Monoidal Meta-Theorem

David Forsman david.forsman@uclouvain.be

Université catholique de Louvain

15.4.2024

Outline

2 Coherence

Oniversal Algebra

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal σ -theory and let C be a (cartesian/symmetric) monoidal category. Then

 $E \vDash_{\mathbf{Set}} \phi$ implies $E \vDash_C \phi$.

Introduction Coherence

Universal Algebra Soundness & Completeness

Example

Example (Eckmann-Hilton Argument)

Let
$$\sigma = (S = \{a\}, M = \{+, +' : aa \rightarrow a; 0', 0 : () \rightarrow a\})$$

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

< (□) ト < 三

Example

Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+, +': aa \rightarrow a; 0', 0: () \rightarrow a\})$ and E consists of

$$x + 0 \approx x, \qquad 0 + x \approx x, x + 0' \approx x, \qquad 0' + x \approx x, (x + y) + (z + w) \approx (x + z) + (y + w)$$

э

(日)

Example

Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+, +': aa \rightarrow a; 0', 0: () \rightarrow a\})$ and E consists of

$$x + 0 \approx x,$$
 $0 + x \approx x,$
 $x + 0' \approx x,$ $0' + x \approx x,$
 $(x + y) + (z + w) \approx (x + z) + (y + w)$

•
$$E \vDash_{\text{Set}} T$$
, for $T = \{x+'y \approx x+y, e \approx e', x+y \approx y+x, (x+y)+z \approx x+(y+z)\}.$

3)) B

(日)

Example

Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+, +': aa \rightarrow a; 0', 0: () \rightarrow a\})$ and E consists of

$$x + 0 \approx x, \qquad 0 + x \approx x,$$

$$x + 0' \approx x, \qquad 0' + x \approx x,$$

$$(x + y) + (z + w) \approx (x + z) + (y + w)$$

▲ (日) ▶ ▲ (日)

э

Introduction

Coherence Universal Algebra Soundness & Completeness

Non-Examples

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

(日)

э

æ

Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \not\vDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

▶ ∢ ≣

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \nvDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \rightarrow aa\})$$

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{\mathsf{Set}} f \approx g$ and $\emptyset \nvDash_{\mathsf{Ab}} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow f \Box 1 & g \downarrow & \downarrow 1 \Box f \\ aa \xrightarrow{g \Box 1} aaa & a \xrightarrow{1 \Box g} aaa \end{cases}$$

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \nvDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow_{f\square 1} & g \downarrow & \downarrow_{1\square f} \\ aa \xrightarrow{g\square 1} aaa & a \xrightarrow{1\square g} aaa \end{cases}$$
. Now $E \vDash_{\mathsf{Set}} f \approx g$.

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \nvDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow_{f\square 1} & g \downarrow & \downarrow_{1\square f} \\ aa \xrightarrow{g\square 1} aaa & a \xrightarrow{1\square g} aaa \end{cases}$$
. Now $E \vDash_{\mathsf{Set}} f \approx g$. Let

$$C = \mathsf{Set}^{op}$$
 be equipped with its cocartesian structure, $E \nvDash_C f \approx g$:

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \not\vDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow_{f\square 1} & g \downarrow & \downarrow_{1\square f} \\ aa \xrightarrow{g\square 1} aaa & a \xrightarrow{1\square g} aaa \end{cases}$$
. Now $E \vDash_{\mathsf{Set}} f \approx g$. Let

$$C = \mathsf{Set}^{op} \text{ be equipped with its cocartesian structure, } E \nvDash_C f \approx g$$
:
• $m(a) = \{1, 2, 3\}$

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \not\vDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow_{f\square 1} & g \downarrow & \downarrow_{1\square f} \\ aa \xrightarrow{g\square 1} aaa & a \xrightarrow{1\square g} aaa \end{cases}$$
. Now $E \vDash_{Set} f \approx g$. Let

$$C = Set^{op} \text{ be equipped with its cocartesian structure, } E \nvDash_C f \approx g:$$

• $m(a) = \{1, 2, 3\}$
• $m(f)(x, y) = \min(3, x + y), \text{ for } x, y \in m(a), \text{ and } m(g) \equiv 3.$

Non-Examples

Example

Choose
$$\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$$
. Now $\emptyset \vDash_{Set} f \approx g$ and $\emptyset \not\vDash_{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Set
$$\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$$
 and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow_{f\square 1} & g \downarrow & \downarrow_{1\square f} \\ aa \xrightarrow{g\square 1} aaa & a \xrightarrow{-1\square g} aaa \end{cases}$$
. Now $E \vDash_{Set} f \approx g$. Let

$$C = \mathbf{Set}^{op} \text{ be equipped with its cocartesian structure, } E \nvDash_C f \approx g$$
:
• $m(a) = \{1, 2, 3\}$
• $m(f)(x, y) = \min(3, x + y), \text{ for } x, y \in m(a), \text{ and } m(g) \equiv 3.$
• $m \vDash E \text{ but } m \nvDash f \approx g$.

