
Algebraic Recognition of Regular Functions

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu— ÉNS Lyon
joint work with Mikołaj Bojańczyk (MIMUW, University of Warsaw)

11th Symposium on Compositional Structures – April 20th, 2023

1/13

Reminder: automata and regular languages

Languages = sets of words L ⊆ Σ∗ ∼= decision problems Σ∗ → {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (deterministic or not): e.g. drawing below

even odd

0
1

0

1

2/13

Reminder: automata and regular languages

Languages = sets of words L ⊆ Σ∗ ∼= decision problems Σ∗ → {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

• regular expressions: 0*(10*10*)* = “only 0s and 1s & even number of 1s”
• finite automata (deterministic or not)
• algebraic definition below (very close to automata), e.g.M = Z/(2)

Theorem (classical)
A language L ⊆ Σ∗ is regular ⇐⇒ there are amonoid morphism φ : Σ∗ →M to a
finite monoid M and a subset P ⊆M such that L = φ−1(P) = {w ∈ Σ∗ | φ(w) ∈ P}.

Σ∗ = {words over the finite alphabet Σ} = free monoid
• monadic 2nd-order logic, simply typed λ-calculus [Hillebrand & Kanellakis 1996], …

2/13

Algebraic recognition of regular languages

A language L ⊆ Σ∗ is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism−−−−−−−−−−−−→ some finite monoid M→ {yes,no}

⇝ terminology: “M recognizes L”

Varying the monoidsM allowed leads to algebraic language theory
Founding example: Schützenberger’s theorem on star-free languages

L is recognized by some aperiodic finite monoid (∀x ∈M, ∃n ∈ N : xn = xn+1)
⇐⇒ it is described by some star-free expression

E,E′ ::= ∅ |
empty string︷︸︸︷

ε | a︸︷︷︸
letter in a finite alphabet Σ

| E ∪ E′ |
concatenation︷ ︸︸ ︷

E · E′ | ¬E︸︷︷︸
complement

⇝ JEK ⊆ Σ∗

3/13

Algebraic recognition of regular languages

A language L ⊆ Σ∗ is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism−−−−−−−−−−−−→ some finite monoid M→ {yes,no}

⇝ terminology: “M recognizes L”
Varying the monoidsM allowed leads to algebraic language theory
Founding example: Schützenberger’s theorem on star-free languages

L is recognized by some aperiodic finite monoid (∀x ∈M, ∃n ∈ N : xn = xn+1)
⇐⇒ it is described by some star-free expression

E,E′ ::= ∅ |
empty string︷︸︸︷

ε | a︸︷︷︸
letter in a finite alphabet Σ

| E ∪ E′ |
concatenation︷ ︸︸ ︷

E · E′ | ¬E︸︷︷︸
complement

⇝ JEK ⊆ Σ∗

3/13

Semigroups instead of monoids

A language L ⊆ Σ∗ is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism−−−−−−−−−−−−→ some finite semigroup S→ {yes,no}

Definition
Semigroup = set + associative binary operation (so monoid = semigroup + unit)

We still have: star-free language ⇐⇒ recognized by aperiodic finite semigroup
Semigroups are sometimes more convenient than monoids
A finite semigroup is aperiodic (∀x ∈ S, ∃n ≥ 1 : xn = xn+1)
⇔ none of its non-trivial subsemigroups are groups ((⇐) fails with submonoids)

Remark: every finite semigroup “is built from”︸ ︷︷ ︸
divides a wreath product of

groups & aperiodic semigroups
(Krohn–Rhodes decomposition)

4/13

Semigroups instead of monoids

A language L ⊆ Σ∗ is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism−−−−−−−−−−−−→ some finite semigroup S→ {yes,no}

Definition
Semigroup = set + associative binary operation (so monoid = semigroup + unit)

We still have: star-free language ⇐⇒ recognized by aperiodic finite semigroup
Semigroups are sometimes more convenient than monoids
A finite semigroup is aperiodic (∀x ∈ S, ∃n ≥ 1 : xn = xn+1)
⇔ none of its non-trivial subsemigroups are groups ((⇐) fails with submonoids)

Remark: every finite semigroup “is built from”︸ ︷︷ ︸
divides a wreath product of

groups & aperiodic semigroups
(Krohn–Rhodes decomposition)

4/13

From languages to functions

Finite semigroups recognize regular languages L ⊆ Σ∗ ⇝ leads to a rich theory

What about functions f : Σ∗ → Γ∗?

Many non-equivalent transducermodels: finite-state devices with outputs
(sequential functions, rational functions, polyregular functions…)

common property (“sanity check”): L regular =⇒ f−1(L) regular

Regular functions are one of the most robust/canonical classes

• several equivalent definitions (next slides)
• previously, no concise algebraic one −→ our contribution

using a bit of category theory!

