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bound variables, so characteristic of analysis rather than of algebra, became central to logic.”  
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• Rewriting


• Program logic
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Hoare&He, 1986 O’Hearn, 2019

FOL is a major 
specification language

But CR is strictly less expressive :(



In this talk

• We develop a categorical algebra of relations 

• As expressive as FOL 

• With a complete equational axiomatization  

• Axioms arise from well-known algebraic structures
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Completeness Every theorem of regular logic can be proved with 
the axioms of cartesian bicategories 

Bonchi, Seeber, Sobocinski, 2018
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Completeness Every theorem of coregular logic can be proved with 
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How do they interact?
Peirce, 1897Perice knew it since 1897

“Two formulae so constantly used that hardly anything can be done without them”

Cockett et al. categorified it 100 years later Cockett, Koslowski, Seely, 2000

A linear bicategory consists of 

• two bicategory structures

• sharing the same objects and arrows but with different compositions

• such that one linearly distributes over the other
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 is an isomorphism that swaps colors, e.g.  ¬: 𝖢 → 𝖢𝖼𝗈 ¬ =
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A theory is a pair 𝕋 = (Σ, 𝕀)

Models are functors F : 𝖥𝖮𝖡𝕋 → 𝖱𝖾𝗅

Example (linear orders)

Relfexive Transitive Antisymmetric Total

Σ = {R : 1 → 1}

𝕀 = { }

Completeness ∀F : 𝖥𝖮𝖡𝕋 → 𝖱𝖾𝗅 . F(c) = F(d)If then c =𝕋 d
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First Order Diagrammatic Theories
Trivial Contradictory

Trivial theories correspond to propositional theories
and the axioms collapse to the deep inference system 𝖲𝖪𝖲𝗀 Brünnler, 2003  

Our Completeness  
Non-contradictory 

Gödel Completeness 
Non-trivial

Prop. Completeness 
Trivial



Conclusions
• Categorical Algebra of Relations as expressive as FOL


• Complete equational axiomatization


• Axioms arise from the interaction of algebraic structures 


• No variables, No quantifiers 


• It encodes other variable free approaches (see the paper) 


• We recently showed* 

*joint work with Davide Trotta



Future work
• Beyond classical FOL: Intuitionistic? Higher-order?


• Combinatorial characterization by means of hypergraphs?


• Diagrammatic interactive proof assistant?


• Investigate the connection with deep inference