Magmoidal structures

Definition (Structures on Magmoid)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

- 4 同 ト 4 ヨ ト 4 ヨ ト

æ

Magmoidal structures

Definition (Structures on Magmoid)

Let $(C, \otimes: C \times C \rightarrow C, I)$ be a pointed magma in the meta-category of categories.

э

< ロ > < 同 > < 三 > < 三 >

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z)$$
 (Associator)

A (1) < (1) < (1) </p>

3.5

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z)$$
(Associator)
$$I \otimes x \xrightarrow{\lambda_x} x$$
(Left unitor)

A (10) < A (10) </p>

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$\begin{array}{l} (x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) & (Associator) \\ I \otimes x \xrightarrow{\lambda_x} x & (Left unitor) \\ x \otimes I \xrightarrow{\rho_x} x & (Right unitor) \end{array}$$

A (10) < A (10) </p>

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$\begin{array}{l} (x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) & (Associator) \\ I \otimes x \xrightarrow{\lambda_x} x & (Left unitor) \\ x \otimes I \xrightarrow{\rho_x} x & (Right unitor) \\ x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x & (Braiding/Symmetror) \end{array}$$

A (1) > (1) > (1)

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$\begin{array}{c} (x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) & (Associator) \\ I \otimes x \xrightarrow{\lambda_x} x & (Left unitor) \\ x \otimes I \xrightarrow{\rho_x} x & (Right unitor) \\ x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x & (Braiding/Symmetror) \\ x \xrightarrow{l_x} I & (Deletor) \end{array}$$

Definition (Structures on Magmoid)

Let $(C, \otimes : C \times C \to C, I)$ be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

$$\begin{array}{c} (x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) & (Associator) \\ I \otimes x \xrightarrow{\lambda_x} x & (Left unitor) \\ x \otimes I \xrightarrow{\rho_x} x & (Right unitor) \\ x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x & (Braiding/Symmetror) \\ x \xrightarrow{l_x} I & (Deletor) \\ x \xrightarrow{\delta_x} x \otimes x & (Diagonal) \end{array}$$

Free Monoid and Pointed Magma

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

▲ □ ▶ ▲ □ ▶ ▲

Free Monoid and Pointed Magma

Let X be a set.

э

э

→ < Ξ → <</p>

Free Monoid and Pointed Magma

Let X be a set.

• The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I : X^+ \to \mathbb{N}$.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

$$x, e \in X^*$$
, for $x \in X \mid$

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

 $x, e \in X^*, \text{ for } x \in X \mid (xy) \in X^* \text{ for } x, y \in X^*.$

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

$$x, e \in X^*$$
, for $x \in X \mid (xy) \in X^*$ for $x, y \in X^*$.

The function τ: X* → (X ⊔ {e})⁺ is defined by the removal of parenthesis. Right bracketing of a word defines a section rb: (X ⊔ {e})⁺ → X* to τ.

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

$$x, e \in X^*$$
, for $x \in X \mid (xy) \in X^*$ for $x, y \in X^*$.

- The function τ: X* → (X ⊔ {e})⁺ is defined by the removal of parenthesis. Right bracketing of a word defines a section rb: (X ⊔ {e})⁺ → X* to τ.
- We denote by $I_v = \{i < I(v) | v_i \neq e\}$ the set of essential indices of $v \in X^*$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \to X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $I : X^+ \to \mathbb{N}$.
- The free pointed magma X^* over X as a set is defined recursively:

$$x, e \in X^*, \text{ for } x \in X \mid (xy) \in X^* \text{ for } x, y \in X^*.$$

- The function τ: X* → (X ⊔ {e})⁺ is defined by the removal of parenthesis. Right bracketing of a word defines a section rb: (X ⊔ {e})⁺ → X* to τ.
- We denote by $I_v = \{i < I(v) | v_i \neq e\}$ the set of essential indices of $v \in X^*$.
- Let $X = \{x, y\}$. The set of essential indices of $v = ((xe)(y(ex)) \in X^*$ is $I_v = \{0, 2, 4\}$ and $\tau(v) = xeyex$.

Free Completions

Definition (Cartesian Monoidal Completion)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

• The set of objects is $Obj(I)^*$.
Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $Obj(I)^*$.
- A morphism v → w consists of a pair (θ, f), where θ: I_w → I_v is a function and f is a family of morphisms f_i: v_{θ(i)} → w_i for i ∈ I_w.

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $Obj(I)^*$.
- A morphism v → w consists of a pair (θ, f), where θ: I_w → I_v is a function and f is a family of morphisms f_i: v_{θ(i)} → w_i for i ∈ I_w.
- The composition is the natural one.

