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Monoidal Meta-Theorem

Theorem (Monoidal Meta-Theorem)

Let E ∪ {ϕ} (cartesian/symmetric) monoidal σ-theory and let C be
a (cartesian/symmetric) monoidal category. Then

E ⊨Set ϕ implies E ⊨C ϕ.
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Example

Example (Eckmann-Hilton Argument)

Let σ = (S = {a},M = {+,+′ : aa → a; 0′, 0: () → a})

and E
consists of

x + 0 ≈ x , 0 + x ≈ x ,

x + 0′ ≈ x , 0′ +′ x ≈ x ,

(x + y) +′ (z + w) ≈ (x +′ z) + (y +′ w)

E ⊨Set T , for T =
{x+′y ≈ x+y , e ≈ e ′, x+y ≈ y+x , (x+y)+z ≈ x+(y+z)}.
E ⊨C T for all symmetric monoidal categories C .
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Non-Examples

Example

Choose σ = (S = {a},M = {f , g : a → ()}). Now ∅ ⊨Set f ≈ g and

∅ ⊭Ab f ≈ g , where Ab is the monoidal category of abelian groups.

Example

Set σ = (S = {a},M = {f , g : a → aa}) and

E =


a aa a aa

aa aaa a aaa

g

f

f□1

f

g 1□f

g□1 1□g

 . Now E ⊨Set f ≈ g . Let

C = Setop be equipped with its cocartesian structure, E ̸⊨C f ≈ g :

m(a) = {1, 2, 3}

m(f )(x , y) = min(3, x + y), for x , y ∈ m(a), and m(g) ≡ 3.

m ⊨ E but m ̸⊨ f ≈ g .
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Magmoidal structures

Definition (Structures on Magmoid)

Let (C ,⊗ : C × C → C , I ) be a pointed magma in the meta-category of
categories. Consider the natural transformations of the following form:

(x ⊗ y)⊗ z
αx,y,z−−−→ x ⊗ (y ⊗ z) (Associator)

I ⊗ x
λx−→ x (Left unitor)

x ⊗ I
ρx−→ x (Right unitor)

x ⊗ y
γx,y−−→ y ⊗ x (Braiding/Symmetror)

x
!x−→ I (Deletor)

x
δx−→ x ⊗ x (Diagonal)
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Free Monoid and Pointed Magma

Let X be a set.

The free monoid X+ is the set
⊔

n∈N X n of finite lists over X , where
X n = {f : [n] → X} and [n] = {i ∈ N|i < n} for n ∈ N. The length
is defined as the canonical map l : X+ → N.
The free pointed magma X ∗ over X as a set is defined recursively:

x , e ∈ X ∗, for x ∈ X | (xy) ∈ X ∗ for x , y ∈ X ∗.

The function τ : X ∗ → (X ⊔ {e})+ is defined by the removal of
parenthesis. Right bracketing of a word defines a section
rb : (X ⊔ {e})+ → X ∗ to τ .

We denote by Iv = {i < l(v)|vi ̸= e} the set of essential indices of
v ∈ X ∗.

Let X = {x , y}. The set of essential indices of
v = ((xe)(y(ex)) ∈ X ∗ is Iv = {0, 2, 4} and τ(v) = xeyex .

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem
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Free Completions

Definition (Cartesian Monoidal Completion)

Let I be a small category. We define the cartesian monoidal
completion CM(I ) of I as follows:

The set of objects is Obj(I )∗.

A morphism v → w consists of a pair (θ, f ), where θ : Iw → Iv
is a function and f is a family of morphisms fi : vθ(i) → wi for
i ∈ Iw .

The composition is the natural one.

The category CM(I ) has a cartesian monoidal structure.
Furthermore, CM(I ) has two wide subcategories the symmetric
monoidal completion SM(I ) and the monoidal completion M(I ) of
I defined by morhpisms (θ, f ), (ϕ, g), respectively, where θ is a
bijection and ϕ is an increasing bijection.
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Relevant Coherence Theorems

The categories CM(I ), SM(I ) and M(I ) are cartesian monoidal,
symmetric monoidal and monoidal categories via the restriction of
the structure of CM(I ).

