Monoidal Meta-Theorem

David Forsman
david.forsman@uclouvain.be

Université catholique de Louvain

15.4.2024
Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal σ-theory and let C be a (cartesian/symmetric) monoidal category. Then

$$E \models_{\text{Set}} \phi \text{ implies } E \models_{C} \phi.$$
Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+, +': aa \to a; 0', 0: () \to a\})$
Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+,: aa \to a; 0', 0: () \to a\})$ and E consists of

$$
\begin{align*}
 x + 0 &\approx x, & 0 + x &\approx x, \\
 x + 0' &\approx x, & 0' +' x &\approx x, \\
 (x + y) +' (z + w) &\approx (x +' z) + (y +' w)
\end{align*}
$$
Example (Eckmann-Hilton Argument)

Let \(\sigma = (S = \{a\}, M = \{+, +': aa \to a; 0', 0: () \to a\}) \) and \(E \) consists of

\[
\begin{align*}
x + 0 &\approx x, & 0 + x &\approx x, \\
x + 0' &\approx x, & 0' +' x &\approx x, \\
(x + y) +' (z + w) &\approx (x +' z) + (y +' w)
\end{align*}
\]

- \(E \models_{\text{Set}} T \), for \(T =
\{ x +' y \approx x + y, e \approx e', x + y \approx y + x, (x + y) + z \approx x + (y + z) \}. \)
Example (Eckmann-Hilton Argument)

Let $\sigma = (S = \{a\}, M = \{+, +': aa \to a; 0', 0: () \to a\})$ and E consists of

\[
\begin{align*}
x + 0 & \approx x, & 0 + x & \approx x, \\
x + 0' & \approx x, & 0' + x & \approx x, \\
(x + y) +' (z + w) & \approx (x +' z) + (y +' w)
\end{align*}
\]

- $E \models_{\text{Set}} T$, for $T = \{x+' y \approx x+y, e \approx e', x+y \approx y+x, (x+y)+z \approx x+(y+z)\}$.
- $E \models_{C} T$ for all symmetric monoidal categories C.

David Forsman david.forsman@uclouvain.be
Non-Examples

Choose $\sigma = (S = \{a\}, M = \{f, g: a \to ()\})$. Now $\emptyset \models \mathsf{Set} f \approx g$ and $\emptyset \not\models \mathsf{Ab} f \approx g$, where Ab is the monoidal category of abelian groups.

Example $\mathsf{Set} \sigma = (S = \{a\}, M = \{f, g: a \to aa\})$ and $E = \{\begin{array}{l} a \quad a \quad a \\ a \\ f \\ f \\ \Box \end{array} \}$. Now $E \models \mathsf{Set} f \approx g$.

Let $C = \mathsf{Set}^{\text{op}}$ be equipped with its cocartesian structure, $E \not\models C f \approx g$: $m(a) = \{1, 2, 3\}$, $m(f)(x, y) = \min(3, x + y)$, for $x, y \in m(a)$, and $m(g) \equiv 3$. $m \models E$ but $m \not\models f \approx g$.

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Choose $\sigma = (S = \{a\}, M = \{f, g : a \to (\)}).$ Now $\emptyset \models_{\text{Set}} f \approx g$ and $\emptyset \not\models_{\text{Ab}} f \approx g,$ where Ab is the monoidal category of abelian groups.
Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$. Now $\emptyset \models_{\text{Set}} f \approx g$ and $\emptyset \not\models_{\text{Ab}} f \approx g$, where Ab is the monoidal category of abelian groups.

Example

Set $\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$
Non-Examples

Example

Choose \(\sigma = (S = \{a\}, M = \{f, g : a \to ()\}) \). Now \(\emptyset \models_{\text{Set}} f \approx g \) and \(\emptyset \not\models_{\text{Ab}} f \approx g \), where \(\text{Ab} \) is the monoidal category of abelian groups.

Example

Set \(\sigma = (S = \{a\}, M = \{f, g : a \to aa\}) \) and

\[
E = \begin{cases}
 a \xrightarrow{f} aa \\
 g \\
 aa \xrightarrow{g \square 1} aaa
\end{cases} \quad \begin{cases}
 a \xrightarrow{f} aa \\
 g \\
 a \xrightarrow{1 \square g} aaa
\end{cases}.
\]
Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$. Now $\emptyset \models_{\text{Set}} f \approx g$ and $\emptyset \not\models_{\text{Ab}} f \approx g$, where Ab is the monoidal category of abelian groups.

Example

Set $\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$ and

$$E = \begin{cases}
 a \xrightarrow{f} aa & a \xrightarrow{f} aa \\
 g \downarrow & g \downarrow & 1 \downarrow f \\
 aa \xrightarrow{g \Box 1} aaa & a \xrightarrow{1 \Box g} aaa
\end{cases}$$

Now $E \models_{\text{Set}} f \approx g$.

David Forsman david.forsman@uclouvain.be
Monoidal Meta-Theorem
Choose \(\sigma = (S = \{a\}, M = \{f, g : a \to ()\}) \). Now \(\emptyset \models_{\text{Set}} f \approx g \) and \(\emptyset \not\models_{\text{Ab}} f \approx g \), where \(\text{Ab} \) is the monoidal category of abelian groups.

Set \(\sigma = (S = \{a\}, M = \{f, g : a \to aa\}) \) and

\[
E = \begin{cases}
 a \xrightarrow{f} aa & a \xrightarrow{f} aa \\
 \downarrow g & \downarrow f \Box 1 & \downarrow g & \downarrow 1 \Box f \\
 aa \xrightarrow{g \Box 1} aaa & g \downarrow & a \xrightarrow{1 \Box g} aaa
\end{cases}
\]

Now \(E \models_{\text{Set}} f \approx g \). Let \(C = \text{Set}^{\text{op}} \) be equipped with its cocartesian structure, \(E \not\models_C f \approx g \).
Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$. Now $\emptyset \models_{\text{Set}} f \approx g$ and $\emptyset \not\models_{\text{Ab}} f \approx g$, where Ab is the monoidal category of abelian groups.

Example

Set $\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$ and

\[
E = \begin{cases}
 a \xrightarrow{f} aa & a \xrightarrow{f} aa \\
 g \downarrow & \downarrow f \Box 1 & g \downarrow & \downarrow 1 \Box f \\
 aa \xrightarrow{g \Box 1} aaa & a \xrightarrow{1 \Box g} aaa
\end{cases}.
\]

Now $E \models_{\text{Set}} f \approx g$. Let $C = \text{Set}^{op}$ be equipped with its cocartesian structure, $E \not\models_{C} f \approx g$:

- $m(a) = \{1, 2, 3\}$
Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g : a \to ()\})$. Now $\emptyset \models_{\text{Set}} f \simeq g$ and $\emptyset \not\models_{\text{Ab}} f \simeq g$, where Ab is the monoidal category of abelian groups.

Example

Set $\sigma = (S = \{a\}, M = \{f, g : a \to aa\})$ and

$$E = \left\{ \begin{array}{c}
 a \xrightarrow{f} aa \\
 g \downarrow \quad f \Box 1 \\
 aa \xrightarrow{g \Box 1} aaa
\end{array} \right\} \quad \begin{array}{c}
 a \xrightarrow{f} aa \\
 g \downarrow \quad 1 \Box f \\
 a \xrightarrow{1 \Box g} aaa
\end{array} \right\}.$$

Now $E \models_{\text{Set}} f \simeq g$. Let $C = \text{Set}^{\text{op}}$ be equipped with its cocartesian structure, $E \not\models_{C} f \simeq g$:

- $m(a) = \{1, 2, 3\}$
- $m(f)(x, y) = \min(3, x + y)$, for $x, y \in m(a)$, and $m(g) \equiv 3$.
Non-Examples

Example

Choose $\sigma = (S = \{a\}, M = \{f, g: a \to ()\})$. Now $\emptyset \models_{\text{Set}} f \approx g$ and $\emptyset \not\models_{\text{Ab}} f \approx g$, where Ab is the monoidal category of abelian groups.

