Algebraic Recognition of Regular Functions

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito.eu — ÉNS Lyon joint work with Mikołaj Bojańczyk (MIMUW, University of Warsaw)

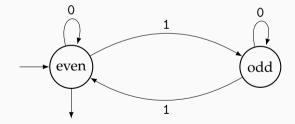
11th Symposium on Compositional Structures – April 20th, 2023

Reminder: automata and regular languages

Languages = sets of words $L \subseteq \Sigma^* \cong$ decision problems $\Sigma^* \to \{\text{yes}, \text{no}\}$

Regular languages: fundamental class in comp. sci., many definitions

- *regular expressions*: 0*(10*10*)* = "only 0s and 1s & even number of 1s"
- *finite automata* (deterministic or not): e.g. drawing below



Reminder: automata and regular languages

Languages = sets of words $L \subseteq \Sigma^* \cong$ decision problems $\Sigma^* \to \{\text{yes}, \text{no}\}$

Regular languages: fundamental class in comp. sci., many definitions

- *regular expressions*: 0*(10*10*)* = "only 0s and 1s & even number of 1s"
- *finite automata* (deterministic or not)
- *algebraic* definition below (very close to automata), e.g. $M = \mathbb{Z}/(2)$

Theorem (classical)

A language $L \subseteq \Sigma^*$ is regular \iff there are a monoid morphism $\varphi \colon \Sigma^* \to M$ to a finite monoid M and a subset $P \subseteq M$ such that $L = \varphi^{-1}(P) = \{w \in \Sigma^* \mid \varphi(w) \in P\}.$

 $\Sigma^* = \{ \text{words over the finite alphabet } \Sigma \} = free \text{ monoid }$

• monadic 2nd-order logic, simply typed λ -calculus [Hillebrand & Kanellakis 1996], ...

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^*$ is regular \iff the corresponding decision problem *factors* as

 $\Sigma^* \xrightarrow{\text{some morphism}} \text{some finite monoid } M \to \{\text{yes}, \text{no}\}$

 \rightsquigarrow terminology: "*M* recognizes *L*"

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^*$ is regular \iff the corresponding decision problem *factors* as

 $\Sigma^* \xrightarrow{\text{some morphism}} \text{some finite monoid } M \to \{\text{yes}, \text{no}\}$

 \rightsquigarrow terminology: "*M* recognizes *L*"

Varying the monoids *M* allowed leads to *algebraic language theory*

Founding example: Schützenberger's theorem on star-free languages

L is recognized by some *aperiodic* finite monoid $(\forall x \in M, \exists n \in \mathbb{N} : x^n = x^{n+1})$ \iff it is described by some *star-free expression*

Semigroups instead of monoids

A language $L \subseteq \Sigma^*$ is regular \iff the corresponding decision problem factors as

 $\Sigma^* \xrightarrow{\text{some morphism}} \text{some finite semigroup } S \to \{\text{yes}, \text{no}\}$

Definition

Semigroup = set + associative binary operation (so monoid = semigroup + unit)

Semigroups instead of monoids

A language $L \subseteq \Sigma^*$ is regular \iff the corresponding decision problem factors as

 $\Sigma^* \xrightarrow{\text{some morphism}} \text{some finite semigroup } S \to \{\text{yes}, \text{no}\}$

Definition

Semigroup = set + associative binary operation (so monoid = semigroup + unit)

We still have: star-free language \iff recognized by *aperiodic* finite semigroup

Semigroups are sometimes more convenient than monoids

A finite semigroup is aperiodic ($\forall x \in S, \exists n \ge 1 : x^n = x^{n+1}$)

 \Leftrightarrow none of its non-trivial subsemigroups are groups ((\Leftarrow) fails with submonoids)

Remark: every finite semigroup "is built from" groups & aperiodic semigroups divides a wreath product of (Krohn–Rhodes decomposition) 4/13

From languages to functions

Finite semigroups recognize regular *languages* $L \subseteq \Sigma^* \rightsquigarrow$ leads to a rich theory

What about <u>functions</u> $f: \Sigma^* \to \Gamma^*$?

