

Diagrammatic Algebra of First Order Logic

Alessandro Di Giorgio
University College London

SYCO 12
Birmingham, UK

Collaborators

Filippo Bonchi University of Pisa

Nathan Haydon TalTech

Paweł Sobociński TalTech

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Logic of Relatives

$\left.R, S, T, \ldots, \cap, \cup, ;,(\cdot)^{\dagger},\right\urcorner$

1870
Peirce

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Logic of Relatives

$R, S, T, \ldots, \cap, \cup, ;,(\cdot)^{\dagger}, \neg \quad x, y, z, \forall, \exists$

Quantification

Theory

Frege
Lowenheim

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Logic of Relatives	Quantification Theory	Binary relations are less expressive than FOL	Calculus of Relations
$R, S, T, \ldots, \cap, \cup, ;,(\cdot)^{\dagger}, \neg$	$x, y, z, \forall, \exists$		$R ;(S \cup Q)=(R ; S) \cup(R ; Q)$
1870 …-....	-..- 1879	1915	-...-. 1941
Peirce	Frege	Lowenheim	Tarski

Motivation

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Motivation

The Calculus of Relations in computer science

- Theory of Databases Codd, 1970
- Proof Assistants Pous, 2013
- Rewriting Gavazzo, 2023
- Program logic

Motivation

The Calculus of Relations in computer science

- Theory of Databases Codd, 1970
- Proof Assistants Pous, 2013
- Rewriting Gavazzo, 2023
- Program logic

Hoare\&He, 1986
O’Hearn, 2019

Motivation

The Calculus of Relations in computer science

- Theory of Databases Codd, 1970
- Proof Assistants Pous, 2013
- Rewriting Gavazzo, 2023

FOL is a major
specification language

- Program logic

Hoare\&He, 1986
O'Hearn, 2019

In this talk

- We develop a categorical algebra of relations
- As expressive as FOL
- With a complete equational axiomatization
- Axioms arise from well-known algebraic structures

Cartesian Bicategories

Cartesian Bicategories

Syntax

Cartesian Bicategories

Syntax

Axioms

$$
\begin{aligned}
& \square \cdot \square=\square \quad \square=\square \quad \square=\square \cdot \square=\square \\
& \omega \quad \square \quad \square \quad \square=\square=\square
\end{aligned}
$$

$$
\begin{aligned}
& \because \leq \square \quad \because \leq \square \\
& \square \leq \square \quad \square \leq \square
\end{aligned}
$$

$$
\begin{aligned}
& -c \cdot \square \leq \cdot \frac{9}{c} \\
& \square \cdot \bullet
\end{aligned}
$$

Cartesian Bicategories

Syntax

Axioms

$$
\begin{array}{llll}
\square=\sigma & =\sigma & \square=\square & \square=\square \\
\sigma & \sigma & \square & \square \\
\sigma & \square & \square & \square \\
\square & \square & \square
\end{array}
$$

$$
\begin{aligned}
& \because \leq \square \quad \square \\
& \square \leq \square \\
& \square \quad \square
\end{aligned}
$$

$$
\begin{aligned}
& \boxed{\sigma \cdot} \leq \cdot \frac{9}{9} \\
& \boxed{\sigma} \cdot \square
\end{aligned}
$$

Cartesian Bicategories

Syntax

Axioms
special Frobenius algebra (co)commutative (co)monoids

$$
\begin{array}{lll|l}
\sigma=\sigma & \sigma=\square & \boxed{\sigma}=\sigma & \boxed{\sigma}=\square \\
\sigma=\sigma & \square=\square & \infty=\sigma & \square=\square
\end{array}
$$

Cartesian Bicategories

Syntax

Axioms
special Frobenius algebra (co)commutative (co)monoids

$$
\begin{aligned}
& \square=\square \quad \mathrm{C}=\square=\square \\
& \text { 回= } \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& -\overline{-} \leq \bullet
\end{aligned}
$$