Example

Set $\sigma = (S = \{a\}, M = \{f, g: a \to aa\})$ and

$$E = \begin{cases} a \xrightarrow{f} aa & a \xrightarrow{f} aa \\ g \downarrow & \downarrow f \Box 1 \\ aa \xrightarrow{g \Box 1} aaa & a \xrightarrow{1 \Box g} a aa \end{cases}.$$

Now $E \models_{\text{Set}} f \approx g$. Let $C = \text{Set}^{\text{op}}$ be equipped with its cocartesian structure, $E \not\models_{C} f \approx g$:

- $m(a) = \{1, 2, 3\}$
- $m(f)(x, y) = \min(3, x + y)$, for $x, y \in m(a)$, and $m(g) \equiv 3$.
- $m \models E$ but $m \not\models f \approx g$.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
Magmoidal structures

Definition (Structures on Magmoid)
Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories.
Magmoidal structures

Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z)
\]

(Associator)

\[
I \otimes x \xrightarrow{\lambda_x} x
\]

(Left unitor)

\[
x \otimes I \xrightarrow{\rho_x} x
\]

(Right unitor)

\[
x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x
\]

(Braiding/Symmetry)

\[
x \xrightarrow{!} I
\]

(Deletor)

\[
x \xrightarrow{\delta_x} x \otimes x
\]

(Diagonal)
Magmoidal structures

Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z)
\]

\[
I \otimes x \xrightarrow{\lambda_x} x
\]

(Associator)

(Left unitor)
Magmoidal structures

Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z)
\]

(Associator)

\[
I \otimes x \xrightarrow{\lambda_x} x
\]

(Left unitor)

\[
x \otimes I \xrightarrow{\rho_x} x
\]

(Right unitor)
Magmoidal structures

Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
\begin{align*}
(x \otimes y) \otimes z &\xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) \\
I \otimes x &\xrightarrow{\lambda_x} x \\
x \otimes I &\xrightarrow{\rho_x} x \\
x \otimes y &\xrightarrow{\gamma_{x,y}} y \otimes x
\end{align*}
\]

(Associator)
(Left unitor)
(Right unitor)
(Braiding/Symmetror)
Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \to C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
\begin{align*}
(x \otimes y) \otimes z & \overset{\alpha_{x,y,z}}{\longrightarrow} x \otimes (y \otimes z) \quad \text{(Associator)} \\
I \otimes x & \overset{\lambda_x}{\longrightarrow} x \quad \text{(Left unitor)} \\
x \otimes I & \overset{\rho_x}{\longrightarrow} x \quad \text{(Right unitor)} \\
x \otimes y & \overset{\gamma_{x,y}}{\longrightarrow} y \otimes x \quad \text{(Braiding/Symmetror)} \\
x & \overset{1_x}{\longrightarrow} I \quad \text{(Deletor)}
\end{align*}
\]
Definition (Structures on Magmoid)

Let \((C, \otimes: C \times C \rightarrow C, I)\) be a pointed magma in the meta-category of categories. Consider the natural transformations of the following form:

\[
(x \otimes y) \otimes z \xrightarrow{\alpha_{x,y,z}} x \otimes (y \otimes z) \quad \text{(Associator)}
\]

\[
I \otimes x \xrightarrow{\lambda_x} x \quad \text{(Left unitor)}
\]

\[
x \otimes I \xrightarrow{\rho_x} x \quad \text{(Right unitor)}
\]

\[
x \otimes y \xrightarrow{\gamma_{x,y}} y \otimes x \quad \text{(Braiding/Symmetror)}
\]

\[
x \xrightarrow{1_x} I \quad \text{(Deletor)}
\]

\[
x \xrightarrow{\delta_x} x \otimes x \quad \text{(Diagonal)}
\]
Free Monoid and Pointed Magma

Let X be a set. The free monoid X^+ is the set $F_{\in N}X^n$ of finite lists over X, where $X^n = \{ f : [n] \to X \}$ and $[n] = \{ i \in N | i < n \}$ for $n \in N$. The length is defined as the canonical map $l : X^+ \to N$.

The free pointed magma X^* over X as a set is defined recursively:

$x, e \in X^*$, for $x \in X | (xy) \in X^*$ for $x, y \in X^*$.

The function $\tau : X^* \to (X \sqcup \{ e \})^+$ is defined by the removal of parenthesis. Right bracketing of a word defines a section $rb : (X \sqcup \{ e \})^+ \to X^*$ to τ.

We denote by $I_v = \{ i < l(v) | v_i \neq e \}$ the set of essential indices of $v \in X^*$. Let $X = \{ x, y \}$. The set of essential indices of $v = ((xe)(y(ex))) \in X^*$ is $I_v = \{ 0, 2, 4 \}$ and $\tau(v) = xeyex$.

David Forsman david.forsman@uclouvain.be
Let X be a set.
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f: [n] \to X \}$ and $[n] = \{ i \in \mathbb{N} | i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l: X^+ \to \mathbb{N}$.
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f : [n] \to X \}$ and $[n] = \{ i \in \mathbb{N} \mid i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f : [n] \rightarrow X \}$ and $[n] = \{ i \in \mathbb{N} | i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \rightarrow \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:
 $$ x, e \in X^*, \text{ for } x \in X $$
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigsqcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f : [n] \to X \}$ and $[n] = \{ i \in \mathbb{N} | i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:

 $$x, e \in X^*, \text{ for } x \in X \mid (xy) \in X^* \text{ for } x, y \in X^*.$$
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f : [n] \to X \}$ and $[n] = \{ i \in \mathbb{N} | i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:
 $$x, e \in X^*, \text{ for } x \in X \mid (xy) \in X^* \text{ for } x, y \in X^*.$$

- The function $\tau : X^* \to (X \sqcup \{e\})^+$ is defined by the removal of parenthesis. Right bracketing of a word defines a section $rb : (X \sqcup \{e\})^+ \to X^*$ to τ.
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{f : [n] \rightarrow X\}$ and $[n] = \{i \in \mathbb{N} | i < n\}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \rightarrow \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:
 \[x, e \in X^*, \text{ for } x \in X | (xy) \in X^* \text{ for } x, y \in X^*. \]

- The function $\tau : X^* \rightarrow (X \sqcup \{e\})^+$ is defined by the removal of parenthesis. Right bracketing of a word defines a section $rb : (X \sqcup \{e\})^+ \rightarrow X^*$ to τ.

- We denote by $l_v = \{i < l(v) | v_i \neq e\}$ the set of essential indices of $v \in X^*$.
Free Monoid and Pointed Magma

Let X be a set.

- The free monoid X^+ is the set $\bigcup_{n \in \mathbb{N}} X^n$ of finite lists over X, where $X^n = \{ f : [n] \to X \}$ and $[n] = \{ i \in \mathbb{N} | i < n \}$ for $n \in \mathbb{N}$. The length is defined as the canonical map $l : X^+ \to \mathbb{N}$.

- The free pointed magma X^* over X as a set is defined recursively:
 $$x, e \in X^*, \text{ for } x \in X \mid (xy) \in X^* \text{ for } x, y \in X^*.$$

- The function $\tau : X^* \to (X \sqcup \{ e \})^+$ is defined by the removal of parenthesis. Right bracketing of a word defines a section $rb : (X \sqcup \{ e \})^+ \to X^*$ to τ.

- We denote by $l_v = \{ i < l(v) | v_i \neq e \}$ the set of essential indices of $v \in X^*$.

- Let $X = \{ x, y \}$. The set of essential indices of $v = ((xe)(y(ex))) \in X^*$ is $l_v = \{ 0, 2, 4 \}$ and $\tau(v) = xeyex$.

David Forsman david.forsman@uclouvain.be
Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $\text{CM}(I)$ of I as follows:

The set of objects is $\text{Obj}(I)^*$. A morphism $v \to w$ consists of a pair (θ, f), where $\theta : I_w \to I_v$ is a function and f is a family of morphisms $f_i : v \theta(i) \to w_i$ for $i \in I_w$. The composition is the natural one.

The category $\text{CM}(I)$ has a cartesian monoidal structure.

