The Flower Calculus

Pablo Donato
2024-04-16
SYCO 12, Birmingham
Based on arXiv:2402.15174

Context

- Goal: intuitive GUI for interactive theorem provers

Context

- Goal: intuitive GUI for interactive theorem provers
- Methodology:

Context

- Goal: intuitive GUI for interactive theorem provers
- Methodology:

- (Peirce, 1896): existential graphs (EGs) for classical logic

Context

- Goal: intuitive GUI for interactive theorem provers
- Methodology:

- (Peirce, 1896): existential graphs (EGs) for classical logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for intuitionistic logic

Context

- Goal: intuitive GUI for interactive theorem provers
- Methodology:

- (Peirce, 1896): existential graphs (EGs) for classical logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for intuitionistic logic
\because Flower calculus: intuitionistic variant that is analytic

Context

- Goal: intuitive GUI for interactive theorem provers
- Methodology:

- (Peirce, 1896): existential graphs (EGs) for classical logic
- (Oostra 2010; Ma and Pietarinen 2019): EGs for intuitionistic logic
\because Flower calculus: intuitionistic variant that is analytic

> Disclaimer: no category theory in this talk!

Outline of this talk

1. Classical Logic: Existential Graphs
2. Intuitionistic Logic: Flowers
3. Reasoning with Flowers
4. Metatheory: Nature vs. Culture
5. The Flower Prover

Classical Logic: Existential Graphs

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

The three icons of Alpha

- Sheet of assertion

The three icons of Alpha

- Sheet of assertion

The three icons of Alpha

- Sheet of assertion

$$
a \quad \mapsto \quad a \text { is true }
$$

The three icons of Alpha

- Sheet of assertion

a	\mapsto	a is true
	\mapsto	\top (no assertion $)$

The three icons of Alpha

- Sheet of assertion

a	\mapsto	a is true
	\mapsto	\top (no assertion $)$

- Juxtaposition

G H

The three icons of Alpha

- Sheet of assertion

a	\mapsto	a is true
	\mapsto	\top (no assertion)

- Juxtaposition

G H $\quad \mapsto \quad G$ and H are true

The three icons of Alpha

- Sheet of assertion

a	\mapsto	a is true
	\mapsto	\top (no assertion)

- Juxtaposition

$$
G \quad H \quad \mapsto \quad G \text { and } H \text { are true }
$$

- Cut

The three icons of Alpha

- Sheet of assertion

a	\mapsto	a is true
	\mapsto	T (no assertion)

- Juxtaposition

$$
G \quad H \quad \mapsto \quad G \text { and } H \text { are true }
$$

- Cut
(G) $\mapsto G$ is not true

Relationship with formulas

Illative transformations

Only 4 edition principles!

Illative transformations

Only 4 edition principles!

Illative transformations

Only 4 edition principles!

Illative transformations

Only 4 edition principles!

Illative transformations

Only 4 edition principles!

Illative transformations

Only 4 edition principles!

and a space principle, the Double-cut law:

0

$$
00
$$

$$
00
$$

Intuitionistic Logic: Flowers

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

The scroll

$A \wedge B \Rightarrow C \wedge D$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)
- "conditional de inesse" = classical implication

$$
A \wedge B \Rightarrow C \wedge D
$$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.
— (Peirce 1906, pp. 533-534)

- "conditional de inesse" = classical implication
\because scroll = two nested cuts

$$
A \wedge B \Rightarrow C \wedge D
$$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)
- "conditional de inesse" = classical implication
\because scroll = two nested cuts
- Peirce also introduced \Rightarrow in logic! (Lewis 1920, p. 79)

$$
n=5
$$

Classical

$b \vee c$

$$
n=5
$$

Classical
$b \vee c$

Classical
$a \quad b$
$a \Rightarrow b$

$$
n=5
$$

Continuity!

Continuity! Generalizes Peirce's scroll

Continuity! Generalizes Peirce's scroll and cut

Turn inloops into petals.

Corollaries

The original "theorems" of geometry were those propositions that Euclid proved, while the corollaries were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

- Peirce, MS 514 (1909) (Peirce 1976)

Corollaries

The original "theorems" of geometry were those propositions that Euclid proved, while the corollaries were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

$$
\text { - Peirce, MS } 514 \text { (1909) (Peirce 1976) }
$$

Petals = (possible) corolla-ries of pistil!