Cartesian Bicategories

Syntax

Axioms
special Frobenius algebra (co)commutative (co)monoids

$$
\begin{array}{lll}
\square=Q & \square=\boxminus & \square=Q \\
\square=\square & \square=\square & \square
\end{array}
$$

$$
\begin{aligned}
& \square=\square=\square
\end{aligned}
$$

lax naturality

Cartesian Bicategories

Example Rel $^{\circ}$ the category of sets and relations

$$
\begin{aligned}
\boxed{R-S} & =\{(x, y) \mid \exists z .(x, z) \in R \wedge(z, y) \in S\} \\
\square & =\{(x, y) \mid x=y\} \subseteq X \times X \\
\bullet & =\left\{\left(x,\binom{x}{x}\right)\right\} \subseteq X \times(X \times X) \\
\bullet & =\{(x, \star)\} \subseteq X \times\{\star\}
\end{aligned}
$$

Cartesian Bicategories

Internal language regular logic ($\exists \wedge$ fragment of FOL)

$$
P(x) \rightsquigarrow x-P \quad P(x) \wedge Q(x) \rightsquigarrow x \cdot \sqrt{\frac{P}{Q}} \quad \exists x \cdot P(x) \rightsquigarrow \cdot P
$$

Cartesian Bicategories

Internal language regular logic ($\exists \wedge$ fragment of FOL)

$$
P(x) \rightsquigarrow x-P \quad P(x) \wedge Q(x) \rightsquigarrow x \cdot \sqrt{-\frac{P}{Q}} \quad \exists x \cdot P(x) \rightsquigarrow \cdot P
$$

Completeness
Every theorem of regular logic can be proved with the axioms of cartesian bicategories

Bonchi, Seeber, Sobocinski, 2018

CoCartesian Bicategories

Syntax

Axioms
special Frobenius algebra

CoCartesian Bicategories

Example Rel ${ }^{\circ}$ the other category of sets and relations

$$
\begin{aligned}
R-S & =\{(x, y) \mid \forall z .(x, z) \in R \vee(z, y) \in S\} \\
& =\{(x, y) \mid x \neq y\} \subseteq X \times X \\
& =\left\{\left.\left(x,\binom{y}{z}\right) \right\rvert\, x \neq y \vee x \neq z\right\} \\
\square & =\{ \}
\end{aligned}
$$

CoCartesian Bicategories

Internal language coregular logic ($\forall \vee$ fragment of FOL)

$$
P(x) \rightsquigarrow x-P \quad P(x) \vee Q(x) \rightsquigarrow x-\frac{P}{Q} \quad \forall x \cdot P(x) \rightsquigarrow \cdot P
$$

CoCartesian Bicategories

Internal language coregular logic ($\forall \vee$ fragment of FOL)

$$
P(x) \rightsquigarrow x-P \quad P(x) \vee Q(x) \rightsquigarrow x-\frac{P}{Q} \quad \forall x \cdot P(x) \rightsquigarrow \cdot P
$$

Completeness
Every theorem of coregular logic can be proved with the axioms of cocartesian bicategories

Two categories of relations

Sharing the same objects and arrows but with different compositions....

$$
\begin{array}{cc}
\text { Rel }^{\circ} & \text { Rel }^{\bullet} \\
\text { Cartesian bicategory } & \text { CoCartesian bicategory } \\
\exists \wedge-\mathrm{FOL} & \forall \wedge-\mathrm{FOL}
\end{array}
$$

Two categories of relations

Sharing the same objects and arrows but with different compositions....

How do they interact?

Perice knew it since 1897

"Two formulae so constantly used that hardly anything can be done without them"

$$
R ;(S ; Q) \subseteq(R ; S) ; Q \quad(R ; S) ; Q \subseteq R ;(S ; Q)
$$

How do they interact?