Furthermore, $\text{CM}(I)$ has two wide subcategories the symmetric monoidal completion $\text{SM}(I)$ and the monoidal completion $\text{M}(I)$ of I defined by morphisms (θ, f), (ϕ, g), respectively, where θ is a bijection and ϕ is an increasing bijection.
Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $\text{CM}(I)$ of I as follows:

The set of objects is $\text{Obj}(I) \times I$. A morphism $v \rightarrow w$ consists of a pair (θ, f), where $\theta : I(w) \rightarrow I(v)$ is a function and f is a family of morphisms $f_i : v \theta(i) \rightarrow w_i$ for $i \in I(w)$. The composition is the natural one.

The category $\text{CM}(I)$ has a cartesian monoidal structure. Furthermore, $\text{CM}(I)$ has two wide subcategories the symmetric monoidal completion $\text{SM}(I)$ and the monoidal completion $\text{M}(I)$ of I defined by morphisms (θ, f), (φ, g), respectively, where θ is a bijection and φ is an increasing bijection.
Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $CM(I)$ of I as follows:

- The set of objects is $Obj(I)^*$.
Free Completions

Definition (Cartesian Monoidal Completion)

Let \(I \) be a small category. We define the cartesian monoidal completion \(\text{CM}(I) \) of \(I \) as follows:

- The set of objects is \(\text{Obj}(I)^* \).
- A morphism \(v \rightarrow w \) consists of a pair \((\theta, f)\), where \(\theta : I_w \rightarrow I_v \) is a function and \(f \) is a family of morphisms \(f_i : v_{\theta(i)} \rightarrow w_i \) for \(i \in I_w \).
Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $CM(I)$ of I as follows:

- The set of objects is $Obj(I)^*$.
- A morphism $v \to w$ consists of a pair (θ, f), where $\theta : I_w \to I_v$ is a function and f is a family of morphisms $f_i : v_{\theta(i)} \to w_i$ for $i \in I_w$.
- The composition is the natural one.
Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $\text{CM}(I)$ of I as follows:

- The set of objects is $\text{Obj}(I)^*$.
- A morphism $v \to w$ consists of a pair (θ, f), where $\theta : I_w \to I_v$ is a function and f is a family of morphisms $f_i : v_{\theta(i)} \to w_i$ for $i \in I_w$.
- The composition is the natural one.

The category $\text{CM}(I)$ has a cartesian monoidal structure.
Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal completion $CM(I)$ of I as follows:

- The set of objects is $\text{Obj}(I)^*$.
- A morphism $v \to w$ consists of a pair (θ, f), where $\theta : I_w \to I_v$ is a function and f is a family of morphisms $f_i : v_{\theta(i)} \to w_i$ for $i \in I_w$.
- The composition is the natural one.

The category $CM(I)$ has a cartesian monoidal structure. Furthermore, $CM(I)$ has two wide subcategories the symmetric monoidal completion $SM(I)$ and the monoidal completion $M(I)$ of I defined by morphisms $(\theta, f), (\phi, g)$, respectively, where θ is a bijection and ϕ is an increasing bijection.
The categories CM(\text{I}), SM(\text{I}) and M(\text{I}) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(\text{I}).

Theorem (Coherence Theorem)

Let \(F: \text{I} \to \text{UC} \) be a functor, where \(\text{UC} \) is the underlying category of a (cartesian/symmetric) monoidal category \(\text{C} \).

Then there exists a unique strict functor \(F: T(\text{I}) \to \text{C} \) extending \(F \), where \(T(\text{I}) = (\text{C}/\text{S})\text{M}(\text{I}) \).

In addition, if \(F \) is constant on all hom-sets, then \(F \) is constant on hom-sets \(\text{Hom}(v, w) \), where the directed path components \([v_i], i \in \text{I} \) are pairwise disjoint in \(\text{I} \).

David Forsman david.forsman@uclouvain.be
Relevant Coherence Theorems

The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).
The categories $\text{CM}(I)$, $\text{SM}(I)$ and $\text{M}(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $\text{CM}(I)$.

Theorem (Coherence Theorem)

Let $F : I \rightarrow UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C.

David Forsman david.forsman@uclouvain.be
Relevant Coherence Theorems

The categories $CM(I)$, $SM(I)$ and $M(I)$ are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of $CM(I)$.

Theorem (Coherence Theorem)

Let $F : I \to UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\overline{F} : T(I) \to C$ extending F, where $T(I) = (C/S)M(I)$.
The categories CM(I), SM(I) and M(I) are cartesian monoidal, symmetric monoidal and monoidal categories via the restriction of the structure of CM(I).

Theorem (Coherence Theorem)

Let $F : I \to UC$ be a functor, where UC is the underlying category of a (cartesian/symmetric) monoidal category C. Then there exists a unique strict functor $\bar{F} : T(I) \to C$ extending F, where $T(I) = (C/S)M(I)$.

In addition, if F is constant on all hom-sets, then \bar{F} is constant on hom-sets $\text{Hom}(v, w)$, where the directed path components $[v_i], i \in I_v$, are pairwise disjoint in I.
Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.

Consider exponential the transposition $I \to [C, C I]$ of the evaluation functor $C I \times I \to C$. We attain a strict functor $T(I) \to [C I, C]$. Thus each arrow in $T(I)$ can be considered a natural transformation.

As an example, we have a unique morphism $\alpha : ((xy)z) \to (x(yz))$ in $T\{x, y, z\}$. Thus we attain a natural transformation between two functors $C I \cong C \Rightarrow C$, which is the whole associator itself.
Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.
Consider exponential the transposition $I \to [C^I, C]$ of the evaluation functor $C^I \times I \to C$. We attain a strict functor $T(I) \to [C^I, C]$. Thus each arrow in $T(I)$ can be considered a natural transformation.

As an example, we have a unique morphism $\alpha: ((xy)z) \to (x(yz))$ in $T(\{x, y, z\})$. Thus we attain a natural transformation between two functors $C^3 \sim = C^I \Rightarrow C$, which is the whole associator itself.
Let I be a category and C a (cartesian/symmetric) monoidal category. Let $T(I)$ be the (cartesian/symmetric) monoidal completion of I.
Consider exponential the transposition $I \rightarrow [C^I, C]$ of the evaluation functor $C^I \times I \rightarrow C$. We attain a strict functor $T(I) \rightarrow [C^I, C]$. Thus each arrow in $T(I)$ can be considered a natural transformation.
As an example, we have a unique morphism $\alpha: ((xy)z) \rightarrow (x(yz))$ in $T(\{x, y, z\})$. Thus we attain a natural transformation between two functors $C^3 \approx C^I \Rightarrow C$, which is the whole associator itself.
Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

- $x : s \in V$.
- $f : a \rightarrow b \in M$.
- If $a = ()$, then $f : b \in M$.
Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:
Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^+ \times S$.

Notation:

- $x : s \in V$.
- $f : a \rightarrow b \in M$.
- If $a = ()$, then $f : b \in M$.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \to S$, where each fiber is countably infinite.
Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \to S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.
A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \to S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

- $x : s \in V$.
Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \rightarrow S^+ \times S$.
- A typed set of variable symbols $V \rightarrow S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

- $x : s \in V$.
- $f : a \rightarrow b \in M$.
Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the following data:

- A set S of sorts.
- A graph of morphism symbols $M \to S^+ \times S$.
- A typed set of variable symbols $V \to S$, where each fiber is countably infinite.

We will often just denote $\sigma = (S, M)$ or $\sigma = (S, M, V)$.

Notation:

- $x : s \in V$.
- $f : a \to b \in M$.
- If $a = ()$, then $f : b \in M$.
Models of Universal Algebra

Definition (σ–Model and Morphism)

Let \(\sigma = (S, M) \) be a signature. Let \(C \) be a monoidal category. A \(\sigma \)-model \(m \) in \(C \) consists of associations

\[m_1: S \rightarrow \text{Obj}(C) \]

and

\[m_2: M \rightarrow \text{Mor}(C), \]

where

\[m_2(f): m_1(r_b(a)) \rightarrow m_1(b) \]

for all \(f: a \rightarrow b \in M \).