5/13

From languages to functions

Finite semigroups recognize regular languages L ⊆ Σ∗ ⇝ leads to a rich theory

What about functions f : Σ∗ → Γ∗?
Many non-equivalent transducer models: finite-state devices with outputs

(sequential functions, rational functions, polyregular functions…)
common property (“sanity check”): L regular =⇒ f−1(L) regular

Regular functions are one of the most robust/canonical classes

• several equivalent definitions (next slides)
• previously, no concise algebraic one −→ our contribution

using a bit of category theory!

5/13

From languages to functions

Finite semigroups recognize regular languages L ⊆ Σ∗ ⇝ leads to a rich theory

What about functions f : Σ∗ → Γ∗?
Many non-equivalent transducer models: finite-state devices with outputs

(sequential functions, rational functions, polyregular functions…)
common property (“sanity check”): L regular =⇒ f−1(L) regular

Regular functions are one of the most robust/canonical classes

• several equivalent definitions (next slides)
• previously, no concise algebraic one −→ our contribution

using a bit of category theory!

5/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output:

abccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: a

bccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: ab

ccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abc

cba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abcc

ba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccb

a#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba

#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#

baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#b

accab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#ba

ccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#bac

cab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#bac

cab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#bacc

ab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#bacca

b#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

Output: abccba#baccab

#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab

#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#

cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#c

bbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cb

bc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cb

bc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbb

c

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

Output: abccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

Output: abccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

Output: abccba#baccab#cbbc

6/13

The first definition of regular functions: (deterministic) two-way transducers

Example: w1# . . .#wn 7−→ w1 · reverse(w1)# . . .#wn · reverse(wn)

→

→

←

←

→

→

x|x

x|x

#, ◁|ε

#, ◁|ε

x|x

x|x

#, ▷|ε

#, ▷|ε

x|ε

x|ε

#|#

#|#

◁|ε

◁|ε

(x ∈ {a, b, c})

▷ a b c # b a c # c b ◁

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

Output: abccba#baccab#cbbc

6/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ε Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a
↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = a Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓ ↓

X = aca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

X = baca Y = ε

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓ ↓

X = ε Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

X = b Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓ ↓

X = cb Y = baca#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

X = ε Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

X = c Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

X = ac Y = baca#cb#

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ac Y = baca#cb# mapReverse(. . .) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ac Y = baca#cb# mapReverse(. . .) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

7/13

Streaming string transducers = finite automata + string-valued registers

mapReverse : {a, b, c,#}∗ → {a, b, c,#}∗
w1# . . .#wn 7→ reverse(w1)# . . .#reverse(wn)

a c a b # b c # c a

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X = ac Y = baca#cb# mapReverse(. . .) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

a 7→

X := aX
Y := Y

7→

X := ε

Y := YX#
each register appears at most once
on the right of a := in a transition

⇝ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]
7/13

Recognizing regular functions with functors on semigroups

A language is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ some finite semigroup→ {yes,no}

The main theorem
A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups with S finite⇒ F(S) finite
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

(Monoids instead of semigroups⇝ regular functions f such that f(ε) = ε)
8/13

Example

The following regular function maps baa to cccaab:

{a, b}∗ 〈(_7→c),reverse〉−−−−−−−−−−→ {a, b, c}∗ × ({a, b, c}∗)op concatenate−−−−−−−→ Σ∗

• Sop = S where the product is reversed; reverse : Σ∗ → (Σ∗)op is a morphism
• FS = S× Sop is a finiteness-preserving endofunctor
• ·S : S× Sop → S is family of Set-functions natural in S

9/13

Some intuitions

A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups

⇝ FS = a data structure storing some elements from S,
encoding compositional information

• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

⇝ extract an element of S “uniformly” from FS: procedure whose
control flow should only depend on S-independent parts

• with S finite⇒ F(S) finite

⇝ S-independent part ' some finite state

10/13

Some intuitions

A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups
⇝ FS = a data structure storing some elements from S,

encoding compositional information
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

⇝ extract an element of S “uniformly” from FS: procedure whose
control flow should only depend on S-independent parts

• with S finite⇒ F(S) finite

⇝ S-independent part ' some finite state

10/13

Some intuitions

A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups
⇝ FS = a data structure storing some elements from S,

encoding compositional information
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

⇝ extract an element of S “uniformly” from FS: procedure whose
control flow should only depend on S-independent parts

• with S finite⇒ F(S) finite

⇝ S-independent part ' some finite state

10/13

Some intuitions

A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups
⇝ FS = a data structure storing some elements from S,

encoding compositional information
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

⇝ extract an element of S “uniformly” from FS: procedure whose
control flow should only depend on S-independent parts