Perice knew it since 1897

"Two formulae so constantly used that hardly anything can be done without them"

$$
R ;(S ; Q) \subseteq(R ; S) ; Q \quad(R ; S) ; Q \subseteq R ;(S ; Q)
$$

Cockett et al. categorified it 100 years later
A linear bicategory consists of

- two bicategory structures
- sharing the same objects and arrows but with different compositions
- such that one linearly distributes over the other

$$
R-Q \mid=R-Q
$$

$$
R-S-Q-S-Q
$$

First Order Bicategories

A first order bicategory is a linear bicategory, such that

- one bicategory is cartesian
- the other is cocartesian
- they interact via linear adjunctions

$$
\square \leq \square \cdot \square
$$

- and linear versions of the Frobenius axioms

First Order Bicategories

A first order bicategory is a linear bicategory, such that

- one bicategory is cartesian
- the other is cocartesian
- they interact via linear adjunctions

$$
\square \leq \square \cdot \square \cdot \square
$$

- and linear versions of the Frobenius axioms

$$
\square \leq \square \leq \square
$$

First Order Bicategories

Properties of First Order Bicategories

Every homset carries a Boolean algebra

$$
\begin{aligned}
& R \wedge S \stackrel{\text { def }}{=} \frac{\sqrt{R}}{S} \\
& R \vee S \stackrel{\text { def }}{=} \frac{R}{S}
\end{aligned}
$$

Properties of First Order Bicategories

Every homset carries a Boolean algebra

$\neg: \mathrm{C} \rightarrow \mathrm{C}^{\mathrm{co}}$ is an isomorphism that swaps colors, e.g.

Proofs as diagram rewrites

$$
\exists x \cdot \forall y \cdot R(x, y) \Longrightarrow \forall y \cdot \exists x \cdot R(x, y)
$$

Proofs as diagram rewrites

$$
\exists x \cdot \forall y \cdot R(x, y) \Longrightarrow \forall y \cdot \exists x \cdot R(x, y)
$$

$$
\cdot \cdot R \leq \cdot \cdot R
$$

Proof

First Order Diagrammatic Theories

A theory is a pair $\mathbb{T}=(\Sigma, \mathbb{D})$

First Order Diagrammatic Theories

A theory is a pair $\mathbb{T}=(\Sigma, \mathbb{C})$
Example (linear orders)
$\Sigma=\{R: 1 \rightarrow 1\}$
$0=\{\square \leq \boxed{R}$
Relfexive

Transitive

Antisymmetric

Total

First Order Diagrammatic Theories

A theory is a pair $\mathbb{T}=(\Sigma, \mathbb{I})$
Example (linear orders)
$\Sigma=\{R: 1 \rightarrow 1\}$
$\mathrm{a}=\{\square \leq \boxed{R}$
Relfexive

Transitive

Antisymmetric

Total

Models are functors $\quad F: \mathrm{FOB}_{\mathbb{T}} \rightarrow$ Rel

First Order Diagrammatic Theories

A theory is a pair $\mathbb{T}=(\Sigma, \mathbb{I})$
Example (linear orders)
$\Sigma=\{R: 1 \rightarrow 1\}$

Relfexive

Transitive

Antisymmetric

Total

Models are functors $\quad F: \mathrm{FOB}_{\mathbb{T}} \rightarrow$ Rel
Completeness If $\forall F: \mathrm{FOB}_{\mathbb{T}} \rightarrow \operatorname{Rel} . F(c)=F(d)$ then $c={ }_{\mathbb{T}} d$

First Order Diagrammatic Theories

Trivial

\Rightarrow all models have empty domain

Contradictory

\Rightarrow there are no models

First Order Diagrammatic Theories

Contradictory

\Rightarrow there are no models

Trivial theories correspond to propositional theories and the axioms collapse to the deep inference system SKSg

First Order Diagrammatic Theories

Trivial

\Rightarrow all models have empty domain

Contradictory

\Rightarrow there are no models

Trivial theories correspond to propositional theories and the axioms collapse to the deep inference system SKSg

Conclusions

- Categorical Algebra of Relations as expressive as FOL
- Complete equational axiomatization
- Axioms arise from the interaction of algebraic structures
- No variables, No quantifiers
- It encodes other variable free approaches (see the paper)
- We recently showed* ${ }^{\text {FOB }}$

Future work

- Beyond classical FOL: Intuitionistic? Higher-order?
- Combinatorial characterization by means of hypergraphs?

- Diagrammatic interactive proof assistant?
- Investigate the connection with deep inference