A \(\sigma \)-model morphism \(m \rightarrow n \) in \(C \) consists of a family \(f_s: m(s) \rightarrow n(s) \), \(s \in S \), where for all morphism symbols \(\alpha: a \rightarrow b \) we have a commuting diagram

\[m(r_b(a)) \rightarrow m(b) \]

\[n(r_b(a)) \rightarrow n(b) \]

\[f(r_b(a)) \rightarrow f(b) \]

\[m(\alpha) \rightarrow n(\alpha) \]
Models of Universal Algebra

Definition (σ–Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations
Introduction
Coherence
Universal Algebra
Soundness & Completeness

Models of Universal Algebra

Definition (σ–Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_1 : S \to \text{Obj}(C)$ and
Models of Universal Algebra

Definition (σ–Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_1 : S \to \text{Obj}(C)$ and
- $m_2 : M \to \text{Mor}(C)$, where $m_2(f) : \overline{m_1}(\text{rb}(a)) \to m_1(b)$ for all $f : a \to b \in M$.

David Forsman david.forsman@uclouvain.be
Models of Universal Algebra

Definition (σ–Model and Morphism)

Let $\sigma = (S, M)$ be a signature. Let C be a monoidal category. A σ-model m in C consists of associations

- $m_1 : S \to \text{Obj}(C)$ and
- $m_2 : M \to \text{Mor}(C)$, where $m_2(f) : m_1(rb(a)) \to m_1(b)$ for all $f : a \to b \in M$.

A σ-model morphism $m \to n$ in C consists of a family f of morphisms $f_s : m(s) \to n(s), s \in S$, where for all morphism symbols $\alpha : a \to b$ we have a commuting diagram

\[
\begin{array}{ccc}
 m(rb(a)) & \xrightarrow{m(\alpha)} & m(b) \\
 f_{rb(a)} \downarrow & & \downarrow f_b \\
 n(rb(a)) & \xrightarrow{n(\alpha)} & n(b)
\end{array}
\]
Terms of Universal Algebra

Definition (Terms)

Let \(\sigma = (S, M, V) \) be a signature. The typed set of \(\sigma \)-terms \(\text{Term} \to S \) is defined recursively as follows:

- \(x, c \in \text{Term} \) for constant symbols \(c \in M \) and \(x \in V \) (the type is preserved).
- \(f(t_0, \ldots, t_n) : b \in \text{Term} \) for \(f : a_0, \ldots, a_n \to b \in M \) and \(t_0 : a_0, \ldots, t_n : a_n \in \text{Term} \).

We define \(\tau : \text{Term} \to V^+ \). For a term \(t \in \text{Term} \) we form the list \(\tau(t) = \begin{cases} () & \text{if } t = c \\ v & \text{if } t = v \\ \tau(t_1) \cdots \tau(t_n) & \text{if } t = f(t_1, \ldots, t_n) \end{cases} \).
Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ-terms $\text{Term} \rightarrow S$ is defined recursively as follows:

- $x, c \in \text{Term}$ for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
- $f(t_0, \ldots, t_n) : b \in \text{Term}$ for $f : a_0, \ldots, a_n \rightarrow b \in M$ and $t_0 : a_0, \ldots, t_n : a_n \in \text{Term}$.

We define $\tau : \text{Term} \rightarrow V^+$. For a term $t \in \text{Term}$ we form the list of variables $\tau(t) = \begin{cases} () & \text{if } t = c \in V^+, \\ v & \text{if } t = v \in V, \\ \tau(t_1) \cdots \tau(t_n) & \text{if } t = f(t_1, \ldots, t_n) \in M. \end{cases}$
Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ-terms $\text{Term} \rightarrow S$ is defined recursively as follows:

- $x, c \in \text{Term}$ for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ-terms $\text{Term} \to S$ is defined recursively as follows:

- $x, c \in \text{Term}$ for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
- $f(t_0, \ldots, t_n) : b \in \text{Term}$ for $f : a_0 \ldots a_n \to b \in M$ and $t_0 : a_0, \ldots, t_n : a_n \in \text{Term}$.

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Definition (Terms)

Let $\sigma = (S, M, V)$ be a signature. The typed set of σ-terms $Term \rightarrow S$ is defined recursively as follows:

- $x, c \in Term$ for constant symbols $c \in M$ and $x \in V$ (the type is preserved).
- $f(t_0, \ldots, t_n) : b \in Term$ for $f : a_0 \ldots a_n \rightarrow b \in M$ and $t_0 : a_0, \ldots, t_n : a_n \in Term$.

We define $\tau : Term \rightarrow V^+$. For a term $t \in Term$ we form the list of variables $\tau(t) = \begin{cases} () & \text{if } t = c \\ v & \text{if } t = v \\ \tau(t_1) \cdots \tau(t_n) & \text{if } t = f(t_1, \ldots, t_n). \end{cases}$
Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v.

Monoidal Meta-Theorem
Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t) = v$.

The term t is called a monoidal term, if $\tau(t)$ is a context.

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.

Monoidal terms can be constructed recursively.
Terms of Universal Algebra

Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t) = v$.

Monoidal Meta-Theorem
Definition (Context)

Let $\sigma = (S, M, V)$ be a signature. An element v of V^+ is called a context if no variable repeats in v. Furthermore, we define for a term t:

- v is a cartesian monoidal context or just a context for t if all variables expressed in t are expressed in v.
- v is a symmetric monoidal context for t, if $\tau(t)$ is a permutation of v.
- v is a monoidal context for t, if $\tau(t) = v$.
- The term t is called a monoidal term, if $\tau(t)$ is a context.

Monoidal terms can be constructed recursively.
Theories of Universal Algebra

Definition (Equation & Theory)

Let \(\sigma \) be a signature. For \(\sigma \)-terms \(t_1, t_2 : s \), we call \(t_1 \approx t_2 \) a \(\sigma \)-equation.

A set of \(\sigma \)-equations \(E \) is called a \(\sigma \)-theory.

A \(\sigma \)-equation \(t_1 \approx t_2 \) is called (symmetric) monoidal if \(t_1 \) and \(t_2 \) have a common (symmetric) monoidal context.

A set of (symmetric) monoidal \(\sigma \)-equations is called (symmetric) monoidal \(\sigma \)-theory.
Definition (Equation & Theory)

Let σ be a signature.

- For σ-terms $t_1, t_2 : s$, we call $t_1 \approx t_2$ a σ-equation.
Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

- For σ-terms $t_1, t_2 : s$, we call $t_1 \approx t_2$ a σ-equation.
- A set of σ–equations E is called a σ-theory.
Definition (Equation & Theory)

Let σ be a signature.

- For σ-terms $t_1, t_2 : s$, we call $t_1 \approx t_2$ a σ-equation.
- A set of σ–equations E is called a σ-theory.
- A σ-equation $t_1 \approx t_2$ is called (symmetric) monoidal if t_1 and t_2 have a common (symmetric) monoidal context.
Definition (Equation & Theory)

Let σ be a signature.

- For σ-terms $t_1, t_2 : s$, we call $t_1 \approx t_2$ a σ-equation.
- A set of σ–equations E is called a σ-theory.
- A σ-equation $t_1 \approx t_2$ is called (symmetric) monoidal if t_1 and t_2 have a common (symmetric) monoidal context.
- A set of (symmetric) monoidal σ-equation is called (symmetric) monoidal σ-theory.
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. We attain a strict functor $m : \text{Free}(V) \to C$ from V typing $\cdots \to S \xrightarrow{m} \text{Obj}(C)$. For a (cartesian/symmetric) context $v \in V^{\ast}$ of $w \in V^{\ast}$, we define $m(v),w = m(!) : m(v) \to m(w)$, where $!$ is the unique morphism $v \to w$ in $\text{Free}(V)$. We call $m(v),w : m(v) \to m(w)$ a canonical morphism.
Let m be a σ–model in a (cartesian/symmetric) monoidal category C.
Let m be a σ–model in a (cartesian/symmetric) monoidal category C.

- We attain a strict functor $\overline{m}: \text{Free}(V) \to C$ from $V \xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.