Theorem (Coherence Theorem)

Let F : I → UC be a functor, where UC is the underlying category
of a (cartesian/symmetric) monoidal category C. Then there exists
a unique strict functor F : T (I ) → C extending F , where
T (I ) = (C/S)M(I ).
In addition, if F is constant on all hom-sets, then F is constant on
hom-sets Hom(v ,w), where the directed path components
[vi ], i ∈ Iv , are pairwise disjoint in I .
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Relevant Coherence Theorems

Let I be a category and C a (cartesian/symmetric) monoidal
category. Let T (I ) be the (cartesian/symmetric) monoidal
completion of I .

Consider exponential the transposition I → [C I ,C ] of the
evaluation functor C I × I → C . We attain a strict functor
T (I ) → [C I ,C ]. Thus each arrow in T (I ) can be considered a
natural transformation.
As an example, we have a unique morphism α : ((xy)z) → (x(yz))
in T ({x , y , z}). Thus we attain a natural transformation between
two functors C 3 ∼= C I ⇒ C , which is the whole associator itself.
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Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Signature of Universal Algebra

Definition (Signature)

A multi-sorted signature σ of universal algebra consists of the
following data:

A set S of sorts.

A graph of morphism symbols M → S+ × S .

A typed set of variable symbols V → S , where each fiber is
countably infinite.

We will often just denote σ = (S ,M) or σ = (S ,M,V ).

Notation:

x : s ∈ V .

f : a → b ∈ M.

If a = (), then f : b ∈ M.

David Forsman david.forsman@uclouvain.be Monoidal Meta-Theorem



Introduction
Coherence

Universal Algebra
Soundness & Completeness

Models of Universal Algebra

Definition (σ–Model and Morphism)

Let σ = (S ,M) be a signature. Let C be a monoidal category. A
σ-model m in C consists of associations

m1 : S → Obj(C ) and

m2 : M → Mor(C ), where m2(f ) : m1(rb(a)) → m1(b) for all
f : a → b ∈ M.

A σ-model morphism m → n in C consists of a family f of morphisms
fs : m(s) → n(s), s ∈ S , where for all morphism symbols α : a → b we
have a commuting diagram

m(rb(a)) m(b)

n(rb(a)) n(b)

frb(a)

m(α)

fb

n(α)
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Terms of Universal Algebra

Definition (Terms)

Let σ = (S ,M,V ) be a signature. The typed set of σ-terms
Term → S is defined recursively as follows:

x , c ∈ Term for constant symbols c ∈ M and x ∈ V (the type
is preserved).

f (t0, . . . , tn) : b ∈ Term for f : a0 . . . an → b ∈ M and
t0 : a0, . . . , tn : an ∈ Term.

We define τ : Term → V+. For a term t ∈ Term we form the list

of variables τ(t) =


(), if t = c

v , if t = v

τ(t1) · · · τ(tn), if t = f (t1, . . . , tn).
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x , c ∈ Term for constant symbols c ∈ M and x ∈ V (the type
is preserved).

f (t0, . . . , tn) : b ∈ Term for f : a0 . . . an → b ∈ M and
t0 : a0, . . . , tn : an ∈ Term.

We define τ : Term → V+. For a term t ∈ Term we form the list

of variables τ(t) =


(), if t = c

v , if t = v

τ(t1) · · · τ(tn), if t = f (t1, . . . , tn).
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Terms of Universal Algebra

Definition (Context)

Let σ = (S ,M,V ) be a signature. An element v of V+ is called a
context if no variable repeats in v .

Furthermore, we define for a
term t:

v is a cartesian monoidal context or just a context for t if all
variables expressed in t are expressed in v .

v is a symmetric monoidal context for t, if τ(t) is a
permutation of v .

v is a monoidal context for t, if τ(t) = v .

The term t is called a monoidal term, if τ(t) is a context.

Monoidal terms can be constructed recursively.
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Theories of Universal Algebra

Definition (Equation & Theory)

Let σ be a signature.

For σ-terms t1, t2 : s, we call t1 ≈ t2 a σ-equation.

