

Diagrammatic Algebra of First Order Logic Alessandro Di Giorgio University College London

SYCO 12 Birmingham, UK

Collaborators

Filippo Bonchi University of Pisa

Nathan Haydon TalTech

Paweł Sobociński TalTech

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

Logic of Relatives

 $R, S, T, \ldots, \cap, \cup, ;, (\cdot)^{\dagger}, \neg$

1870 Peirce

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

Binary relations are less expressive than FOL

> 1915 Lowenheim

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

William Quine, 1971

 $R; (S \cup Q) = (R; S) \cup (R; Q)$

1915	1941
owenheim	Tarski

"Logic in his adolescent phase was algebraic. There was Boole's algebra of classes and Peirce's algebra of relations. But in 1879 logic come of age, with Frege's quantification theory. Here the bound variables, so characteristic of analysis rather than of algebra, became central to logic."

Motivation The Calculus of Relations in computer science

Codd, 1970

• Theory of Databases

Proof Assistants

Pous, 2013

• Rewriting Gavazzo, 2023

Program logic

Hoare&He, 1986

O'Hearn, 2019

Motivation The Calculus of Relations in computer science

Codd, 1970

• Theory of Databases

Proof Assistants

Pous, 2013

• Rewriting Gavazzo, 2023

Program logic

Hoare&He, 1986

FOL is a major specification language

O'Hearn, 2019

Motivation The Calculus of Relations in computer science

Codd, 1970

• Theory of Databases

Proof Assistants

Pous, 2013

• Rewriting Gavazzo, 2023

Program logic

Hoare&He, 1986

O'Hearn, 2019

FOL is a major specification language

But CR is strictly less expressive :(

In this talk

- We develop a categorical algebra of relations
- As expressive as FOL
- With a complete equational axiomatization
- Axioms arise from well-known algebraic structures

Carboni & Walters, 1987

Axioms

Axioms

Axioms

Rel° the category of sets and relations Example

$$\exists R \mid S = \{(x, y) \mid \exists z.(x, z) \in R \land (z, y) \in S\}$$

- $|--| = \{(x, y) \mid x = y\} \subseteq X \times X$
- $| = \{(x, (x))\} \subseteq X \times (X \times X)$
- $|-\bullet| = \{(x,\star)\} \subseteq X \times \{\star\}$

Internal language *regular logic* $(\exists \land fragment \ of FOL)$

$$P(x) \rightsquigarrow x \square P$$
 $P(x) \land Q(x)$

Internal language

$$P(x) \rightsquigarrow x \square P$$

$$P(x) \land Q(x) \rightsquigarrow x \overbrace{\triangleleft Q}^{P} \qquad \exists x.P(x) \rightsquigarrow \frown P$$

Completeness

Bonchi, Seeber, Sobocinski, 2018

regular logic ($\exists \land$ fragment of FOL)

Every theorem of regular logic can be proved with the axioms of cartesian bicategories

Axioms

Syntax

special Frobenius algebra colax naturality $c \cdot \geq -$

Rel[•] the other category of sets and relations Example

$$R \ S = \{(x, y) \mid \forall z.(x, z) \in R \lor (z, y) \in S\}$$
$$= \{(x, y) \mid x \neq y\} \subseteq X \times X$$
$$C = \{(x, \binom{y}{z}) \mid x \neq y \lor x \neq z\}$$

Internal language coregular logic ($\forall \lor$ fragment of FOL)

$$P(x) \rightsquigarrow x P$$
 $P(x) \lor Q(x)$

 $\forall x.P(x) \rightsquigarrow \square P$

Internal language coregular logic ($\forall \lor$ fragment of FOL)

$$P(x) \rightsquigarrow x - P$$
 $P(x) \lor Q(x)$

Completeness

$$Q(x) \rightsquigarrow x \stackrel{P}{\stackrel{Q}{\leftarrow} Q$$

$$\forall x.P(x) \rightsquigarrow \frown P$$

Every theorem of coregular logic can be proved with the axioms of cocartesian bicategories

Two categories of relations

Sharing the same objects and arrows but with different compositions....