David Forsman david.forsman@uclouvain.be
Canonical Morphisms

Let m be a σ–model in a (cartesian/symmetric) monoidal category C.

1. We attain a strict functor $\overline{m}: \text{Free}(V) \to C$ from $V \xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.
2. For a (cartesian/symmetric) context $v \in V^*$ of $w \in V^*$, we define

$$m_{v,w} = \overline{m}(!): \overline{m}(v) \to \overline{m}(w),$$

where $!$ is the unique morphism $v \to w$ in $\text{Free}(V)$.
Let m be a σ–model in a (cartesian/symmetric) monoidal category C.

- We attain a strict functor $\bar{m}: \text{Free}(V) \to C$ from $V \xrightarrow{\text{typing}} S \xrightarrow{m} \text{Obj}(C)$.
- For a (cartesian/symmetric) context $v \in V^*$ of $w \in V^*$, we define

$$m_{v,w} = \bar{m}(!) : \bar{m}(v) \to \bar{m}(w),$$

where $!$ is the unique morphism $v \to w$ in Free(V).
- We call $m_{v,w} : m_v \to m_w$ a canonical morphism.
Let \(m \) be a \(\sigma \)-model in a (cartesian/symmetric) monoidal category \(C \). Let \(v \in V^* \) be a (cartesian/symmetric) monoidal context for a term \(t \).

We define the term morphism \(m^v(t) : m^v \rightarrow m^b \) of \(t \) in context \(v \) as follows:

- For \(t = c \), \(m^v \xrightarrow{e} I \xrightarrow{m^b} \).
- For \(t = x \), \(m^v \xrightarrow{x} m^x \).
- For \(t = f(t_1, \ldots, t_n) \) and \(v_i = \tau(t_i) \), \(i \leq n \).

David Forsman
david.forsman@uclouvain.be

Monoidal Meta-Theorem
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. Let $v \in V^*$ be a (cartesian/symmetric) monoidal context for a term t.
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. Let $\nu \in V^*$ be a (cartesian/symmetric) monoidal context for a term t. We define the term morphism $m_\nu(t): m_\nu \to m(b)$ of t in context ν as follows:
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. Let $\nu \in V^*$ be a (cartesian/symmetric) monoidal context for a term t. We define the term morphism $m_\nu(t) : m_\nu \to m(b)$ of t in context ν as follows:

- $m_\nu \xrightarrow{m_\nu,e} I \xrightarrow{m(c)} m(b)$ for $t = c$
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. Let $\nu \in \mathcal{V}^*$ be a (cartesian/symmetric) monoidal context for a term t. We define the term morphism $m_{\nu}(t) : m_{\nu} \to m(b)$ of t in context ν as follows:

- $m_{\nu} \xrightarrow{m_{\nu,e}} I \xrightarrow{m(c)} m(b)$ for $t = c$
- $m_{\nu} \xrightarrow{m_{\nu,x}} m_x$ for $t = x$
Let m be a σ–model in a (cartesian/symmetric) monoidal category C. Let $\nu \in V^*$ be a (cartesian/symmetric) monoidal context for a term t.

We define the term morphism $m_\nu(t) : m_\nu \to m(b)$ of t in context ν as follows:

- $m_\nu \xrightarrow{m_{\nu,e}} I \xrightarrow{m(c)} m(b)$ for $t = c$
- $m_\nu \xrightarrow{m_{\nu,x}} m_x$ for $t = x$
- $m_\nu \xrightarrow{m_{\nu,v_1 \cdots v_n}} m_{v_1} \otimes \cdots \otimes m_{v_n}$
- $m_\nu(t) \xrightarrow{m_{\nu}} m(b)$ for $t = f(t_1, \ldots, t_n)$ and $m_{v_1}(t_1) \otimes \cdots \otimes m_{v_n}(t_n)$
- $\nu_i = rb(\tau(t_i)), i \leq n.$

David Forsman david.forsman@uclouvain.be
Logical Entailment

Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms t, t_1, t_2: b and v is a context for w. Then the following assertions hold:

The diagram $m \xrightarrow{v} m \xrightarrow{w} m (b)$ commutes.

If the equation $m \xrightarrow{w} (t_1) = m \xrightarrow{w} (t_2)$ holds, so does $m \xrightarrow{v} (t_1) = m \xrightarrow{v} (t_2)$.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
Logical Entailment

Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms $t, t_1, t_2 : b$ and v is a context for w. Then the following assertions hold:
Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category C. Let $v, w \in V^*$ be (cartesian/symmetric) monoidal contexts for terms $t, t_1, t_2 : b$ and v is a context for w. Then the following assertions hold:

- The diagram

\[
\begin{array}{ccc}
 m_v & \xrightarrow{m_v(t)} & m(b) \\
 m_{v,w} & \downarrow & \downarrow & \downarrow \\
 m_w & \xrightarrow{m_w(t)} & m(b)
\end{array}
\]

commutes.
Lemma (Partial Context Independence)

Let \(m \) be a \(\sigma \)-model in a (cartesian/symmetric) monoidal category \(C \). Let \(v, w \in V^* \) be (cartesian/symmetric) monoidal contexts for terms \(t, t_1, t_2 : b \) and \(v \) is a context for \(w \). Then the following assertions hold:

- The diagram

\[
\begin{array}{ccc}
m_v & \longrightarrow & m_v(t) \\
m_v, w \downarrow & & \downarrow \\
m_w & \longrightarrow & m(b) \\
m_w(t) & \longrightarrow & \\
\end{array}
\]

commutes.

- If the equation \(m_w(t_1) = m_w(t_2) \) holds, so does \(m_v(t_1) = m_v(t_2) \).
Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C, we define:

A m satisfies (symmetric) monoidal equation $t_1 \approx t_2$, iff $m^v(t_1) = m^v(t_2)$ for some (symmetric) monoidal context v.

We then denote $m \models t_1 \approx t_2$.

(Symmetric) monoidal theory E entails ϕ in C, if $m \models E$ implies $m \models \phi$ for all σ-models m in C. This is denoted $E \models_C \phi$.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C, we define:

- Model m satisfies (symmetric) monoidal equation $t_1 \approx t_2$, iff $m_v(t_1) = m_v(t_2)$ for some (symmetric) monoidal context v. We then denote $m \models t_1 \approx t_2$.

David Forsman david.forsman@uclouvain.be
Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C, we define:

- Model m satisfies (symmetric) monoidal equation $t_1 \approx t_2$, iff $m_\nu(t_1) = m_\nu(t_2)$ for some (symmetric) monoidal context ν. We then denote $m \vDash t_1 \approx t_2$.

- (Symmetric) monoidal theory E entails ϕ in C, if $m \vDash E$ implies $m \vDash \phi$ for all σ-models m in C. This is denoted $E \vDash_C \phi$.

David Forsman
david.forsman@uclouvain.be

Monoidal Meta-Theorem
Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{ \circ_{a,b,c} : (b, c)(a, b) \to (a, c), id_a : () \to (a, a)|a, b, c \in S\})$.
Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{ \circ_{a,b,c}: (b, c)(a, b) \rightarrow (a, c), id_a: () \rightarrow (a, a) | a, b, c \in S \})$. Fix the theory E consisting of

\[
(h \circ_{b,c,d} g) \circ_{a,b,d} f \approx h \circ_{a,c,d} (g \circ_{a,b,c} f) \\
f \circ_{a,a,b} id_a \approx f \\
id_b \circ_{a,b,b} f \approx f
\]

for all $a, b, c, d \in S$ and distinct variable symbols $f: (a, b), g: (b, c)$ and $h: (c, d)$.
Example (Enriched Category)

Let S be a set. Consider a signature $\sigma = (S \times S, M = \{\circ_{a,b,c}: (b, c)(a, b) \to (a, c), id_a: () \to (a, a) | a, b, c \in S\})$. Fix the theory E consisting of

\[
(h \circ_{b,c,d} g) \circ_{a,b,d} f \approx h \circ_{a,c,d} (g \circ_{a,b,c} f)
\]

\[
f \circ_{a,a,b} id_a \approx f
\]

\[
id_b \circ_{a,b,b} f \approx f
\]

for all $a, b, c, d \in S$ and distinct variable symbols $f: (a, b), g: (b, c)$ and $h: (c, d)$.