A set of σ–equations E is called a σ-theory.

A σ-equation t1 ≈ t2 is called (symmetric) monoidal if t1 and
t2 have a common (symmetric) monoidal context.

A set of (symmetric) monoidal σ-equation is called
(symmetric) monoidal σ-theory.
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Canonical Morphisms

Let m be a σ–model in a (cartesian/symmetric) monoidal category
C .

We attain a strict functor m : Free(V ) → C from

V
typing−−−→ S

m−→ Obj(C ).

For a (cartesian/symmetric) context v ∈ V ∗ of w ∈ V ∗, we
define

mv ,w = m(!) : m(v) → m(w),

where ! is the unique morphism v → w in Free(V ).

We call mv ,w : mv → mw a canonical morphism.
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Term-Morphism

Let m be a σ–model in a (cartesian/symmetric) monoidal category
C . Let v ∈ V ∗ be a (cartesian/symmetric) monoidal context for a
term t.
We define the term morphism mv (t) : mv → m(b) of t in context
v as follows:

mv
mv,e−−→ I

m(c)−−−→ m(b) for t = c

mv
mv,x−−→ mx for t = x

mv mv1 ⊗ · · · ⊗mvn

m(b) ma

mv,v1···vn

mv (t) mv1
(t1)⊗...⊗mvn (tn)

m(f )

for t = f (t1, . . . , tn) and

vi = rb(τ(ti )), i ≤ n.
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Logical Entailment

Lemma (Partial Context Independence)

Let m be a σ-model in a (cartesian/symmetric) monoidal category
C. Let v ,w ∈ V ∗ be (cartesian/symmetric) monoidal contexts for
terms t, t1, t2 : b and v is a context for w. Then the following
assertions hold:

The diagram
mv

mw m(b)

mv,w

mv (t)

mw (t)

commutes.

If the equation mw (t1) = mw (t2) holds, so does
mv (t1) = mv (t2).
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Logical Entailment

Definition (Satisfiability and Entailment)

Let m be a σ-model in a (symmetric) monoidal category C , we
define:

Model m satisfies (symmetric) monoidal equation t1 ≈ t2, iff
mv (t1) = mv (t2) for some (symmetric) monoidal context v .
We then denote m ⊨ t1 ≈ t2.

(Symmetric) monoidal theory E entails ϕ in C , if m ⊨ E
implies m ⊨ ϕ for all σ-models m in C . This is denoted
E ⊨C ϕ.
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Examples of Theories

Example (Enriched Category)

Let S be a set. Consider a signature σ = (S × S ,M =
{◦a,b,c : (b, c)(a, b) → (a, c), ida : () → (a, a)|a, b, c ∈ S}).

Fix the
theory E consisting of

(h ◦b,c,d g) ◦a,b,d f ≈ h ◦a,c,d (g ◦a,b,c f )
f ◦a,a,b ida ≈ f

idb ◦a,b,b f ≈ f

for all a, b, c , d ∈ S and distinct variable symbols
f : (a, b), g : (b, c) and h : (c , d).
The σ-models satisfying E in a monoidal category C are exactly
C -enriched categories with S being the set of objects.
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Examples of Theories

Example (Enriched Multi-Category)

Let S be a set. Consider the signature σ = (S+ × S ,M)

, where M
consists of morphism symbols

◦a1,...,an,b,c : (b, c)(a1, b1) · · · (an, bn) → (a1 · · · an, c) and idd : (d , d)

for a1, . . . , an, b = b1 · · · bn ∈ S+ and c , d ∈ S . Let E consist of
the following equations

h ◦ (gn ◦ (f n1 , · · · , f nmn
), . . . , g1 ◦ (f 11 , . . . , f 1m1

)) ≈ (h ◦ (gn, . . . , g1)) ◦ (f n1 , . . . , f 1m1
)

f ◦ (id, . . . , id) ≈ f

id ◦ f ≈ f

for a suitable choice of sorts and distinct variable symbols h, gi , f
i
j for

i ≤ n and j ≤ mi . Models for E in a symmetric monoidal category V are

exactly the V -enriched multi-categories with S as the set of objects. A

single object V -enriched multi-category is then an V -enriched operad.
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◦a1,...,an,b,c : (b, c)(a1, b1) · · · (an, bn) → (a1 · · · an, c) and idd : (d , d)