Gardens

$\exists / \forall=$ binder in petal/pistil

$\exists x . P(x) \wedge Q(x)$

$\forall x . R(x) \Rightarrow S(x)$
garden = content of an area (binders + flowers)

Reasoning with Flowers

Iteration and Deiteration

Justify a target flower by a source flower

cross-pollination

self-pollination

Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination

Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination

Iteration and Deiteration

Works at arbitrary depth!

Iteration and Deiteration

Works at arbitrary depth!

Insertion and Deletion

Split in two:

Scrolling

Intuitionistic restriction of double-cut principle:

Instantiation

Abstraction

Ex falso quodlibet

QED

Metatheory: Nature vs. Culture

Natural rules $\&$

$\mathscr{B}=\underbrace{(\text { De)iteration }}_{\{\text {poll } \downarrow, \text { poll } \uparrow\}} \cup \underbrace{\text { Instantiation }}_{\{\text {ipis,ipet }\}} \cup \underbrace{\text { Scrolling }}_{\{\text {epis }\}} \cup \underbrace{\text { QED }}_{\{\text {epet }\}} \cup \underbrace{\text { Case reasoning }}_{\{\text {srep }\}}$

Natural rules $\&$

$$
8=\underbrace{(\text { De)iteration }}_{\{\text {poll } \downarrow, \text { poll } \uparrow\}} \cup \underbrace{\text { Instantiation }}_{\{\text {ipis, ipet }\}} \cup \underbrace{\text { Scrolling }}_{\{\text {epis\} }} \cup \underbrace{\text { QED }}_{\{\text {epet\}}} \cup \underbrace{\text { Case reasoning }}_{\{\text {srep }\}}
$$

Let Φ, Ψ be bouquets, i.e. multisets of flowers.
All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ

Natural rules $\&$

$$
\&=\underbrace{(\text { De)iteration }}_{\{\text {poll } \downarrow, \text { poll } \uparrow\}} \cup \underbrace{\text { Instantiation }}_{\{\text {ipis,ipet }\}} \cup \underbrace{\text { Scrolling }}_{\{\text {epis \}}} \cup \underbrace{\text { QED }}_{\{\text {epet }\}} \cup \underbrace{\text { Case reasoning }}_{\{\text {srep\} }}
$$

Let Φ, Ψ be bouquets, i.e. multisets of flowers.
All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
\rightarrow "Equational" reasoning

$$
\mathcal{E}=\underbrace{(\text { De)iteration }}_{\{\text {poll } \downarrow, \text { poll } \uparrow\}} \cup \underbrace{\text { Instantiation }}_{\{\text {ipis,ipet }\}} \cup \underbrace{\text { Scrolling }}_{\{\text {epis \}}} \cup \underbrace{\text { QED }}_{\{\text {epet\} }} \cup \underbrace{\text { Case reasoning }}_{\{\text {srep }\}}
$$

Let Φ, Ψ be bouquets, i.e. multisets of flowers.
All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
* \ddagger "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ

$$
\mathcal{E}=\underbrace{(\text { De)iteration }}_{\{\text {poll } \downarrow, \text { poll } \uparrow\}} \cup \underbrace{\text { Instantiation }}_{\{\text {ipis,ipet }\}} \cup \underbrace{\text { Scrolling }}_{\{\text {epis \}}} \cup \underbrace{\text { QED }}_{\{\text {epet\} }} \cup \underbrace{\text { Case reasoning }}_{\{\text {srep }\}}
$$

Let Φ, Ψ be bouquets, i.e. multisets of flowers.
All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
\because "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ
\because Reduces proof-search space

Cultural rules \propto

$$
s<=\underbrace{\text { Insertion }}_{\{\text {grow,glue\} }} \cup \underbrace{\text { Deletion }}_{\{\text {crop,pull\} }} \cup \underbrace{\text { Abstraction }}_{\{\text {apis,apet }\}}
$$

Cultural rules \propto

$$
s<=\underbrace{\text { Insertion }}_{\{\text {grow,glue\} }} \cup \underbrace{\text { Deletion }}_{\{\text {crop,pull\} }} \cup \underbrace{\text { Abstraction }}_{\{\text {apis,apet\} }}
$$

- All rules are non-invertible
- Some rules are non-analytic

Hypothetical provability

- Remember our paradigm:
proving = erasing

Hypothetical provability

- Remember our paradigm:
proving = erasing
- This works in arbitrary contexts X (i.e. one-holed bouquets)

Hypothetical provability

- Remember our paradigm:
proving = erasing
- This works in arbitrary contexts X (i.e. one-holed bouquets)
- Formally:

Definition: For any bouquets Φ and Ψ, Ψ is provable from Φ, written $\Phi \vdash \Psi$, if for any context X in which Φ occurs and pollinates the hole of X, we have

$$
X \boxed{\Psi} \longrightarrow X \square
$$

Cult-elimination

Theorem (Soundness): If $\Phi \longrightarrow \psi$ then $\psi \stackrel{\mathscr{K}}{\models} \Phi$ in every Kripke structure \mathscr{K}.

