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Quantum computing in a nutshell

Describing the (pure state) quantum mechanics of qubits:

states: vectors (in a complex Hilbert space of dimension 2n)

transformations: linear maps

measurements: projections (at least for our purposes), probabilistic

Fix a basis, then this gives a dagger compact PROP where morphisms n → m are
complex matrices of size 2n × 2m.

These arbitrary exponentially large matrices

▶ are difficult to work with on the theory side

▶ and cannot be implemented directly on the experimental side

so represent everything in terms of a chosen set of generators.
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The quantum circuit model

▶ State preparation and measurements only in the standard basis.

▶ Computation is driven by unitary transformations, generated by a set of gates
(which usually act on 1 or 2 qubits).

S H S H
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T
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Quantum circuits act as a sort of ‘machine language’ for quantum computers.
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Questions arising from limited quantum computing resources

Currently, and near-term future: noisy intermediate-scale quantum (NISQ) era

▶ Processors have up to a few hundred qubits

▶ Cannot implement error-correction yet, so have to tolerate noise

▶ Generally limited connectivity for two-/multi-qubit gates

Longer term: large-scale computation with error correction

▶ Error-correction schemes generally do not allow any universal gate set to be
directly implemented in a fault-tolerant way

▶ Secure delegation to a quantum server in the cloud

Questions: compilation, optimisation, routing
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ZX-calculus generators
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(Some) ZX-calculus rewrite rules
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These rules are complete for the ‘stabiliser fragment’ (ignoring scalars) [B. 2014].
The universal calculus can be made complete [Jeandel et al. 2017; Ng & Wang 2017].



Optimising quantum computations using the ZX-calculus
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Problem: translating ZX-diagrams to circuits is #P-hard [de Beaudrap et al. 2022]
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Two models of quantum computation

quantum circuit model

▶ initialise classical state 0 . . . 0

▶ computation driven by
(reversible) unitary gates

▶ simple measurements read out
data at end

one-way model

▶ initialise entangled ‘graph state’
(can be made independent of
computation)

▶ computation driven by
successive adaptive single-qubit
measurements

▶ if goal is state preparation, may
need very simple unitary gates
as correction at the end
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Deterministic computation from probabilistic measurements

A labelled open graph Γ consists of

▶ a finite simple graph
G = (V ,E ),

▶ subsets I ,O ⊆ V called inputs
and outputs, and

▶ one of six ‘measurement labels’
for each v ∈ O.

A flow on a labelled open graph Γ
consists of

▶ a partial order ≺ over V , and

▶ a ‘correction function’
f : O → P

(
I
)
,

which satisfy certain compatibility
conditions.

Theorem [Browne et al. 2007, Mhalla et al. 2022]

A one-way-model computation has a robustly deterministic implementation if and
only if the underlying labelled open graph has flow.
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MBQC-form ZX-diagrams

An MBQC-form ZX-diagram consists of:
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0

▶ a graph state diagram

▶ with some input wires, and

▶ measurement effects on some outputs.

Lemma
Any ZX-diagram can be brought into MBQC form efficiently.

Definition
An MBQC-form ZX-diagram has flow if its underlying labelled open graph has flow.
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Efficient circuit extraction from MBQC-form diagrams with flow
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4

circuitZX-diagram with extended gflow

[Duncan et al. 2020; B., Miller-Bakewell, Felice, Lobski, van de Wetering 2021; Simmons 2021]
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Flow-preserving rewrite rules for the stabiliser ZX-calculus

(all phase labels are integer multiples of π/2)

Local complementation
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...

...

...

=
...

...

π
2

π
2

π
2

π
2
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...

...

...

...
...

−π
2

Z -deletion/insertion

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ
...

...

...

...

...
...

Theorem [McElvanney & B. 2023]

Suppose D and D ′ are two stabiliser ZX-diagrams with flow that both represent
the same linear map. Then one can be rewritten into the other using local
complementation, Z -insertion, and Z -deletion.
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The standard stabiliser ZX-calculus rewrite rules again

β..
.

..
.

α ..
.

..
.

=..
.

..
.

..
.α+β

−α=
π

π

π α

..
.

..
.

π

..
.α =

..
.

..
. =

..
. =

=

=

..
.α α

..
.

π
2

π
2

π
2= ‘Only connectivity matters.’



A further flow-preserving rewrite rule: vertex splitting

... α

... α − β

... β

0=N

N \W

W

[McElvanney & B. 2023]



Applications

Reduce number of non-stabiliser operations

▶ Non-stabiliser operations tend to be very expensive in error-correcting codes

▶ Stabiliser rewrite rules are largely sufficient for this [van de Wetering et al. 2024]

Reduce number of two-qubit gates

▶ Two-qubit gates tend to have larger errors in NISQ devices

▶ Vertex splitting rule is useful for reducing counts [Staudacher et al. 2022]

More efficient secure delegated computation

▶ Arbitrary secure delegated quantum computation is possible

▶ Traditional schemes use a lot of redundant resources, can reduce that using
flow-preserving ZX-calculus rewriting [Cao 2023]
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Summary and outlook

▶ ZX-calculus is useful for optimising quantum computations

▶ Translating arbitrary ZX-diagrams into quantum circuits is #P-hard

▶ Translating MBQC-form ZX-diagrams with flow is efficient

▶ New rewrite rules that preserve these properties

▶ Known applications in optimisation and obfuscation

Further work

▶ More work to be done around different types of flow

▶ Are there similar properties for ZW-calculus and ZH-calculus?

Thank you!
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