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $Obj(I)^*$.
- A morphism v → w consists of a pair (θ, f), where θ: I_w → I_v is a function and f is a family of morphisms f_i: v_{θ(i)} → w_i for i ∈ I_w.
- The composition is the natural one.

The category CM(I) has a cartesian monoidal structure.

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion CM(I) of I as follows:

- The set of objects is $Obj(I)^*$.
- A morphism v → w consists of a pair (θ, f), where θ: I_w → I_v is a function and f is a family of morphisms f_i: v_{θ(i)} → w_i for i ∈ I_w.
- The composition is the natural one.

The category CM(1) has a cartesian monoidal structure. Furthermore, CM(1) has two wide subcategories the symmetric monoidal completion SM(1) and the monoidal completion M(1) of 1 defined by morhpisms $(\theta, f), (\phi, g)$, respectively, where θ is a bijection and ϕ is an increasing bijection. Universal Algebra Soundness & Completeness

Relevant Coherence Theorems

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

Relevant Coherence Theorems

The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).

Relevant Coherence Theorems

The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).

Theorem (Coherence Theorem)

Let $F: I \rightarrow UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C.

Relevant Coherence Theorems

The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).

Theorem (Coherence Theorem)

Let $F: I \to UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\overline{F}: T(I) \to C$ extending F, where T(I) = (C/S)M(I).

Relevant Coherence Theorems

The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).

Theorem (Coherence Theorem)

Let $F: I \to UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\overline{F}: T(I) \to C$ extending F, where T(I) = (C/S)M(I). In addition, if F is constant on all hom-sets, then \overline{F} is constant on hom-sets Hom(v, w), where the directed path components $[v_i], i \in I_v$, are pairwise disjoint in I.

Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal category. Let T(I) be the (cartesian/symmetric) monoidal completion of I.

Relevant Coherence Theorems

Let *I* be a category and *C* a (cartesian/symmetric) monoidal category. Let T(I) be the (cartesian/symmetric) monoidal completion of *I*.

Consider exponential the transposition $I \to [C^{I}, C]$ of the evaluation functor $C^{I} \times I \to C$. We attain a strict functor $T(I) \to [C^{I}, C]$. Thus each arrow in T(I) can be considered a natural transformation.

Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal category. Let T(I) be the (cartesian/symmetric) monoidal completion of I.

Consider exponential the transposition $I \rightarrow [C^{I}, C]$ of the evaluation functor $C^{I} \times I \rightarrow C$. We attain a strict functor $T(I) \rightarrow [C^{I}, C]$. Thus each arrow in T(I) can be considered a natural transformation.

As an example, we have a unique morphism $\alpha : ((xy)z) \to (x(yz))$ in $T(\{x, y, z\})$. Thus we attain a natural transformation between two functors $C^3 \cong C' \rightrightarrows C$, which is the whole associator itself.

Signature of Universal Algebra

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

э

▲ □ ▶ ▲ □ ▶ ▲

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

• A set S of sorts.

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

•
$$x: s \in V$$
.

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

- $x: s \in V$.
- $f: a \rightarrow b \in M$.

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

• $x: s \in V$.

•
$$f: a \rightarrow b \in M$$
.

• If
$$a = ()$$
, then $f : b \in M$.

Models of Universal Algebra

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

э

▶ ∢ ≣

Models of Universal Algebra

Definition (σ -Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ -model m in C consists of associations

Models of Universal Algebra

Definition (σ -Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ -model m in C consists of associations

• $m_1: S \rightarrow \operatorname{Obj}(C)$ and

Models of Universal Algebra

Definition (σ -Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ -model m in C consists of associations

- $m_1: S
 ightarrow \mathsf{Obj}(C)$ and
- $m_2: M \to Mor(C)$, where $m_2(f): \overline{m_1}(rb(a)) \to m_1(b)$ for all $f: a \to b \in M$.

Models of Universal Algebra

Definition (σ -Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ -model m in C consists of associations

- $m_1 \colon S \to \operatorname{Obj}(C)$ and
- $m_2: M \to Mor(C)$, where $m_2(f): \overline{m_1}(rb(a)) \to m_1(b)$ for all $f: a \to b \in M$.

A σ -model morphism $m \to n$ in C consists of a family f of morphisms $f_s: m(s) \to n(s), s \in S$, where for all morphism symbols $\alpha: a \to b$ we have a commuting diagram

$$\begin{array}{c} m(rb(a)) \xrightarrow{m(\alpha)} m(b) \\ f_{rb(a)} \downarrow & \qquad \qquad \downarrow f_b \\ n(rb(a)) \xrightarrow{n(\alpha)} n(b) \end{array}$$

Terms of Universal Algebra

Definition (Terms)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

Terms of Universal Algebra

Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ -terms *Term* $\rightarrow S$ is defined recursively as follows:

Terms of Universal Algebra

Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ -terms *Term* $\rightarrow S$ is defined recursively as follows:

x, c ∈ Term for constant symbols c ∈ M and x ∈ V (the type is preserved).