The σ-models satisfying E in a monoidal category C are exactly C-enriched categories with S being the set of objects.
Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$.
Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$\circ_{a^1, \ldots, a^n, b, c} : (b, c)(a^1, b_1) \cdots (a^n, b_n) \rightarrow (a^1 \cdots a^n, c)$ and $id_d : (d, d)$

for $a^1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$ and $c, d \in S$.
Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$$\circ_{a_1, \ldots, a^n, b, c} : (b, c)(a_1, b_1) \cdots (a^n, b_n) \to (a^1 \cdots a^n, c)$$

and $id_d : (d, d)$ for $a_1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$ and $c, d \in S$. Let E consist of the following equations

- $h \circ (g_n \circ (f^n_1, \ldots, f^n_{m_n}), \ldots, g_1 \circ (f^1_1, \ldots, f^1_{m_1})) \approx (h \circ (g_n, \ldots, g_1)) \circ (f^n_1, \ldots, f^1_{m_1})$
- $f \circ (id, \ldots, id) \approx f$
- $id \circ f \approx f$

for a suitable choice of sorts and distinct variable symbols h, g_i, f^{i}_j for $i \leq n$ and $j \leq m_i$.

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Example (Enriched Multi-Category)

Let S be a set. Consider the signature $\sigma = (S^+ \times S, M)$, where M consists of morphism symbols

$$\circ a^1, \ldots, a^n, b, c : (b, c)(a^1, b_1) \cdots (a^n, b_n) \rightarrow (a^1 \cdots a^n, c)$$

and $id_d : (d, d)$

for $a^1, \ldots, a^n, b = b_1 \cdots b_n \in S^+$ and $c, d \in S$. Let E consist of the following equations

1. $h \circ (g_n \circ (f_1^n, \ldots, f_{m_1}^n), \ldots, g_1 \circ (f_1^1, \ldots, f_{m_1}^1)) \approx (h \circ (g_n, \ldots, g_1)) \circ (f_1^n, \ldots, f_{m_1}^1)$
2. $f \circ (id, \ldots, id) \approx f$
3. $id \circ f \approx f$

for a suitable choice of sorts and distinct variable symbols h, g_i, f_j^i for $i \leq n$ and $j \leq m_i$. Models for E in a symmetric monoidal category V are exactly the V-enriched multi-categories with S as the set of objects. A single object V-enriched multi-category is then an V-enriched operad.
Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $v = v_1 \cdots v_n$ be a context, where $v_1, \ldots, v_n \in V$. A function $s: \text{Var}(v) = \{v_1, \ldots, v_n\} \to \text{Term}$ that preserves the typing is called a renaming of variables in v.

The renaming s is called monoidal renaming, if the terms $s(v_i), i \leq n$, are monoidal and the variable sets $\text{Var}(\tau s(v_i)), i \leq n$, are pairwise disjoint.

Any renaming $s: \text{Var}(v) \to \text{Term}$ extends uniquely to a typing preserving function $s: \text{Term} v \to \text{Term}$, where $s(t) = \begin{cases} c, & \text{if } t = c \\ s(x) & \text{if } t = x f(s(t_1), \ldots, s(t_n)) \\ f(t_1, \ldots, t_n), & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$, for $t \in \text{Term} v$.

Furthermore, if s is a monoidal renaming, then s maps monoidal terms to monoidal terms.
Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $v = v_1 \ldots v_n$ be a context, where $v_1, \ldots, v_n \in V$. A function $s : \text{Var}(v) = \{v_1, \ldots, v_n\} \to \text{Term}$ that preserves the typing is called a renaming of variables in v.

The renaming s is called monoidal renaming, if the terms $s(v_i), i \leq n$, are monoidal and the variable sets $\text{Var}(s(v_i)), i \leq n$, are pairwise disjoint.

Any renaming $s : \text{Var}(v) \to \text{Term}$ extends uniquely to a typing preserving function $s : \text{Term}^v \to \text{Term}$, where $s(t) = \begin{cases} c, & \text{if } t = c \\ s(x) & \text{if } t = x \\ f(s(t_1), \ldots, s(t_n)) & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$ for $t \in \text{Term}^v$.

Furthermore, if s is a monoidal renaming, then s maps monoidal terms to monoidal terms.
Substitution

Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $\nu = \nu_1 \cdots \nu_n$ be a context, where $\nu_1, \ldots, \nu_n \in V$. A function $s : \text{Var}(\nu) = \{\nu_1, \ldots, \nu_n\} \to \text{Term}$ that preserves the typing is called a renaming of variables in ν. The renaming s is called monoidal renaming, if the terms $s(\nu_i), i \leq n$, are monoidal and the variable sets $\text{Var}(\tau s(\nu_i)), i \leq n$, are pairwise disjoint.
Substitution

Definition (Renaming)

Let $\sigma = (S, M, V)$ be a signature and let $\nu = \nu_1 \cdots \nu_n$ be a context, where $\nu_1, \ldots, \nu_n \in V$. A function $s: \text{Var}(\nu) = \{\nu_1, \ldots, \nu_n\} \rightarrow \text{Term}$ that preserves the typing is called a renaming of variables in ν. The renaming s is called monoidal renaming, if the terms $s(\nu_i), i \leq n$, are monoidal and the variable sets $\text{Var}(\tau s(\nu_i)), i \leq n$, are pairwise disjoint.

Any renaming $s: \text{Var}(\nu) \rightarrow \text{Term}$ extends uniquely to a typing preserving function $\bar{s}: \text{Term}_\nu \rightarrow \text{Term}$, where

$$\bar{s}(t) = \begin{cases}
c, & \text{if } t = c \\
s(x), & \text{if } t = x \\
f(\bar{s}(t_1), \ldots, \bar{s}(t_n)), & \text{if } t = f(t_1, \ldots, t_n),
\end{cases}$$

for $t \in \text{Term}_\nu$.

Furthermore, if s is a monoidal renaming, then \bar{s} maps monoidal terms to monoidal terms.
Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subset D_E$.
2. $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
4. If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.
5. Let $t_1 \approx t_2 \in D_E$. Let $s_1, s_2 : \text{Var}(t_1) \to \text{Term}$ be a monoidal renamings, where $s_1(x) \approx s_2(x) \in D_E$ for all $x \in \text{Var}(t_1)$. Then $s_1(t_1) \approx s_2(t_2) \in D_E$.

If $\phi \in D_E$, we write $E \vdash \phi$ and say that ϕ is syntactically deduced from E.

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subseteq D_E$.
2. If $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
4. If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.
5. Let $t_1 \approx t_2 \in D_E$. Let $s_1, s_2 : \text{Var}(t_1) \to \text{Term}$ be a monoidal renamings, where $s_1(x) \approx s_2(x) \in D_E$ for all $x \in \text{Var}(t_1)$. Then $s(t_1) \approx s(t_2) \in D_E$.

If $\phi \in D_E$, we write $E \vdash \phi$ and say that ϕ is syntactically deduced from E.

David Forsman david.forsman@uclouvain.be
Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subseteq D_E$.
Definition (Deduction)

Let \(\sigma \) be a signature and \(E \) a (symmetric) monoidal theory. We define the set \(D_E \) of all deduced equations from \(E \) as the smallest set satisfying the following conditions:

1. \(E \subset D_E \).
2. \(t \approx t \in D_E \) for all monoidal terms \(t \).
Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subseteq D_E$.
2. $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.

David Forsman
david.forsman@uclouvain.be
Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subseteq D_E$.
2. $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
4. If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.

If $\varphi \in D_E$, we write $E \vdash \varphi$ and say that φ is syntactically deduced from E.