From languages to functions

Finite semigroups recognize regular *languages* $L \subseteq \Sigma^* \rightsquigarrow$ leads to a rich theory

What about <u>functions</u> $f: \Sigma^* \to \Gamma^*$?

Many non-equivalent transducer models: finite-state devices with outputs

(sequential functions, rational functions, polyregular functions...)

common property ("sanity check"): *L* regular $\implies f^{-1}(L)$ regular

Finite semigroups recognize regular *languages* $L \subseteq \Sigma^* \rightsquigarrow$ leads to a rich theory

What about <u>functions</u> $f: \Sigma^* \to \Gamma^*$?

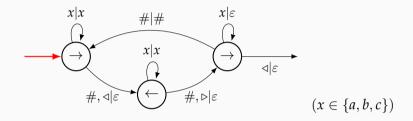
Many non-equivalent *transducer* models: finite-state devices with outputs (sequential functions, rational functions, polyregular functions...) common property ("sanity check"): L regular $\implies f^{-1}(L)$ regular

Regular functions are one of the most robust/canonical classes

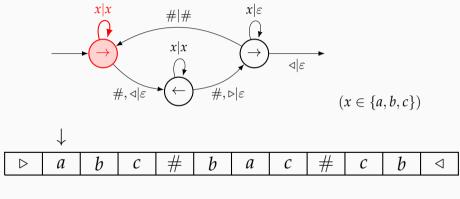
- several equivalent definitions (next slides)
- previously, no concise algebraic one \longrightarrow <u>our contribution</u>

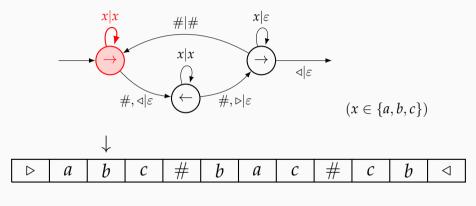
using a bit of category theory!

Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



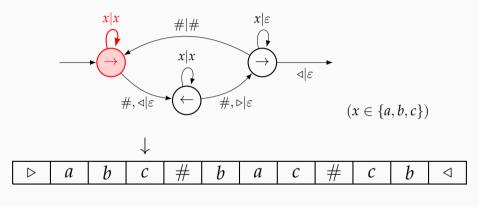
Output:



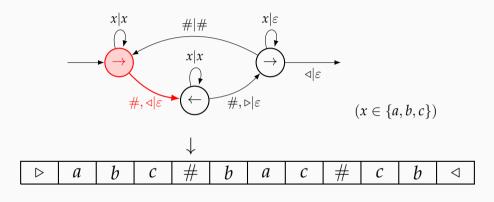


Output: a

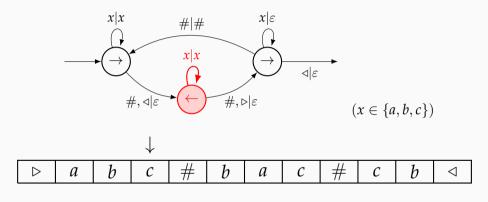
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