Cult-elimination

Theorem (Soundness): If $\Phi \longrightarrow \psi$ then $\psi \stackrel{\mathscr{K}}{\models} \Phi$ in every Kripke structure \mathscr{K}.

Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\models} \psi$ in every Kripke structure \mathscr{K}, then $\Phi \stackrel{\leftarrow}{\vdash} \psi$.

Cult-elimination

Theorem (Soundness): If $\Phi \longrightarrow \psi$ then $\psi \stackrel{\mathscr{K}}{\models} \Phi$ in every Kripke structure \mathscr{K}.

Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\models} \psi$ in every Kripke structure \mathscr{K}, then $\Phi \stackrel{\mathscr{L}}{\vdash} \psi$.

Corollary (Admissibility of $\delta<$): If $\Phi \vdash \psi$ then $\Phi \psi$.

Cult-elimination

Theorem (Soundness): If $\Phi \longrightarrow \psi$ then $\Psi \stackrel{\mathscr{K}}{\models} \Phi$ in every Kripke structure \mathscr{K}.

Theorem (Completeness): If $\Phi \stackrel{\mathscr{K}}{\models} \psi$ in every Kripke structure \mathscr{K}, then $\Phi \stackrel{F}{\vdash}$.

Corollary (Admissibility of $⿱ \ll$): If $\Phi \vdash \Psi$ then $\Phi \stackrel{\&}{\vdash} \Psi$.

Completeness of analytic fragment 88 !

The Flower Prover

A demo is worth a thousand pictures!

- Structural proof theory:
- (Guenot 2013): rewriting-based nested sequent calculi
- (Lyon 2021; Girlando et al. 2023): fully invertible labelled sequent calculi
- Proof assistants:
- (Ayers 2021): Box datastructure similar to flowers
- Categorical logic:
- (Johnstone 2002): coherent/geometric formulas in topos theory
- (Bonchi et al. 2024): algebra of Beta (previous talk!)

$$
\forall \vec{x} \cdot\left(\bigwedge \Phi \Rightarrow \bigvee_{i} \exists \vec{y}_{i} \cdot \Psi_{i}\right)
$$

Bibliography

Bibliography

Ayers, Edward W. 2021. "A Tool for Producing Verified, Explainable Proofs."
Bonchi, Filippo, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski. 2024. "Diagrammatic Algebra of First Order Logic". arXiv. January 2024. https://doi.org/10. 48550/arXiv.2401.07055

Girlando, Marianna, Roman Kuznets, Sonia Marin, Marianela Morales, and Lutz Straßburger. 2023. "Intuitionistic S4 Is Decidable". In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1-13. https://doi.org/10.1109/LICS 56636.2023.10175684

Bibliography

Guenot, Nicolas. 2013. "Nested Deduction in Logical Foundations for Computation". https://pastel.archives-ouvertes.fr/pastel-00929908

Johnstone, Peter T. 2002. Sketches of an Elephant: A Topos Theory Compendium. Vol. 2. Oxford Logic Guides. Oxford, England: Clarendon Press

Lewis, C. I. 1920. "A Survey of Symbolic Logic". Journal of Philosophy, Psychology and Scientific Methods 17 (3): 78-79. https://doi.org/10.2307/2940631

Lyon, Tim. 2021. "Refining Labelled Systems for Modal and Constructive Logics with Applications". https://doi.org/10.48550/arXiv.2107.14487

Bibliography

Ma, Minghui, and Ahti-Veikko Pietarinen. 2019. "A Graphical Deep Inference System for Intuitionistic Logic". Logique Et Analyse 245 (January): 73-114. https://doi.org/10. 2143/LEA.245.0.3285706

Oostra, Arnold. 2010. Los Gráficos Alfa De Peirce Aplicados a La Lógica Intuicionista. Cuadernos De Sistemática Peirceana. Centro de Sistemática Peirceana

Peirce, Charles Sanders. 1906. "Prolegomena to an Apology for Pragmaticism". The Monist 16 (4): 492-546. https://www.jstor.org/stable/27899680

Peirce, Charles Sanders. 1976. "Mathematical Miscellanea. 1". Edited by Carolyn Eisele. New Elements of Mathematics. De Gruyter