David Forsman david.forsman@uclouvain.be
Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subset D_E$.
2. $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
4. If $t_1 \approx t_2$, $t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.
5. Let $t_1 \approx t_2 \in D_E$. Let $s_1, s_2: \text{Var}(t_1) \to \text{Term}$ be a monoidal renamings, where $s_1(x) \approx s_2(x) \in D_E$ for all $x \in \text{Var}(t_1)$. Then $s(t_1) \approx s(t_2) \in D_E$.
Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define the set D_E of all deduced equations from E as the smallest set satisfying the following conditions:

1. $E \subseteq D_E$.
2. $t \approx t \in D_E$ for all monoidal terms t.
3. If $t_1 \approx t_2 \in D_E$, then $t_2 \approx t_1 \in D_E$.
4. If $t_1 \approx t_2, t_2 \approx t_3 \in D_E$, then $t_1 \approx t_3 \in D_E$.
5. Let $t_1 \approx t_2 \in D_E$. Let $s_1, s_2 : \text{Var}(t_1) \rightarrow \text{Term}$ be a monoidal renamings, where $s_1(x) \approx s_2(x) \in D_E$ for all $x \in \text{Var}(t_1)$. Then $s(t_1) \approx s(t_2) \in D_E$.

If $\phi \in D_E$, we write $E \vdash \phi$ and say that ϕ is syntactically deduced from E.
Soundness

Lemma (Substitution Lemma)
Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v = v_1 \ldots v_n$ is a (cartesian/symmetric) monoidal context for a term t.

Assume that $s : \text{Var}(v) \to \text{Term}$ is a (cartesian) monoidal renaming.

Then for any (cartesian/symmetric) monoidal contexts w, w_1, \ldots, w_n for $s(t), s(v_1), \ldots, s(v_n)$, respectively, where w_i has its variables expressed in w for $i \leq n$, the equation holds $m_w(s(t)) = m_v(t) \circ m_{w_1}(s(v_1)) \otimes \ldots \otimes m_{w_n}(s(v_n)) \circ m_{w_1} \ldots w_n$.

Theorem (Soundness)
Let $E \cup \{\phi\}$ be a (symmetric) monoidal σ-theory. Let C be a (symmetric) monoidal category. Then $E \vdash \phi$ implies $E \models C \phi$.

David Forsman david.forsman@uclouvain.be
Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v = v_1 \ldots v_n$ is a (cartesian/symmetric) monoidal context for a term $t : b$. Assume that $s : \text{Var}(v) \to \text{Term}$ is a (cartesian) monoidal renaming.

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v = v_1 \ldots v_n$ is a (cartesian/symmetric) monoidal context for a term $t : b$. Assume that $s : \text{Var}(v) \rightarrow \text{Term}$ is a (cartesian) monoidal renaming.

Then for any (cartesian/symmetric) monoidal contexts w, w_1, \ldots, w_n for $s(t), s(v_1), \ldots, s(v_n)$, respectively, where w_i has its variables expressed in w for $i \leq n$, the equation holds

$$m_w(s(t)) = m_v(t) \circ m_{w_1}(s(v_1)) \otimes \cdots \otimes m_{w_n}(s(v_n)) \circ m_{w,w_1\ldots w_n}.$$
Soundness

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C. Assume that $v = v_1 \ldots v_n$ is a (cartesian/symmetric) monoidal context for a term $t : b$. Assume that $s : \text{Var}(v) \rightarrow \text{Term}$ is a (cartesian) monoidal renaming.

Then for any (cartesian/symmetric) monoidal contexts w, w_1, \ldots, w_n for $s(t), s(v_1), \ldots, s(v_n)$, respectively, where w_i has its variables expressed in w for $i \leq n$, the equation holds

$$m_w(s(t)) = m_v(t) \circ m_{w_1}(s(v_1)) \otimes \ldots \otimes m_{w_n}(s(v_n)) \circ m_{w,w_1\ldots w_n}.$$

Theorem (Soundness)

Let $E \cup \{\phi\}$ be a (symmetric) monoidal σ-theory. Let C be a (symmetric) monoidal category. Then $E \vdash \phi$ implies $E \models_C \phi$.

David Forsman david.forsman@uclouvain.be
Soundness & Completeness

Proof.

Let $m \models E$ in C and denote by $T = \{ \phi \mid m \models \phi \}$. For $D E \subset T$, it suffices to show the substitution condition for T:

Assume that v is a (symmetric) monoidal context for terms t_1, t_2: b and $t_1 \approx t_2 \in T$ and w is a (symmetric) monoidal context for $s_1(t_1), s_2(t_2)$ for monoidal renamings s_1, s_2: $\text{Var}(v) \rightarrow \text{Term}$ where $s_1(x) \approx s_2(x) \in T$ for all $x \in \text{Var}(v)$.

By the Substitution Lemma, we have $m w(s_1(t_1)) = m v(t_1) \circ m w_1(s_1(v_1)) \otimes \ldots \otimes m w_n(s_1(v_n)) \circ m w_1 \cdot \ldots \cdot m w_n$ for $w_i = \tau(s_1(v_i)), i \leq n$. Hence $s_1(t_1) \approx s_2(t_2) \in T$.
Proof.

Let \(m \models E \) in \(C \) and denote by \(T = \{ \phi \mid m \models \phi \} \). For \(D_E \subset T \), it suffices to show the substitution condition for \(T \):
Proof.

Let $m \models E$ in C and denote by $T = \{ \phi | m \models \phi \}$. For $D_E \subset T$, it suffices to show the substitution condition for T: Assume that v is a (symmetric) monoidal context for terms $t_1, t_2 : b$ and $t_1 \approx t_2 \in T$ and w is a (symmetric) monoidal context for $s_1(t), s_2(t)$ for monoidal renamings $s_1, s_2 : Var(v) \rightarrow Term$ where $s_1(x) \approx s_2(x) \in T$ for all $x \in Var(v)$.

David Forsman
david.forsman@uclouvain.be
Proof.

Let $m \models E$ in C and denote by $T = \{ \phi | m \models \phi \}$. For $D_E \subset T$, it suffices to show the substitution condition for T: Assume that v is a (symmetric) monoidal context for terms $t_1, t_2 : b$ and $t_1 \approx t_2 \in T$ and w is a (symmetric) monoidal context for $s_1(t), s_2(t)$ for monoidal renamings $s_1, s_2 : \text{Var}(v) \to \text{Term}$ where $s_1(x) \approx s_2(x) \in T$ for all $x \in \text{Var}(v)$.

By the Substitution Lemma, we have

$$m_w(s_1(t_1)) = m_v(t_1) \circ m_{w_1}(s_1(v_1)) \otimes \ldots \otimes m_{w_n}(s_1(v_n)) \circ m_{w, w_1 \ldots w_n}$$

$$= m_v(t_2) \circ m_{w_1}(s_2(v_1)) \otimes \ldots \otimes m_{w_n}(s_2(v_n)) \circ m_{w, w_1 \ldots w_n}$$

$$= m_w(s_2(t_2))$$

for $w_i = \tau(s_1(v_i)), i \leq n$. Hence $s_1(t_1) \approx s_2(t_2) \in T$.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ-term model n and the monoidal E-model m in \mathcal{Set} as follows:

$n(s) = \{ \ast, t \mid t: s \text{ is a monoidal term} \}$

and

$m(s) = n(s) / \sim_s$, where $\sim_s = \{ (t_1, t_2) \mid E \vdash t_1 \approx t_2, t_1: s \}$ for sorts s.

We denote the quotient map by $q_s: n(s) \rightarrow m(s)$ for sorts s.

$n(\alpha): n(a) \rightarrow n(b), (u_1, \ldots, u_n) \mapsto (f(u_1, \ldots, u_n), \text{if } f(u_1, \ldots, u_n) \in n(b) \ast, \text{else})$ and

$m(\alpha): m(a) \rightarrow m(b)$ is the unique map making the commutative diagram $n(a) \rightarrow n(b)$ $m(a) \rightarrow m(b)$ $q_a \leftarrow^n \leftarrow^b q_b$.

David Forsman
david.forsman@uclouvain.be

Monoidal Meta-Theorem
Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ-term model n and the monoidal E-model m in \textbf{Set} as follows:

\[n(s) = \{*, t \mid t: s \text{ is a monoidal term} \} \]
Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ-term model n and the monoidal E-model m in \textbf{Set} as follows:

- $n(s) = \{*, t | t: s \text{ is a monoidal term}\}$ and $m(s) = n(s)/ \sim_s$, where $\sim_s = \{(t_1, t_2), (*, *) | E \vdash t_1 \approx t_2, t_1: s\}$ for sorts s. We denote the quotient map by $q_s: n(s) \rightarrow m(s)$ for sorts s.