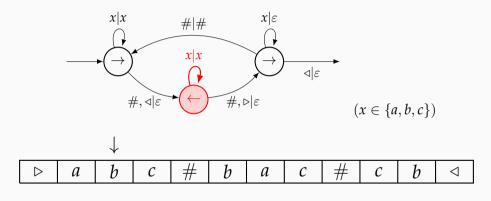
Output: *ab*



Output: *abc*

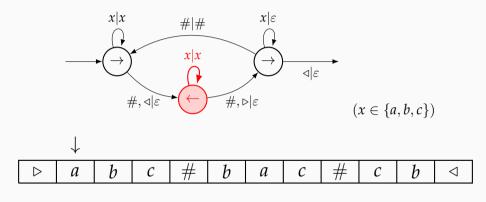


Output: *abc*

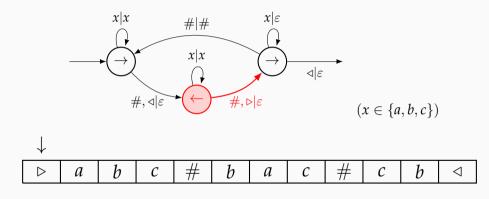


Output: *abcc*

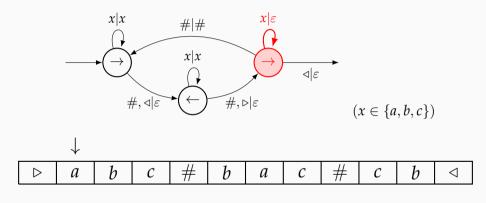
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



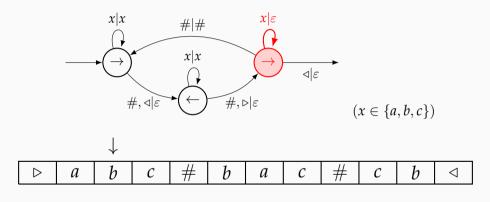
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \texttt{reverse}(w_1) \# \ldots \# w_n \cdot \texttt{reverse}(w_n)$



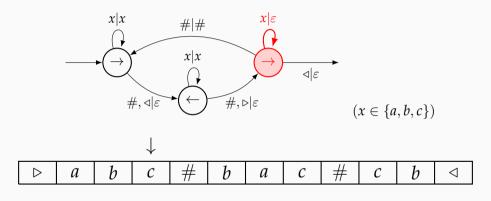
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



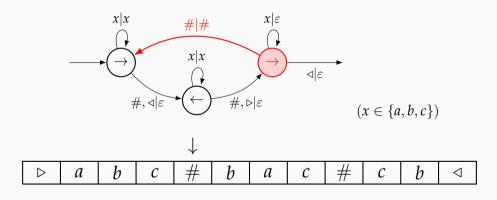
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



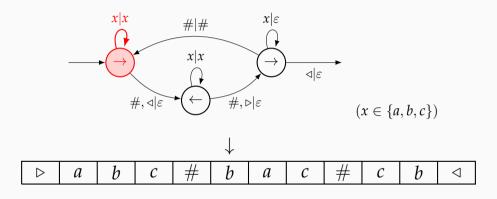
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



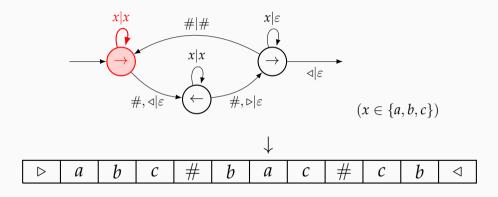
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



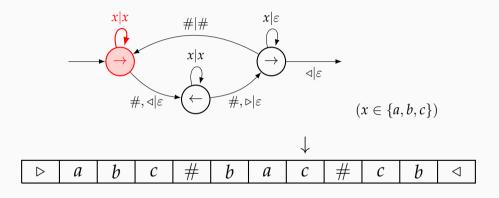
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



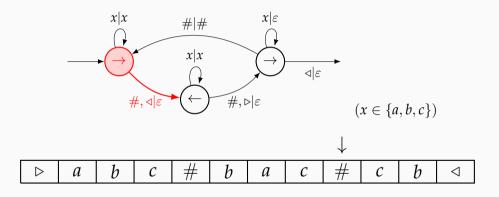
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



