}, t_{1}: s\right\}$ for sorts s. We denote the quotient map by $q_{s}: n(s) \rightarrow m(s)$ for sorts s.

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ term model n and the monoidal E-model m in Set as follows:

- $n(s)=\{*, t \mid t: s$ is a monoidal term $\}$ and $m(s)=n(s) / \sim_{s}$, where $\sim_{s}=\left\{\left(t_{1}, t_{2}\right),(*, *) \mid E \vdash t_{1} \approx t_{2}, t_{1}: s\right\}$ for sorts s. We denote the quotient map by $q_{s}: n(s) \rightarrow m(s)$ for sorts s.
- $n(\alpha): n(a) \rightarrow n(b)$,

$$
\left(u_{1}, \ldots, u_{n}\right) \mapsto\left\{\begin{array}{l}
f\left(u_{1}, \ldots, u_{n}\right), \text { if } f\left(u_{1}, \ldots, u_{n}\right) \in n(b) \\
*, \text { else }
\end{array}\right.
$$

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ term model n and the monoidal E-model m in Set as follows:

- $n(s)=\{*, t \mid t: s$ is a monoidal term $\}$ and $m(s)=n(s) / \sim_{s}$, where $\sim_{s}=\left\{\left(t_{1}, t_{2}\right),(*, *) \mid E \vdash t_{1} \approx t_{2}, t_{1}: s\right\}$ for sorts s. We denote the quotient map by $q_{s}: n(s) \rightarrow m(s)$ for sorts s.
- $n(\alpha): n(a) \rightarrow n(b)$,
$\left(u_{1}, \ldots, u_{n}\right) \mapsto\left\{\begin{array}{l}f\left(u_{1}, \ldots, u_{n}\right), \text { if } f\left(u_{1}, \ldots, u_{n}\right) \in n(b) \\ *, \text { else }\end{array}\right.$ and
$m(\alpha): m(a) \rightarrow m(b)$ is the unique map making the commutative diagram

$$
\begin{array}{cc}
n(a) \xrightarrow{n(\alpha)} & n(b) \\
q_{a} \downarrow \\
m(a) & { }_{m(\alpha)}^{\downarrow} \\
& q_{b} \\
m(b)
\end{array}
$$

Completeness

Completeness

Lemma (Term-Naturality of Model Morphisms)

Let $f: m \rightarrow n$ be a morphism of σ-models in a
(cartesian/symmetric) monoidal category C. Let v be a
(cartesian/symmetric) monoidal context for a term $t: b$. Then the diagram

$$
\begin{array}{ll}
m_{v} \xrightarrow{m_{v}(t)} & m(b) \\
\downarrow_{v} & \downarrow^{f_{b}} \\
n_{v} \xrightarrow[n_{v}(t)]{ } & n(b)
\end{array}
$$

commutes.

Completeness

Lemma (Evaluation Lemma)

Completeness

Lemma (Evaluation Lemma)

Let E be a (symmetric) monoidal σ-theory. Let m be the monoidal E-model. Let $v=v_{1} \cdots v_{n}$ be a context for a term $t: b$. Denote the variables expressed in t by $v_{i_{1}}, \ldots, v_{i_{k}}$. Then
$n_{v}(t)\left(u_{1}, \ldots, u_{n}\right)=\left\{\begin{array}{l}*, \text { if } * \text { or a variable twice in }\left(u_{i_{1}}, \ldots, u_{i_{k}}\right), \\ s(t), \text { else where } s\left(v_{i_{j}}\right)=u_{i_{j}}, j \leq k .\end{array}\right.$ for $\left(u_{1}, \ldots, u_{n}\right) \in n_{v}$.

Completeness

Theorem (Completeness)

Let $E \cup\{\phi\}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \vDash \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \vDash_{\text {Set }} \phi$.

Completeness

Theorem (Completeness)

Let $E \cup\{\phi\}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \vDash \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \vDash_{\text {Set }} \phi$.

Proof.

\Rightarrow : Let $v=v_{1} \ldots v_{n}$ be a (symmetric) monoidal context for terms $t_{1}, t_{2}: b$. Assume that $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$. By the Evaluation Lemma and the term naturality of the quotient $q: n \rightarrow m$, it follows that

$$
\begin{aligned}
{\left[t_{1}\right] } & =m_{v}\left(t_{1}\right)\left(\left[v_{1}\right], \ldots,\left[v_{n}\right]\right) \\
& =m_{v}\left(t_{2}\right)\left(\left[v_{1}\right], \ldots,\left[v_{n}\right]\right) \\
& =\left[t_{2}\right]
\end{aligned}
$$

and hence $E \vdash t_{1} \approx t_{2}$.

Completeness

E-Model Completeness (continued).

\Leftarrow : Assume then that $E \vdash t_{1} \approx t_{2}$. We show that $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$. Let $\left(\left[u_{1}\right], \ldots,\left[u_{n}\right]\right) \in m_{v}$. Now again by the previous lemmas again

$$
\begin{aligned}
m_{v}\left(t_{1}\right)\left(\left[u_{1}\right], \ldots,\left[u_{n}\right]\right) & =\left[n_{v}\left(t_{1}\right)\left(u_{1}, \ldots, u_{n}\right)\right] \\
& =\left\{\begin{array}{l}
{[*], \text { if } * \text { or a variable twice in }\left(u_{1}, \ldots, u_{n}\right)} \\
{\left[s\left(t_{1}\right)\right], \text { else where } s\left(v_{i}\right)=u_{i}, i \leq n}
\end{array}\right. \\
& =\left\{\begin{array}{l}
{[*], \text { if } * \text { or a variable twice in }\left(u_{1}, \ldots, u_{n}\right)} \\
{\left[s\left(t_{2}\right)\right], \text { else where } s\left(v_{i}\right)=u_{i}, i \leq n}
\end{array}\right. \\
& =\left[n_{v}\left(t_{2}\right)\left(u_{1}, \ldots, u_{n}\right)\right] \\
& =m_{v}\left(t_{2}\right)\left(\left[u_{1}\right], \ldots,\left[u_{n}\right]\right)
\end{aligned}
$$

Thus $m_{v}\left(t_{1}\right)=m_{v}\left(t_{2}\right)$.

Monoidal Meta-Theorem

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup\{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \vDash_{\text {Set }} \phi$ implies $E \vDash_{c} \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup\{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \vDash_{\text {Set }} \phi$ implies $E \vDash_{c} \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.

If $E \vDash_{\text {Set }} \phi$, then by completeness $E \vdash \phi$ and hence by soundness $E \not \vDash_{c} \phi$ for all (cartesian/symmetric) monoidal categories C.

Thank You

Thank you for your attention!