David Forsman
david.forsman@uclouvain.be
Monoidal Meta-Theorem
Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)
Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ-term model n and the monoidal E-model m in \textbf{Set} as follows:

- $n(s) = \{*, t \mid t: s \text{ is a monoidal term}\}$ and $m(s) = n(s)/\sim_s$, where $\sim_s = \{(t_1, t_2), (\ast, \ast) \mid E \vdash t_1 \approx t_2, t_1: s\}$ for sorts s. We denote the quotient map by $q_s: n(s) \to m(s)$ for sorts s.

- $n(\alpha): n(a) \to n(b)$,
 \[(u_1, \ldots, u_n) \mapsto \begin{cases} f(u_1, \ldots, u_n), & \text{if } f(u_1, \ldots, u_n) \in n(b) \\ \ast, & \text{else} \end{cases} \]

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ term model n and the monoidal E-model m in \textbf{Set} as follows:

- $n(s) = \{*, t \mid t : s \text{ is a monoidal term}\}$ and $m(s) = n(s)/\sim_s$, where $\sim_s = \{(t_1, t_2), (*, *) \mid E \vdash t_1 \approx t_2, t_1 : s\}$ for sorts s. We denote the quotient map by $q_s : n(s) \rightarrow m(s)$ for sorts s.

- $n(\alpha) : n(a) \rightarrow n(b)$,

\[
(u_1, \ldots, u_n) \mapsto \begin{cases}
 f(u_1, \ldots, u_n), & \text{if } f(u_1, \ldots, u_n) \in n(b) \\
 *, & \text{else}
\end{cases}
\]

and

$m(\alpha) : m(a) \rightarrow m(b)$ is the unique map making the commutative diagram

\[
\begin{array}{c}
 n(a) \xrightarrow{n(\alpha)} n(b) \\
 q_a \downarrow \quad \quad \quad \downarrow q_b \\
 m(a) \xrightarrow{m(\alpha)} m(b)
\end{array}
\]
Let $f: m \rightarrow n$ be a morphism of σ-models in a (cartesian/symmetric) monoidal category C. Let v be a (cartesian/symmetric) monoidal context for a term $t: b$. Then the diagram $m^v (b) \rightarrow n^v (b)$ commutes.
Lemma (Term-Naturality of Model Morphisms)

Let $f : m \rightarrow n$ be a morphism of σ-models in a (cartesian/symmetric) monoidal category C. Let ν be a (cartesian/symmetric) monoidal context for a term $t : b$. Then the diagram

$$
\begin{array}{ccc}
 m_{\nu} & \xrightarrow{m_{\nu}(t)} & m(b) \\
 \downarrow f_{\nu} & & \downarrow f_{b} \\
 n_{\nu} & \xrightarrow{n_{\nu}(t)} & n(b)
\end{array}
$$

commutes.
Lemma (Evaluation Lemma)

Let E be a (symmetric) monoidal σ-theory. Let m be the monoidal E-model. Let $v = v_1 \cdots v_n$ be a context for a term $t: b$. Denote the variables expressed in t by v_{i_1}, \ldots, v_{i_k}. Then

$$n(v(t)(u_1, \ldots, u_n)) = \begin{cases} \ast, & \text{if } \ast \text{ or a variable twice in } (u_{i_1}, \ldots, u_{i_k}) \\ s(t), & \text{else} \end{cases}$$

where $s(v_{i_j}) = u_{i_j}, j \leq k$. for $(u_1, \ldots, u_n) \in n(v)$.

David Forsman
david.forsman@uclouvain.be

Monoidal Meta-Theorem
Lemma (Evaluation Lemma)

Let E be a (symmetric) monoidal σ-theory. Let m be the monoidal E-model. Let $v = v_1 \cdots v_n$ be a context for a term $t : b$. Denote the variables expressed in t by v_{i_1}, \ldots, v_{i_k}. Then

$$n_v(t)(u_1, \ldots, u_n) = \begin{cases} *, & \text{if } * \text{ or a variable twice in } (u_{i_1}, \ldots, u_{i_k}), \\ s(t), & \text{else where } s(v_{i_j}) = u_{i_j}, j \leq k. \end{cases}$$

for $(u_1, \ldots, u_n) \in n_v$.

David Forsman david.forsman@uclouvain.be
Theorem (Completeness)

Let $E \cup \{ \phi \}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \models \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \models_{\text{Set}} \phi$.

Proof.

\Rightarrow: Let $v = v_1 \ldots v_n$ be a (symmetric) monoidal context for terms $t_1, t_2 : b$. Assume that $m(v(t_1)) = m(v(t_2))$. By the Evaluation Lemma and the term naturality of the quotient $q : n \to m$, it follows that $[t_1] = m(v(t_1)([v_1], \ldots, [v_n])) = m(v(t_2)([v_1], \ldots, [v_n])) = [t_2]$ and hence $E \vdash t_1 \approx t_2$.

\Leftarrow:

David Forsman david.forsman@uclouvain.be

Monoidal Meta-Theorem
Theorem (Completeness)

Let $E \cup \{\phi\}$ be a (symmetric) monoidal theory and let m be the monoidal E-model. Then $m \models \phi$ if and only if $E \vdash \phi$. Especially, $E \vdash \phi$ if and only if $E \models_{\text{Set}} \phi$.

Proof.

\Rightarrow: Let $\nu = \nu_1 \ldots \nu_n$ be a (symmetric) monoidal context for terms $t_1, t_2 : b$. Assume that $m_{\nu}(t_1) = m_{\nu}(t_2)$. By the Evaluation Lemma and the term naturality of the quotient $q : n \to m$, it follows that

\[
[t_1] = m_{\nu}(t_1)([\nu_1], \ldots, [\nu_n])
\]

\[
= m_{\nu}(t_2)([\nu_1], \ldots, [\nu_n])
\]

\[
= [t_2]
\]

and hence $E \vdash t_1 \approx t_2$.
Assume then that $E \vdash t_1 \approx t_2$. We show that $m_v(t_1) = m_v(t_2)$. Let $([u_1], \ldots, [u_n]) \in m_v$. Now again by the previous lemmas again

\[
m_v(t_1)([u_1], \ldots, [u_n]) = n_v(t_1)(u_1, \ldots, u_n) = \begin{cases} [\ast], & \text{if } \ast \text{ or a variable twice in } (u_1, \ldots, u_n) \\ [s(t_1)], & \text{else where } s(v_i) = u_i, i \leq n \end{cases}
\]

\[
= \begin{cases} [\ast], & \text{if } \ast \text{ or a variable twice in } (u_1, \ldots, u_n) \\ [s(t_2)], & \text{else where } s(v_i) = u_i, i \leq n \end{cases}
\]

\[= n_v(t_2)(u_1, \ldots, u_n) = m_v(t_2)([u_1], \ldots, [u_n])
\]

Thus $m_v(t_1) = m_v(t_2)$.

\[\blacksquare\]
Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \models Set \phi$ implies $E \models C\phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.
If $E \models Set \phi$, then by completeness $E \vdash \phi$ and hence by soundness $E \models C\phi$ for all (cartesian/symmetric) monoidal categories C.
Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \models_{\text{Set}} \phi$ implies $E \models_{C} \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.
Theorem (Monoidal Meta-Theorem)

Let $E \cup \{\phi\}$ (cartesian/symmetric) monoidal theory. Then $E \models_{\text{Set}} \phi$ implies $E \models_{C} \phi$ for all (cartesian/symmetric) monoidal categories C.

Proof.

If $E \models_{\text{Set}} \phi$, then by completeness $E \vdash \phi$ and hence by soundness $E \models_{C} \phi$ for all (cartesian/symmetric) monoidal categories C.

David Forsman david.forsman@uclouvain.be
Thank you for your attention!