Terms of Universal Algebra

Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ -terms *Term* $\rightarrow S$ is defined recursively as follows:

- x, c ∈ Term for constant symbols c ∈ M and x ∈ V (the type is preserved).
- $f(t_0, \ldots, t_n)$: $b \in Term$ for $f: a_0 \ldots a_n \rightarrow b \in M$ and $t_0: a_0, \ldots, t_n: a_n \in Term$.

Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ -terms *Term* $\rightarrow S$ is defined recursively as follows:

- x, c ∈ Term for constant symbols c ∈ M and x ∈ V (the type is preserved).
- $f(t_0, \ldots, t_n)$: $b \in Term$ for $f: a_0 \ldots a_n \rightarrow b \in M$ and $t_0: a_0, \ldots, t_n: a_n \in Term$.

We define $\tau: Term \to V^+$. For a term $t \in Term$ we form the list of variables $\tau(t) = \begin{cases} (), & \text{if } t = c \\ v, & \text{if } t = v \\ \tau(t_1) \cdots \tau(t_n), & \text{if } t = f(t_1, \dots, t_n). \end{cases}$

Terms of Universal Algebra

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V⁺ is called a context if no variable repeats in v.

→ < ∃ →</p>

Terms of Universal Algebra

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

• v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t) = v$.

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t) = v$.
- The term t is called a monoidal term, if $\tau(t)$ is a context.

伺 ト イヨ ト イヨト

Monoidal terms can be constructed recursively.
Theories of Universal Algebra

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

▶ ∢ ≣

Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

• For σ -terms t_1, t_2 : *s*, we call $t_1 \approx t_2$ a σ -equation.

→ < ∃ →</p>

Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

- For σ -terms t_1, t_2 : s, we call $t_1 \approx t_2$ a σ -equation.
- A set of σ -equations E is called a σ -theory.

Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

- For σ -terms t_1, t_2 : s, we call $t_1 \approx t_2$ a σ -equation.
- A set of σ -equations E is called a σ -theory.
- A σ -equation $t_1 \approx t_2$ is called (symmetric) monoidal if t_1 and t_2 have a common (symmetric) monoidal context.

Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

- For σ -terms t_1, t_2 : s, we call $t_1 \approx t_2$ a σ -equation.
- A set of σ -equations E is called a σ -theory.
- A σ -equation $t_1 \approx t_2$ is called (symmetric) monoidal if t_1 and t_2 have a common (symmetric) monoidal context.
- A set of (symmetric) monoidal *σ*-equation is called (symmetric) monoidal *σ*-theory.

Canonical Morphisms

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

戶 ▶ ◀

Canonical Morphisms

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*.

Canonical Morphisms

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*.

• We attain a strict functor \overline{m} : Free(V) \rightarrow C from V $\xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.

Canonical Morphisms

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*.

- We attain a strict functor \overline{m} : Free $(V) \rightarrow C$ from $V \xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.
- For a (cartesian/symmetric) context v ∈ V* of w ∈ V*, we define

$$m_{v,w} = \overline{m}(!) \colon \overline{m}(v) \to \overline{m}(w),$$

where ! is the unique morphism $v \rightarrow w$ in Free(V).

Canonical Morphisms

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*.

- We attain a strict functor \overline{m} : Free $(V) \rightarrow C$ from $V \xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.
- For a (cartesian/symmetric) context v ∈ V* of w ∈ V*, we define

$$m_{v,w} = \overline{m}(!) \colon \overline{m}(v) \to \overline{m}(w),$$

where ! is the unique morphism $v \rightarrow w$ in Free(V).

• We call $m_{v,w}: m_v \to m_w$ a canonical morphism.

Term-Morphism

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

< A > <

Term-Morphism

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term *t*.

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term *t*. We define the term morphism $m_v(t): m_v \to m(b)$ of *t* in context

we define the term morphism $m_v(t): m_v \to m(b)$ of t in col v as follows:

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term *t*.

We define the term morphism $m_v(t): m_v \to m(b)$ of t in context v as follows:

•
$$m_v \xrightarrow{m_{v,e}} I \xrightarrow{m(c)} m(b)$$
 for $t = c$

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term *t*.

We define the term morphism $m_v(t): m_v \to m(b)$ of t in context v as follows:

•
$$m_v \xrightarrow{m_{v,e}} I \xrightarrow{m(c)} m(b)$$
 for $t = c$

•
$$m_v \xrightarrow{m_{v,x}} m_x$$
 for $t = x$

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category *C*. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term *t*.