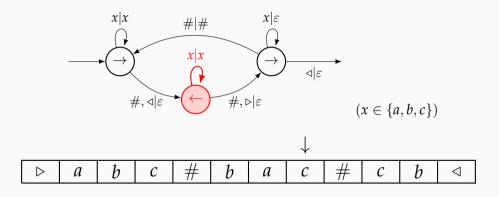
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



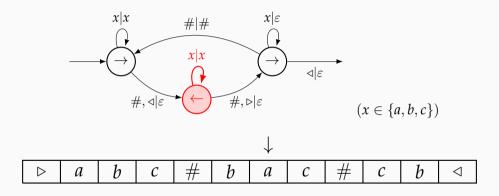
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



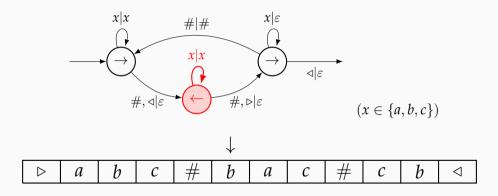
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



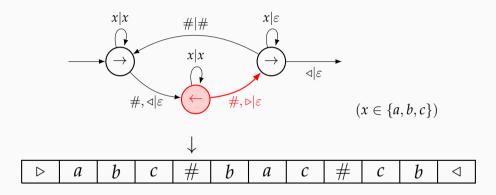
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



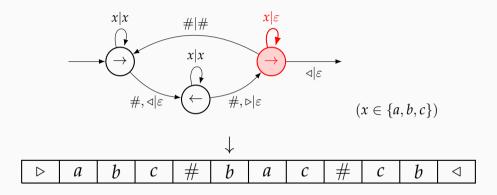
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



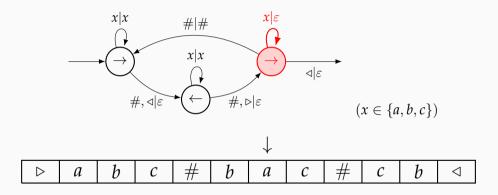
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



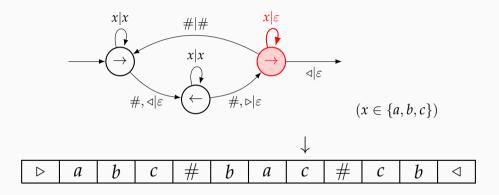
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



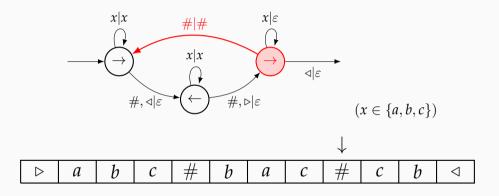
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



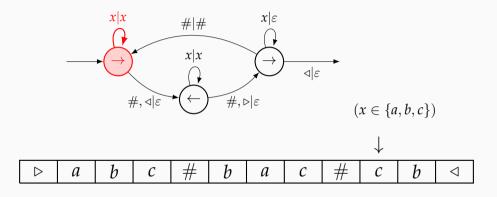
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$