for a1, . . . , an, b = b1 · · · bn ∈ S+ and c , d ∈ S . Let E consist of
the following equations

h ◦ (gn ◦ (f n1 , · · · , f nmn
), . . . , g1 ◦ (f 11 , . . . , f 1m1

)) ≈ (h ◦ (gn, . . . , g1)) ◦ (f n1 , . . . , f 1m1
)

f ◦ (id, . . . , id) ≈ f

id ◦ f ≈ f

for a suitable choice of sorts and distinct variable symbols h, gi , f
i
j for

i ≤ n and j ≤ mi . Models for E in a symmetric monoidal category V are

exactly the V -enriched multi-categories with S as the set of objects. A

single object V -enriched multi-category is then an V -enriched operad.
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Substitution

Definition (Renaming)

Let σ = (S ,M,V ) be a signature and let v = v1 · · · vn be a
context, where v1, . . . , vn ∈ V . A function
s : Var(v) = {v1, . . . , vn} → Term that preserves the typing is
called a renaming of variables in v . The renaming s is called
monoidal renaming, if the terms s(vi ), i ≤ n, are monoidal and the
variable sets Var(τs(vi )), i ≤ n, are pairwise disjoint.

Any renaming s : Var(v) → Term extends uniquely to a typing preserving

function s : Termv → Term, where

s(t) =


c , if t = c

s(x), if t = x

f (s(t1), . . . , s(tn)), if t = f (t1, . . . , tn),

for t ∈ Termv .

Furthermore, if s is a monoidal renaming, then s maps monoidal terms to

monoidal terms.
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Synatactic deduction

Definition (Deduction)

Let σ be a signature and E a (symmetric) monoidal theory. We define
the set DE of all deduced equations from E as the smallest set satisfying
the following conditions:

1 E ⊂ DE .

2 t ≈ t ∈ DE for all monoidal terms t.

3 If t1 ≈ t2 ∈ DE , then t2 ≈ t1 ∈ DE .

4 If t1 ≈ t2, t2 ≈ t3 ∈ DE , then t1 ≈ t3 ∈ DE .

5 Let t1 ≈ t2 ∈ DE . Let s1, s2 : Var(t1) → Term be a monoidal
renamings, where s1(x) ≈ s2(x) ∈ DE for all x ∈ Var(t1). Then
s(t1) ≈ s(t2) ∈ DE .

If ϕ ∈ DE , we write E ⊢ ϕ and say that ϕ is syntactically deduced from E .
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Soundness

Lemma (Substitution Lemma)

Let m be a σ-model in (cartesian/symmetric) monoidal category C.
Assume that v = v1 . . . vn is a (cartesian/symmetric) monoidal context
for a term t : b. Assume that s : Var(v) → Term is a (cartesian)
monoidal renaming.
Then for any (cartesian/symmetric) monoidal contexts w ,w1, . . .wn for
s(t), s(v1), . . . , s(vn), respectively, where wi has its variables expressed in
w for i ≤ n, the equation holds

mw (s(t)) = mv (t) ◦mw1(s(v1))⊗ . . .⊗mwn(s(vn)) ◦mw ,w1···wn .

Theorem (Soundness)

Let E ∪ {ϕ} be a (symmetric) monoidal σ-theory. Let C be a
(symmetric) monoidal category. Then E ⊢ ϕ implies E ⊨C ϕ.
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Soundness

Proof.