We define the term morphism $m_v(t): m_v \to m(b)$ of t in context v as follows:

Logical Entailment

Lemma (Partial Context Independence)

Lemma (Partial Context Independence)

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms t, t_1, t_2 : b and v is a context for w. Then the following assertions hold:

Lemma (Partial Context Independence)

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms t, t_1, t_2 : b and v is a context for w. Then the following assertions hold:

• The diagram

commutes.

Lemma (Partial Context Independence)

Let *m* be a σ -model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms t, t_1, t_2 : b and v is a context for w. Then the following assertions hold:

• The diagram

commutes.

• If the equation $m_w(t_1) = m_w(t_2)$ holds, so does $m_v(t_1) = m_v(t_2)$.

Logical Entailment

Definition (Satisfiability and Entailment)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

日 ▶ ▲ □

Definition (Satisfiability and Entailment)

Let *m* be a σ -model in a (symmetric) monoidal category *C*, we define:

• Model *m* satisfies (symmetric) monoidal equation $t_1 \approx t_2$, iff $m_v(t_1) = m_v(t_2)$ for some (symmetric) monoidal context *v*. We then denote $m \vDash t_1 \approx t_2$.

Definition (Satisfiability and Entailment)

Let *m* be a σ -model in a (symmetric) monoidal category *C*, we define:

• Model *m* satisfies (symmetric) monoidal equation $t_1 \approx t_2$, iff $m_v(t_1) = m_v(t_2)$ for some (symmetric) monoidal context *v*. We then denote $m \vDash t_1 \approx t_2$.

伺 ト イヨト イヨト

(Symmetric) monoidal theory E entails φ in C, if m ⊨ E implies m ⊨ φ for all σ-models m in C. This is denoted E ⊨_C φ.

Examples of Theories

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{\circ_{a,b,c} : (b,c)(a,b) \rightarrow (a,c), id_a : () \rightarrow (a,a) | a, b, c \in S\}).$

イロト イボト イヨト イヨト

э

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{\circ_{a,b,c} : (b,c)(a,b) \rightarrow (a,c), id_a : () \rightarrow (a,a)|a,b,c \in S\})$. Fix the theory E consisting of

$$(h \circ_{b,c,d} g) \circ_{a,b,d} f \approx h \circ_{a,c,d} (g \circ_{a,b,c} f)$$
$$f \circ_{a,a,b} id_a \approx f$$
$$id_b \circ_{a,b,b} f \approx f$$

- 4 同 1 4 三 1 4 三 1

for all $a, b, c, d \in S$ and distinct variable symbols f: (a, b), g: (b, c) and h: (c, d).

Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{\circ_{a,b,c} : (b,c)(a,b) \rightarrow (a,c), id_a : () \rightarrow (a,a) | a, b, c \in S\})$. Fix the theory E consisting of

$$(h \circ_{b,c,d} g) \circ_{a,b,d} f \approx h \circ_{a,c,d} (g \circ_{a,b,c} f)$$
$$f \circ_{a,a,b} id_a \approx f$$
$$id_b \circ_{a,b,b} f \approx f$$

for all $a, b, c, d \in S$ and distinct variable symbols f: (a, b), g: (b, c) and h: (c, d). The σ -models satisfying E in a monoidal category C are exactly C-enriched categories with S being the set of objects.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$$\circ_{a^1,\ldots,a^n,b,c}$$
: $(b,c)(a^1,b_1)\cdots(a^n,b_n)
ightarrow (a^1\cdots a^n,c)$ and id_d : (d,d)

for
$$a^1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$$
 and $c, d \in S$.

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$$\circ_{a^1,\ldots,a^n,b,c}\colon (b,c)(a^1,b_1)\cdots(a^n,b_n)\to (a^1\cdots a^n,c) \text{ and } id_d:(d,d)$$

for $a^1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$ and $c, d \in S$. Let E consist of the following equations

•
$$h \circ (g_n \circ (f_1^n, \cdots, f_{m_n}^n), \dots, g_1 \circ (f_1^1, \dots, f_{m_1}^1)) \approx (h \circ (g_n, \dots, g_1)) \circ (f_1^n, \dots, f_{m_1}^1)$$

•
$$f \circ (id, \ldots, id) \approx f$$

•
$$id \circ f \approx f$$

for a suitable choice of sorts and distinct variable symbols h, g_i, f_j^i for $i \leq n$ and $j \leq m_i$.

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$$\circ_{a^1,\ldots,a^n,b,c}\colon (b,c)(a^1,b_1)\cdots(a^n,b_n)\to (a^1\cdots a^n,c) \text{ and } id_d:(d,d)$$

for $a^1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$ and $c, d \in S$. Let E consist of the following equations

•
$$h \circ (g_n \circ (f_1^n, \cdots, f_{m_n}^n), \dots, g_1 \circ (f_1^1, \dots, f_{m_1}^1)) \approx (h \circ (g_n, \dots, g_1)) \circ (f_1^n, \dots, f_{m_1}^1)$$

•
$$f \circ (id, \ldots, id) \approx f$$

•
$$id \circ f \approx f$$

for a suitable choice of sorts and distinct variable symbols h, g_i, f_j^i for $i \le n$ and $j \le m_i$. Models for E in a symmetric monoidal category V are exactly the V-enriched multi-categories with S as the set of objects. A single object V-enriched multi-category is then an V-enriched operad.