• with S finite⇒ F(S) finite ⇝ S-independent part ' some finite state

10/13

Proof idea (1): two-way transducer −→ functor

Behaviors of two-way transducers have a semigroup structure:

q→1

q←2

q←3

q→1

q←2

q←3

aab

bb

q→1

q←2

q←3

a ⇝
q→1

q←2

q←3

q→1

q←2

q←3

aababb

connection with traced monoidal categories: shapes = Int(Setpartial)(Q,Q) [Hines 2003]

Finitelymany “shapes”⇝ finiteness-preserving FS =
∑

shapes
Snumber of labels

(Actual proof in paper: similar phenomenon for streaming string transducers)

11/13

Proof idea (1): two-way transducer −→ functor

Behaviors of two-way transducers have a semigroup structure:

q→1

q←2

q←3

q→1

q←2

q←3

aab

bb

q→1

q←2

q←3

a ⇝
q→1

q←2

q←3

q→1

q←2

q←3

aababb

connection with traced monoidal categories: shapes = Int(Setpartial)(Q,Q) [Hines 2003]

Finitelymany “shapes”⇝ finiteness-preserving FS =
∑

shapes
Snumber of labels

(Actual proof in paper: similar phenomenon for streaming string transducers)

11/13

Proof idea (2): functor −→ streaming string transducer

Key property of a “functorially recognized” function f : Σ∗ → Γ∗

For all u, v ∈ Σ∗, the parts of the output f(uv) “caused by” the input prefix u
consist of a bounded number of factors (contiguous subwords).

For f : w 7→ c|w| · reverse(w), at most 2 factors: f(baa) = cccaab

−→ build a transducer whose registers store these factors after reading u

Formally: for f factored into Σ∗
h−→ FΓ∗ outΓ∗−−−−→ Γ∗, consider (⊕ = coproduct)

out
(
Fι(h(ba)) · Fι(h(a))

)
= cc · ca · ab ∈ Σ∗ ⊕ Σ∗

Its “shape” 1 · 1 · 1 is determined by (F>(h(ba)),F>(h(a))) ∈ (F1)2 (> : Σ∗ → 1)
+ (1 finite =⇒ F1 finite)⇝ finitely many shapes⇝ desired bound

12/13

Proof idea (2): functor −→ streaming string transducer

Key property of a “functorially recognized” function f : Σ∗ → Γ∗

For all u, v ∈ Σ∗, the parts of the output f(uv) “caused by” the input prefix u
consist of a bounded number of factors (contiguous subwords).

For f : w 7→ c|w| · reverse(w), at most 2 factors: f(baa) = cccaab

−→ build a transducer whose registers store these factors after reading u

Formally: for f factored into Σ∗
h−→ FΓ∗ outΓ∗−−−−→ Γ∗, consider (⊕ = coproduct)

out
(
Fι(h(ba)) · Fι(h(a))

)
= cc · ca · ab ∈ Σ∗ ⊕ Σ∗

Its “shape” 1 · 1 · 1 is determined by (F>(h(ba)),F>(h(a))) ∈ (F1)2 (> : Σ∗ → 1)
+ (1 finite =⇒ F1 finite)⇝ finitely many shapes⇝ desired bound

12/13

Proof idea (2): functor −→ streaming string transducer

Key property of a “functorially recognized” function f : Σ∗ → Γ∗

For all u, v ∈ Σ∗, the parts of the output f(uv) “caused by” the input prefix u
consist of a bounded number of factors (contiguous subwords).

For f : w 7→ c|w| · reverse(w), at most 2 factors: f(baa) = cccaab

−→ build a transducer whose registers store these factors after reading u

Formally: for f factored into Σ∗
h−→ FΓ∗ outΓ∗−−−−→ Γ∗, consider (⊕ = coproduct)

out
(
Fι(h(ba)) · Fι(h(a))

)
= cc · ca · ab ∈ Σ∗ ⊕ Σ∗

Its “shape” 1 · 1 · 1 is determined by (F>(h(ba)),F>(h(a))) ∈ (F1)2 (> : Σ∗ → 1)
+ (1 finite =⇒ F1 finite)⇝ finitely many shapes⇝ desired bound

12/13

Conclusion

Thanks for your attention!

A language is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ some finite (monoid|semigroup)→ {yes,no}

The main theorem
A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups with S finite⇒ F(S) finite
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

Regular functions = computed by two-way transducers,
or copyless streaming string transducers, or… 13/13

Conclusion Thanks for your attention!

A language is regular ⇐⇒ the corresponding decision problem factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ some finite (monoid|semigroup)→ {yes,no}

The main theorem
A string-to-string function is regular ⇐⇒ it factors as

Σ∗
some morphism

−−−−−−−−−−−−−→ FΓ∗ outΓ∗−−−−→ Γ∗

• for some endofunctor F on semigroups with S finite⇒ F(S) finite
• and some natural transformation out : UF⇒ U (where U = forgetful to Set)

Regular functions = computed by two-way transducers,
or copyless streaming string transducers, or… 13/13

