—« | —o > »— | o—

/ \

|] - I.
\ /

> ] - gyt <1 -

Diagrammatic Algebra of First Order Logic

Alessandro Di Giorgio
University College London

SYCO 12
Birmingham, UK



Collaborators

» t&"ll, X -—
U A
) ’ : -’ . \
¢ . 3
| B . :

"”.

-

B -

WV Y i .-'—”

s % 'Tv" Y R ;.\‘ -L" 3- 5. X y

e G . S N

-' YRR . o ~\‘u—" b ot )

— ' —a——"_’—. = I - \ _\‘*'- "‘ ~ _‘d" 50 4 ’ & : -
> ‘ . . N s AR S TN g 4
e, — 3 X ™ . N
oy - v\ b - o b ) h . .

.- =
-

ilippo Bonchi Nathan Haydon Pawet Sobocinski
University of Pisa TalTech TalTech



Motivation

“Logic in his adolescent phase was algebraic. There was Boole’s algebra of classes and Peirce’s
algebra of relations. But in 1879 logic come of age, with Frege’s quantification theory. Here the
bound variables, so characteristic of analysis rather than of algebra, became central to logic.”

William Quine, 1971
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“Logic in his adolescent phase was algebraic. There was Boole’s algebra of classes and Peirce’s
algebra of relations. But in 1879 logic come of age, with Frege’s quantification theory. Here the
bound variables, so characteristic of analysis rather than of algebra, became central to logic.”

William Quine, 1971

PTRT Binary relations are
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 Rewriting = Gavazzo, 2023

 Program logic | Hoare&He, 1986 O’Hearn, 2019
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Motivation

The Calculus of Relations in computer science

 Theory of Databases ' Codd, 1970

e Proof Assistants = Pous, 2013

 Rewriting = Gavazzo, 2023

FOL is a major
specification language

Program logic = Hoare&He, 1986 O’Hearn, 2019

But CR is strictly less expressive :(



In this talk

 We develop a categorical algebra of relations
* As expressive as FOL
 With a complete equational axiomatization

 Axioms arise from well-known algebraic structures
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Cartesian Bicategories

Syntax |~ | R | > ] | | > | HeH

AXioms special Frobenius algebra

(co)commutative (co)monoids
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Cartesian Bicategories

Example Rel” the category of sets and relations

RHSH = {(x,y)]|3z.(x,z) e RA(z,y) € S}

= {(x,y) | x=y} S XxX

= {(, ()} € X x (X x X)

= {60} S X x )




Cartesian Bicategories

Internal language

P(x) ~» xHP

regular logic (4 A fragment of FOL)
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Cartesian Bicategories

Internal language regular logic (3 A fragment of FOL)

P(x) ~ xHp P(x) A Q(x) ~ x —{%

Completeness Every theorem of regular logic can be proved with
the axioms of cartesian bicategories

Bonchi, Seeber, Sobocinski, 2018
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CoCartesian Bicategories

Example Rel® the other category of sets and relations

= {(x,y) | Vz.(x,z) e RV (z,y) € §}
= (o)) | x#y}SXxX
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CoCartesian Bicategories

Internal language coregular logic (V V fragment of FOL)

P(x) ~ x P(x) V Q(x) ~ X Vx.P(x) ~ R P



CoCartesian Bicategories

Internal language coregular logic (V V fragment of FOL)

P(x) ~ x P(x) V Q(x) ~ X Vx.P(x) ~ R P

Completeness Every theorem of coregular logic can be proved with
the axioms of cocartesian bicategories
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Two categories of relations

Sharing the same objects and arrows but with different compositions....

Rel’ Rel’
Cartesian bicategory CoCartesian bicategory
1 A -FOL V A -FOL

N,
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Perice knew It since 1897 Peirce, 1897

“Two formulae so constantly used that hardly anything can be done without them”
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How do they interact?

Perice knew it since 1897 Peirce, 1897
“Two formulae so constantly used that hardly anything can be done without them”
Re(S3Q)C(Rs5)sQ (R$S)sQRC Rs(59Q)

Cockett et al. categorified it 100 years later Cockett, Koslowski, Seely, 2000

A linear bicategory consists of

* two bicategory structures

* sharing the same objects and arrows but with different compositions
* such that one linearly distributes over the other

Oio oS 55 o I © o B & B




First Order Bicategories

A first order bicategory is a linear bicategory, such that
* One bicategory Is cartesian
* the other Is cocartesian

* they interact via linear adjunctions
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A first order bicategory is a linear bicategory, such that
* One bicategory Is cartesian
* the other Is cocartesian

* they interact via linear adjunctions
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First Order Bicategories

spec. Frob.
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Properties of First Order Bicategories

Every homset carries a Boolean algebra
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Properties of First Order Bicategories

Every homset carries a Boolean algebra

def
— ® 0

—: C — C®®is an isomorphism that swaps colors, e.g. -« =




Proofs as diagram rewrites

Ix.Vy.R(x,y) = Vy.3x.R(x,y)




Proofs as diagram rewrites

dx.Vy.R(x,y) = Vy.3x.R(x,y)

adj.

adj.



First Order Diagrammatic Theories

A theory is a pair [ = (2, [)
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First Order Diagrammatic Theories

A theory is a pair 1 = (2, )

Example (linear orders)

>={R: 1 -1}
— — — R
| = { < HR RHRH<HR {/R—} < ¢ o<
Relfexive Transitive Antisymmetric Total

Models are functors  F: FOBt — Rel

Completeness If VF: FOBt — Rel.F(c) = F(d) then ¢ =;d



First Order Diagrammatic Theories

Trivial
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= all models have empty domain
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Trivial Contradictory

— < IR <IB

= all models have empty domain = there are no models

Trivial theories correspond to propositional theories

and the axioms collapse to the deep inference system SKSg = Brunnler, 2003



First Order Diagrammatic Theories

Trivial Contradictory

o —

<K= <|p

= all models have empty domain = there are no models

Trivial theories correspond to propositional theories

and the axioms collapse to the deep inference system SKSg _

Godel Completeness Prop. Completeness
Non-trivial Trivial




Conclusions

» Categorical Algebra of Relations as expressive as FOL

« Complete equational axiomatization

 Axioms arise from the interaction of algebraic structures
 No variables, No quantifiers

* |t encodes other variable free approaches (see the paper)

—

+ We recently showed” FOB . - BHD

*joint work with Davide Trotta



Future work

* Beyond classical FOL.: Intuitionistic? Higher-order?

 Combinatorial characterization by means of hypergraphs?
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* Diagrammatic interactive proof assistant?

* |Investigate the connection with deep inference