Substitution

Definition (Renaming)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

Substitution

Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $v = v_1 \cdots v_n$ be a context, where $v_1, \ldots, v_n \in V$. A function $s: Var(v) = \{v_1, \ldots, v_n\} \rightarrow Term$ that preserves the typing is called a renaming of variables in v.

Substitution

Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $v = v_1 \cdots v_n$ be a context, where $v_1, \ldots, v_n \in V$. A function $s \colon Var(v) = \{v_1, \ldots, v_n\} \to Term$ that preserves the typing is called a renaming of variables in v. The renaming s is called monoidal renaming, if the terms $s(v_i), i \leq n$, are monoidal and the variable sets $Var(\tau s(v_i)), i \leq n$, are pairwise disjoint.

Substitution

Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $v = v_1 \cdots v_n$ be a context, where $v_1, \ldots, v_n \in V$. A function $s \colon Var(v) = \{v_1, \ldots, v_n\} \to Term$ that preserves the typing is called a renaming of variables in v. The renaming s is called monoidal renaming, if the terms $s(v_i), i \leq n$, are monoidal and the variable sets $Var(\tau s(v_i)), i \leq n$, are pairwise disjoint.

Any renaming $s: Var(v) \rightarrow Term$ extends uniquely to a typing preserving function $\overline{s}: Term_v \rightarrow Term$, where

- ロ ト - 4 司 ト - 4 回 ト

$$\overline{s}(t) = \begin{cases} c, \text{ if } t = c \\ s(x), \text{ if } t = x \\ f(\overline{s}(t_1), \dots, \overline{s}(t_n)), \text{ if } t = f(t_1, \dots, t_n), \end{cases} \text{ for } t \in \textit{Term}_v.$$

Furthermore, if *s* is a monoidal renaming, then \overline{s} maps monoidal terms to

monoidal terms.

Synatactic deduction

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

э

< 🗇 > <

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:
Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

- 2) $t \approx t \in D_E$ for all monoidal terms t.

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

- 2 $t \approx t \in D_E$ for all monoidal terms t.
- 3 If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

- 2 $t \approx t \in D_E$ for all monoidal terms t.
- If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
- If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

- 2 $t \approx t \in D_E$ for all monoidal terms t.
- If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
- If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.

Let t₁ ≈ t₂ ∈ D_E. Let s₁, s₂: Var(t₁) → Term be a monoidal renamings, where s₁(x) ≈ s₂(x) ∈ D_E for all x ∈ Var(t₁). Then s(t₁) ≈ s(t₂) ∈ D_E.

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

$$I \subset D_E.$$

2)
$$t \approx t \in D_E$$
 for all monoidal terms t .

3 If
$$t_1 \approx t_2 \in D_E$$
, then $t_2 \approx t_1 \in D_E$.

• If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.

Let t₁ ≈ t₂ ∈ D_E. Let s₁, s₂: Var(t₁) → Term be a monoidal renamings, where s₁(x) ≈ s₂(x) ∈ D_E for all x ∈ Var(t₁). Then s(t₁) ≈ s(t₂) ∈ D_E.

If $\phi \in D_E$, we write $E \vdash \phi$ and say that ϕ is syntactically deduced from E.

Soundness

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

• • • • • • • • • •

э

æ

Soundness

Lemma (Substitution Lemma)

Let *m* be a σ -model in (cartesian/symmetric) monoidal category *C*. Assume that $v = v_1 \dots v_n$ is a (cartesian/symmetric) monoidal context for a term *t*: b. Assume that *s*: $Var(v) \rightarrow Term$ is a (cartesian) monoidal renaming.

Soundness

Lemma (Substitution Lemma)

Let *m* be a σ -model in (cartesian/symmetric) monoidal category *C*. Assume that $v = v_1 \dots v_n$ is a (cartesian/symmetric) monoidal context for a term t: b. Assume that s: $Var(v) \rightarrow Term$ is a (cartesian) monoidal renaming. Then for any (cartesian/symmetric) monoidal contexts $w, w_1, \dots w_n$ for

 $s(t), s(v_1), \ldots, s(v_n)$, respectively, where w_i has its variables expressed in w for $i \leq n$, the equation holds

 $m_w(s(t)) = m_v(t) \circ m_{w_1}(s(v_1)) \otimes \ldots \otimes m_{w_n}(s(v_n)) \circ m_{w,w_1\cdots w_n}.$

Soundness

Lemma (Substitution Lemma)

Let *m* be a σ -model in (cartesian/symmetric) monoidal category *C*. Assume that $v = v_1 \dots v_n$ is a (cartesian/symmetric) monoidal context for a term *t*: *b*. Assume that *s*: Var(v) \rightarrow Term is a (cartesian) monoidal renaming.

