The Flower Calculus

Pablo Donato

2024-04-16

SYCO 12, Birmingham

Based on <u>arXiv:2402.15174</u>

• Goal: intuitive **GUI** for *interactive theorem provers*

- Goal: intuitive **GUI** for *interactive theorem provers*
- Methodology:

Direct manipulation o	f Diagrams
Proofs	Statements

- Goal: intuitive **GUI** for *interactive theorem provers*
- Methodology:

Direct manipulation	of Diagrams
Proofs	Statements

• (Peirce, 1896): existential graphs (EGs) for *classical* logic

- Goal: intuitive **GUI** for *interactive theorem provers*
- Methodology:

Direct manipulation o	f Diagrams
Proofs	Statemente
FIUUIS	Statements

- (Peirce, 1896): **existential graphs (EGs)** for *classical* logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for *intuitionistic* logic

- Goal: intuitive **GUI** for *interactive theorem provers*
- Methodology:

Direct manipulation of	Flowers 🌺
Proofs	Statements

- (Peirce, 1896): **existential graphs (EGs)** for *classical* logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for *intuitionistic* logic
- **'→ Flower calculus**: intuitionistic variant that is analytic

- Goal: intuitive **GUI** for *interactive theorem provers*
- Methodology:

Direct manipulation of	Flowers 🌺
Proofs	Statements

- (Peirce, 1896): **existential graphs (EGs)** for *classical* logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for *intuitionistic* logic
- '> Flower calculus: intuitionistic variant that is analytic

Disclaimer: no *category theory* in this talk!

- 1. Classical Logic: Existential Graphs
- 2. Intuitionistic Logic: Flowers
- 3. <u>Reasoning with Flowers</u>
- 4. <u>Metatheory</u>: Nature vs. Culture
- 5. The Flower Prover

Classical Logic: Existential Graphs

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

а

$a \mapsto a \text{ is true}$

 $a \mapsto a \text{ is true} \\ \mapsto \top \text{ (no assertion)}$

 $\begin{array}{ccc} a & \mapsto & a \text{ is true} \\ & \mapsto & \top \text{ (no assertion)} \end{array}$

 \cdot Juxtaposition

G H

 $a \mapsto a \text{ is true} \\ \mapsto \top \text{ (no assertion)}$

Juxtaposition

$G H \mapsto G \text{ and } H \text{ are true}$

 $\begin{array}{ccc} a & \mapsto & a \text{ is true} \\ & \mapsto & \top \text{ (no assertion)} \end{array}$

 \cdot Juxtaposition

 $G H \mapsto G \text{ and } H \text{ are true}$

 \cdot Cut

 $a \mapsto a \text{ is true} \\ \mapsto \top \text{ (no assertion)}$

Juxtaposition

 $G H \mapsto G \text{ and } H \text{ are true}$

 \cdot Cut

Relationship with formulas

Iteration (copy-paste)		
$G H \longrightarrow G H G$		
$G H \longrightarrow G H G$		

Iteration (copy-paste)	Deiteration (unpaste)	Insertion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	→ G

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	→ G	$G \rightarrow$

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
$G H \longrightarrow G H G$	$G H G \rightarrow G H$		6
$G H \longrightarrow G H G$	$G H G \rightarrow G H$	\rightarrow G	$G \rightarrow$

and a **space** principle, the **Double-cut** law:

9/34

Intuitionistic Logic: Flowers

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

 $A \wedge B \Rightarrow C \wedge D$

• "conditional de inesse" = **classical** implication

The scroll

 $A \wedge B \Rightarrow C \wedge D$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

- "conditional de inesse" = classical implication
- '↔ scroll = two nested cuts

The scroll

 $A \wedge B \Rightarrow C \wedge D$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

- "conditional de inesse" = classical implication
- └→ scroll = two nested cuts
- Peirce also introduced \Rightarrow in logic! (Lewis 1920, p. 79)

n = 5

Continuity! Generalizes Peirce's scroll

Continuity! Generalizes Peirce's scroll and cut

(Me, 2022)

Turn **inloops** into **petals**.

(Me, 2022)

The original "theorems" of geometry were those propositions that Euclid proved, while the **corollaries** were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

- Peirce, MS 514 (1909) (Peirce 1976)

The original "theorems" of geometry were those propositions that Euclid proved, while the **corollaries** were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

- Peirce, MS 514 (1909) (Peirce 1976)

Petals = (possible) corolla-ries of pistil!