Rel° Cartesian bicategory $\exists \land -FOL$

Rel[•] CoCartesian bicategory $\forall \land -FOL$

Two categories of relations

Sharing the same objects and arrows but with different compositions....

?

FOL

Rel° Cartesian bicategory $\exists \land -FOL$

Rel[•] CoCartesian bicategory $\forall \land -FOL$

How do they interact?

Perice knew it since 1897

"Two formulae so constantly used that hardly anything can be done without them" $R \circ (S \bullet Q) \subseteq (R \circ S) \bullet Q$ $(R, S), Q \subseteq R, (S, Q)$

Peirce, **1897**

How do they interact?

Perice knew it since 1897

""Two formulae so constantly used that hardly anything can be done without them" $R \circ (S \circ Q) \subseteq (R \circ S) \circ Q$ $(R , S) \circ Q \subseteq R \circ (S \circ Q)$

Cockett et al. categorified it 100 years later

A linear bicategory consists of

- two bicategory structures
- such that one linearly distributes over the other

Peirce, 1897

Cockett, Koslowski, Seely, 2000

sharing the same objects and arrows but with different compositions

First Order Bicategories

A first order bicategory is a linear bicategory, such that

- one bicategory is cartesian
- the other is cocartesian
- they interact via linear adjunctions

and linear versions of the Frobenius axioms

First Order Bicategories

A first order bicategory is a linear bicategory, such that

- one bicategory is cartesian
- the other is cocartesian
- they interact via linear adjunctions

First Order Bicategories

Properties of First Order Bicategories

Every homset carries a Boolean algebra

Properties of First Order Bicategories

Every homset carries a Boolean algebra

 $\neg: C \to C^{co}$ is an isomorphism that swaps colors, e.g.

Proofs as diagram rewrites

 $\exists x.\forall y.R(x,y) \implies \forall y.\exists x.R(x,y)$

Proofs as diagram rewrites

$\exists x.\forall y.R(x,y) \implies \forall y.\exists x.R(x,y)$

Proof

A theory is a pair $\mathbb{T} = (\Sigma, \mathbb{I})$

First Order Diagrammatic Theories A theory is a pair $\mathbb{T} = (\Sigma, \mathbb{I})$

First Order Diagrammatic Theories A theory is a pair $\mathbb{T} = (\Sigma, \mathbb{I})$

Models are functors $F \colon \mathsf{FOB}_{\mathbb{T}} \to \mathsf{Rel}$

First Order Diagrammatic Theories A theory is a pair $\mathbb{T} = (\Sigma, \mathbb{I})$

Models are functors $F \colon \mathsf{FOB}_{\mathbb{T}} \to \mathsf{Rel}$ Completeness If $\forall F \colon \mathsf{FOB}_{\mathbb{T}} \to \mathsf{Rel} \cdot F(c) = F(d)$ then $c =_{\mathbb{T}} d$

Trivial

 \Rightarrow all models have empty domain

Contradictory

 \Rightarrow there are no models

Trivial

 \Rightarrow all models have empty domain

Trivial theories correspond to propositional theories and the axioms collapse to the deep inference system SKSg

Contradictory

 \Rightarrow there are no models

Brünnler, 2003

Trivial

 \Rightarrow all models have empty domain

Trivial theories correspond to propositional theories and the axioms collapse to the deep inference system SKSg

> **Our Completeness Non-contradictory** Gödel Completeness **Prop. Completeness Non-trivial** Trivial

Contradictory

- \Rightarrow there are no models

Brünnler, 2003

Conclusions

- Categorical Algebra of Relations as expressive as FOL
- Complete equational axiomatization
- Axioms arise from the interaction of algebraic structures
- No variables, No quantifiers
- It encodes other variable free approaches (see the paper)
- We recently showed* FOB 5

*joint work with Davide Trotta

Future work

Beyond classical FOL: Intuitionistic? Higher-order?

Combinatorial characterization by means of hypergraphs?

Diagrammatic interactive proof assistant?

Investigate the connection with deep inference