Then for any (cartesian/symmetric) monoidal contexts w, w_1, \ldots, w_n for $s(t), s(v_1), \ldots, s(v_n)$, respectively, where w_i has its variables expressed in w for $i \leq n$, the equation holds

 $m_w(s(t)) = m_v(t) \circ m_{w_1}(s(v_1)) \otimes \ldots \otimes m_{w_n}(s(v_n)) \circ m_{w,w_1\cdots w_n}.$

< ロ > < 同 > < 回 > < 回 >

Theorem (Soundness)

Let $E \cup \{\phi\}$ be a (symmetric) monoidal σ -theory. Let C be a (symmetric) monoidal category. Then $E \vdash \phi$ implies $E \models_C \phi$.

Soundness

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

・ロト ・日 ・ ・ ヨ ・ ・

문 문 문

Soundness

Proof.

Let $m \vDash E$ in C and denote by $T = \{\phi | m \vDash \phi\}$. For $D_E \subset T$, it suffices to show the substitution condition for T:

Soundness

Proof.

Let $m \vDash E$ in *C* and denote by $T = \{\phi | m \vDash \phi\}$. For $D_E \subset T$, it suffices to show the substitution condition for *T*: Assume that *v* is a (symmetric) monoidal context for terms $t_1, t_2 : b$ and $t_1 \approx t_2 \in T$ and *w* is a (symmetric) monoidal context for $s_1(t), s_2(t)$ for monoidal renamings $s_1, s_2 : Var(v) \rightarrow Term$ where $s_1(x) \approx s_2(x) \in T$ for all $x \in Var(v)$.

Soundness

Proof.

Let $m \vDash E$ in *C* and denote by $T = \{\phi | m \vDash \phi\}$. For $D_E \subset T$, it suffices to show the substitution condition for *T*: Assume that *v* is a (symmetric) monoidal context for terms $t_1, t_2 : b$ and $t_1 \approx t_2 \in T$ and *w* is a (symmetric) monoidal context for $s_1(t), s_2(t)$ for monoidal renamings $s_1, s_2 : Var(v) \rightarrow Term$ where $s_1(x) \approx s_2(x) \in T$ for all $x \in Var(v)$. By the Substitution Lemma, we have

$$\begin{split} m_w(s_1(t_1)) &= m_v(t_1) \circ m_{w_1}(s_1(v_1)) \otimes \ldots \otimes m_{w_n}(s_1(v_n)) \circ m_{w,w_1 \cdots w_n} \\ &= m_v(t_2) \circ m_{w_1}(s_2(v_1)) \otimes \ldots \otimes m_{w_n}(s_2(v_n)) \circ m_{w,w_1 \cdots w_n} \\ &= m_w(s_2(t_2)) \end{split}$$

for $w_i = \tau(s_1(v_i)), i \leq n$. Hence $s_1(t_1) \approx s_2(t_2) \in T$.

Modified Lindebaum-Tarski-algebras

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

э

-

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let *E* be a (symmetric) monoidal σ -theory. We define the monoidal σ term model *n* and the monoidal *E*-model m in **Set** as follows:

• $n(s) = \{*, t | t : s \text{ is a monoidal term}\}$

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let *E* be a (symmetric) monoidal σ -theory. We define the monoidal σ term model *n* and the monoidal *E*-model m in **Set** as follows:

• $n(s) = \{*, t | t: s \text{ is a monoidal term}\}$ and $m(s) = n(s) / \sim_s$, where $\sim_s = \{(t_1, t_2), (*, *) | E \vdash t_1 \approx t_2, t_1: s\}$ for sorts s. We denote the quotient map by $q_s: n(s) \rightarrow m(s)$ for sorts s.

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let *E* be a (symmetric) monoidal σ -theory. We define the monoidal σ term model *n* and the monoidal *E*-model m in **Set** as follows:

• $n(s) = \{*, t | t: s \text{ is a monoidal term}\}$ and $m(s) = n(s) / \sim_s$, where $\sim_s = \{(t_1, t_2), (*, *) | E \vdash t_1 \approx t_2, t_1: s\}$ for sorts s. We denote the quotient map by $q_s: n(s) \rightarrow m(s)$ for sorts s.