$\exists / \forall = binder$ in petal/pistil

garden = content of an area (binders + flowers)

Reasoning with Flowers

Justify a target flower by a source flower

cross-pollination self-po

self-pollination

Cross-pollination

Cross-pollination

Self-pollination

Self-pollination

Intuitionistic restriction of **double-cut** principle:

Instantiation

ipis

Abstraction

Metatheory: Nature vs. Culture

\circledast = (De)iteration \cup	Instantiation	U Scrolling U	QED	U Case reasoning
{poll↓,poll↑}	{ipis,ipet}	{epis}	{epet}	{srep}

All rules are:

• Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- └� "Equational" reasoning

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- └┿ "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- └┿ "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ
- Seduces proof-search space

\approx = Insertion \cup Deletion \cup Abstraction

{apis,apet}

•	•		
{grow,glue}	{crop,pull}		

- All rules are **non-invertible**
- Some rules are **non-analytic**

Hypothetical provability

• Remember our paradigm:

proving = erasing

Hypothetical provability

• Remember our paradigm:

proving = erasing

• This works in arbitrary contexts **X** (i.e. one-holed bouquets)

Hypothetical provability

• Remember our paradigm:

proving = erasing

- This works in arbitrary contexts **X** (i.e. one-holed bouquets)
- Formally:

Definition: For any bouquets Φ and Ψ , Ψ is *provable* from Φ , written $\Phi \vdash \Psi$, if for any context X in which Φ occurs and *pollinates* the hole of X, we have

$$X[\Psi] \longrightarrow X[$$
Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\vDash} \Psi$ in every Kripke structure \mathscr{K} , then $\Phi \stackrel{\mathscr{K}}{\vdash} \Psi$.

Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\vDash} \Psi$ in every Kripke structure \mathscr{K} , then $\Phi \stackrel{\mathscr{K}}{\vdash} \Psi$.

Corollary (Admissibility of >>): If $\Phi \vdash \Psi$ then $\Phi \stackrel{\text{\tiny def}}{\vdash} \Psi$.

Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\vDash} \Psi$ in every Kripke structure \mathscr{K} , then $\Phi \stackrel{\mathscr{K}}{\vdash} \Psi$.

Corollary (Admissibility of >>): If $\Phi \vdash \Psi$ then $\Phi \stackrel{\text{\tiny def}}{\vdash} \Psi$.

Completeness of analytic fragment *!

The Flower Prover

A <u>demo</u> is worth a thousand pictures!

Related works (non-exhaustive)

- Structural proof theory:
 - (Guenot 2013): rewriting-based nested sequent calculi
 - (Lyon 2021; Girlando et al. 2023): fully invertible labelled sequent calculi
- Proof assistants:
 - (Ayers 2021): Box datastructure similar to flowers
- \cdot Categorical logic:
 - (Johnstone 2002): coherent/geometric formulas in topos theory
 - (Bonchi et al. 2024): algebra of Beta (previous talk!)

$$\forall \vec{x}. \left(\bigwedge \Phi \Rightarrow \bigvee_{i} \exists \vec{y_{i}}. \Psi_{i} \right)$$

Bibliography

Ayers, Edward W. 2021. "A Tool for Producing Verified, Explainable Proofs."

Bonchi, Filippo, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski. 2024. "Diagrammatic Algebra of First Order Logic". arXiv. January 2024. https://doi.org/<u>10.</u> <u>48550/arXiv.2401.07055</u>

Girlando, Marianna, Roman Kuznets, Sonia Marin, Marianela Morales, and Lutz Straßburger. 2023. "Intuitionistic S4 Is Decidable". In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1–13. https://doi.org/<u>10.1109/LICS</u> <u>56636.2023.10175684</u>

- Guenot, Nicolas. 2013. "Nested Deduction in Logical Foundations for Computation". <u>https://pastel.archives-ouvertes.fr/pastel-00929908</u>
- Johnstone, Peter T. 2002. *Sketches of an Elephant: A Topos Theory Compendium*. Vol. 2. Oxford Logic Guides. Oxford, England: Clarendon Press
- Lewis, C. I. 1920. "A Survey of Symbolic Logic". *Journal of Philosophy, Psychology and Scientific Methods* 17 (3): 78–79. https://doi.org/<u>10.2307/2940631</u>
- Lyon, Tim. 2021. "Refining Labelled Systems for Modal and Constructive Logics with Applications". https://doi.org/<u>10.48550/arXiv.2107.14487</u>

- Ma, Minghui, and Ahti-Veikko Pietarinen. 2019. "A Graphical Deep Inference System for Intuitionistic Logic". *Logique Et Analyse* 245 (January): 73–114. https://doi.org/<u>10.</u> <u>2143/LEA.245.0.3285706</u>
- Oostra, Arnold. 2010. *Los Gráficos Alfa De Peirce Aplicados a La Lógica Intuicionista.* Cuadernos De Sistemática Peirceana. Centro de Sistemática Peirceana
- Peirce, Charles Sanders. 1906. "Prolegomena to an Apology for Pragmaticism". *The Monist* 16 (4): 492–546. <u>https://www.jstor.org/stable/27899680</u>
- Peirce, Charles Sanders. 1976. "Mathematical Miscellanea. 1". Edited by Carolyn Eisele. New Elements of Mathematics. De Gruyter