Let m ⊨ E in C and denote by T = {ϕ|m ⊨ ϕ}. For DE ⊂ T , it suffices
to show the substitution condition for T : Assume that v is a (symmetric)
monoidal context for terms t1, t2 : b and t1 ≈ t2 ∈ T and w is a
(symmetric) monoidal context for s1(t), s2(t) for monoidal renamings
s1, s2 : Var(v) → Term where s1(x) ≈ s2(x) ∈ T for all x ∈ Var(v).
By the Substitution Lemma, we have

mw (s1(t1)) = mv (t1) ◦mw1(s1(v1))⊗ . . .⊗mwn(s1(vn)) ◦mw ,w1···wn

= mv (t2) ◦mw1(s2(v1))⊗ . . .⊗mwn(s2(vn)) ◦mw ,w1···wn

= mw (s2(t2))

for wi = τ(s1(vi )), i ≤ n. Hence s1(t1) ≈ s2(t2) ∈ T .
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Modified Lindebaum-Tarski-algebras

Definition (Modified Term-algebras)

Let E be a (symmetric) monoidal σ-theory. We define the monoidal σ
term model n and the monoidal E -model m in Set as follows:

n(s) = {∗, t|t : s is a monoidal term} and m(s) = n(s)/ ∼s , where
∼s= {(t1, t2), (∗, ∗)|E ⊢ t1 ≈ t2, t1 : s} for sorts s. We denote the
quotient map by qs : n(s) → m(s) for sorts s.

n(α) : n(a) → n(b),

(u1, . . . , un) 7→

{
f (u1, . . . , un), if f (u1, . . . , un) ∈ n(b)

∗, else
and

m(α) : m(a) → m(b) is the unique map making the commutative
diagram

n(a) n(b)

m(a) m(b)

qa

n(α)

qb

m(α)
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Lemma (Term-Naturality of Model Morphisms)

Let f : m → n be a morphism of σ-models in a
(cartesian/symmetric) monoidal category C. Let v be a
(cartesian/symmetric) monoidal context for a term t : b. Then the
diagram

mv m(b)

nv n(b)

mv (t)

fv fb

nv (t)

commutes.
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Completeness

Lemma (Evaluation Lemma)

Let E be a (symmetric) monoidal σ-theory. Let m be the monoidal
E-model. Let v = v1 · · · vn be a context for a term t : b. Denote
the variables expressed in t by vi1 , . . . , vik . Then

nv (t)(u1, . . . , un) =

{
∗, if ∗ or a variable twice in (ui1 , . . . , uik ),

s(t), else where s(vij ) = uij , j ≤ k.

for (u1, . . . , un) ∈ nv .
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Theorem (Completeness)

Let E ∪ {ϕ} be a (symmetric) monoidal theory and let m be the

monoidal E-model. Then m ⊨ ϕ if and only if E ⊢ ϕ. Especially, E ⊢ ϕ if

and only if E ⊨Set ϕ.

Proof.

⇒: Let v = v1 . . . vn be a (symmetric) monoidal context for terms
t1, t2 : b. Assume that mv (t1) = mv (t2). By the Evaluation Lemma and
the term naturality of the quotient q : n → m, it follows that

[t1] = mv (t1)([v1], . . . , [vn])

= mv (t2)([v1], . . . , [vn])

= [t2]

and hence E ⊢ t1 ≈ t2.
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E -Model Completeness (continued).

⇐: Assume then that E ⊢ t1 ≈ t2. We show that mv (t1) = mv (t2).
Let ([u1], . . . , [un]) ∈ mv . Now again by the previous lemmas again

mv (t1)([u1], . . . , [un]) = [nv (t1)(u1, . . . , un)]

=

{
[∗], if ∗ or a variable twice in (u1, . . . , un)

[s(t1)], else where s(vi ) = ui , i ≤ n

=

{
[∗], if ∗ or a variable twice in (u1, . . . , un)

[s(t2)], else where s(vi ) = ui , i ≤ n

= [nv (t2)(u1, . . . , un)]

= mv (t2)([u1], . . . , [un])

Thus mv (t1) = mv (t2).
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Theorem (Monoidal Meta-Theorem)

Let E ∪ {ϕ} (cartesian/symmetric) monoidal theory. Then
E ⊨Set ϕ implies E ⊨C ϕ for all (cartesian/symmetric) monoidal
categories C.

Proof.

If E ⊨Set ϕ, then by completeness E ⊢ ϕ and hence by soundness
E ⊨C ϕ for all (cartesian/symmetric) monoidal categories C .
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Thank You

Thank you for your attention!
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