•
$$n(\alpha): n(a) \rightarrow n(b),$$

 $(u_1, \ldots, u_n) \mapsto \begin{cases} f(u_1, \ldots, u_n), \text{ if } f(u_1, \ldots, u_n) \in n(b) \\ *, \text{ else} \end{cases}$

Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let *E* be a (symmetric) monoidal σ -theory. We define the monoidal σ term model *n* and the monoidal *E*-model m in **Set** as follows:

• $n(s) = \{*, t | t: s \text{ is a monoidal term}\}$ and $m(s) = n(s) / \sim_s$, where $\sim_s = \{(t_1, t_2), (*, *) | E \vdash t_1 \approx t_2, t_1: s\}$ for sorts s. We denote the quotient map by $q_s: n(s) \rightarrow m(s)$ for sorts s.

•
$$n(\alpha): n(a) \to n(b),$$

 $(u_1, \dots, u_n) \mapsto \begin{cases} f(u_1, \dots, u_n), \text{ if } f(u_1, \dots, u_n) \in n(b) \\ *, \text{ else} \end{cases}$ and

 $m(\alpha): m(a) \rightarrow m(b)$ is the unique map making the commutative diagram

$$\begin{array}{c} n(a) \xrightarrow{n(\alpha)} n(b) \\ q_a \downarrow \qquad \qquad \downarrow q_b \\ m(a) \xrightarrow{m(\alpha)} m(b) \end{array}$$

Completeness

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

æ

< □ > <

Completeness

Lemma (Term-Naturality of Model Morphisms)

Let $f: m \rightarrow n$ be a morphism of σ -models in a (cartesian/symmetric) monoidal category C. Let v be a (cartesian/symmetric) monoidal context for a term t: b. Then the diagram

$$\begin{array}{ccc} m_{v} & \xrightarrow{m_{v}(t)} & m(b) \\ \downarrow_{f_{v}} & & \downarrow_{f_{b}} \\ n_{v} & \xrightarrow{n_{v}(t)} & n(b) \end{array}$$

commutes.

Completeness

Lemma (Evaluation Lemma)

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

Image: A mathematical states and a mathem

Completeness

Lemma (Evaluation Lemma)

Let E be a (symmetric) monoidal σ -theory. Let m be the monoidal E-model. Let $v = v_1 \cdots v_n$ be a context for a term t: b. Denote the variables expressed in t by v_{i_1}, \ldots, v_{i_k} . Then

$$n_{v}(t)(u_{1},\ldots,u_{n}) = \begin{cases} *, \text{ if } * \text{ or a variable twice in } (u_{i_{1}},\ldots,u_{i_{k}}), \\ s(t), \text{ else where } s(v_{i_{j}}) = u_{i_{j}}, j \leq k. \end{cases}$$

for $(u_1, ..., u_n) \in n_v$.

Completeness

Theorem (Completeness)

Let $E \cup \{\phi\}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \vDash \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \vDash_{Set} \phi$.

Completeness

Theorem (Completeness)

Let $E \cup \{\phi\}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \vDash \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \vDash_{\mathsf{Set}} \phi$.

Proof.

 \Rightarrow : Let $v = v_1 \dots v_n$ be a (symmetric) monoidal context for terms t_1, t_2 : *b*. Assume that $m_v(t_1) = m_v(t_2)$. By the Evaluation Lemma and the term naturality of the quotient $q: n \to m$, it follows that

$$[t_1] = m_v(t_1)([v_1], \dots, [v_n])$$

= $m_v(t_2)([v_1], \dots, [v_n])$
= $[t_2]$

and hence $E \vdash t_1 \approx t_2$.

Completeness

E-Model Completeness (continued).

 \Leftarrow : Assume then that $E \vdash t_1 \approx t_2$. We show that $m_v(t_1) = m_v(t_2)$. Let $([u_1], \ldots, [u_n]) \in m_v$. Now again by the previous lemmas again $m_{\nu}(t_1)([u_1],\ldots,[u_n]) = [n_{\nu}(t_1)(u_1,\ldots,u_n)]$ $=\begin{cases} [*], \text{ if } * \text{ or a variable twice in } (u_1, \dots, u_n) \\ [s(t_1)], \text{ else where } s(v_i) = u_i, i \leq n \end{cases}$ $=\begin{cases} [*], \text{ if } * \text{ or a variable twice in } (u_1, \dots, u_n) \\ [s(t_2)], \text{ else where } s(v_i) = u_i, i \le n \end{cases}$ $= [n_{v}(t_{2})(u_{1}, \ldots, u_{n})]$ $= m_{\nu}(t_2)([u_1], \ldots, [u_n])$

Thus $m_v(t_1) = m_v(t_2)$.

Monoidal Meta-Theorem

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э

э

▶ ∢ ≣

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \vDash_{Set} \phi$ implies $E \vDash_C \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \vDash_{Set} \phi$ implies $E \vDash_C \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.

If $E \vDash_{Set} \phi$, then by completeness $E \vdash \phi$ and hence by soundness $E \vDash_C \phi$ for all (cartesian/symmetric) monoidal categories *C*.

Thank You

Thank you for your attention!

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem

э