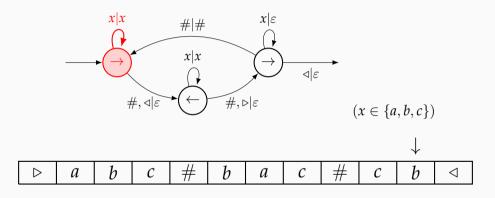


Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$

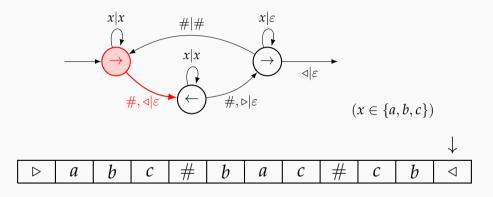


Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$

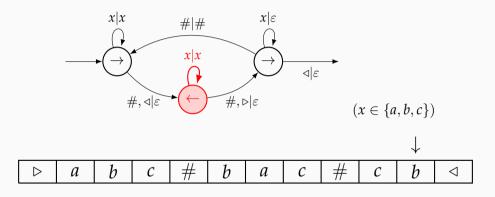




Output: *abccba#baccab#c*

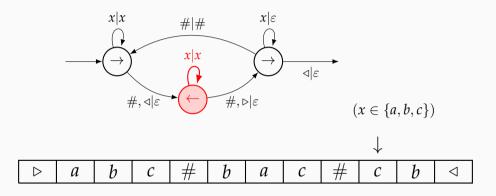


Output: *abccba#baccab#cb*

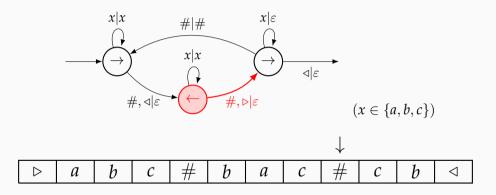


Output: *abccba#baccab#cb*

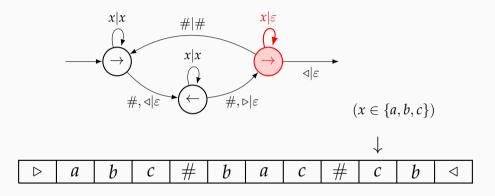
Example: $w_1 \# \ldots \# w_n \longmapsto w_1 \cdot \operatorname{reverse}(w_1) \# \ldots \# w_n \cdot \operatorname{reverse}(w_n)$



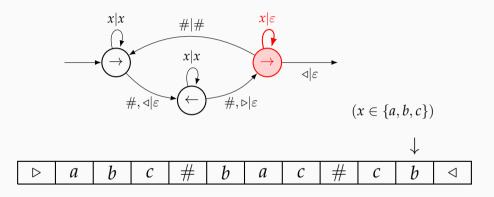
Output: *abccba#baccab#cbb*



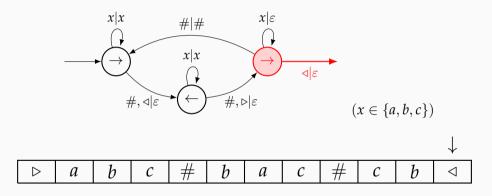
Output: *abccba#baccab#cbbc*



Output: *abccba*#*baccab*#*cbbc*



Output: *abccba*#*baccab*#*cbbc*

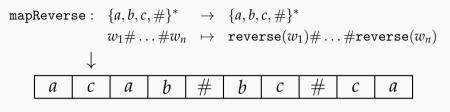


Output: *abccba*#*baccab*#*cbbc*

 $\begin{array}{lll} \texttt{mapReverse}: & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\dots\#w_n & \mapsto & \texttt{reverse}(w_1)\#\dots\#\texttt{reverse}(w_n) \end{array}$

$$X = \varepsilon \qquad Y = \varepsilon$$

$$X = a \qquad Y = \varepsilon$$

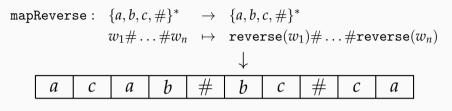


$$X = ca$$
 $Y = \varepsilon$

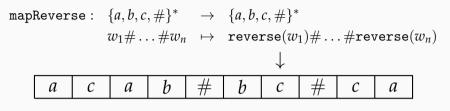
$$X = aca$$
 $Y = \varepsilon$

$$X = baca \qquad Y = \varepsilon$$

$$X = \varepsilon$$
 $Y = baca \#$



X = b Y = baca #



X = cb Y = baca #

 $X = \varepsilon$ Y = baca # cb #

X = c Y = baca # cb #

X = ac Y = baca # cb #

 $\begin{array}{lll} \texttt{mapReverse}: & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\dots\#w_n & \mapsto & \texttt{reverse}(w_1)\#\dots\#\texttt{reverse}(w_n) \end{array}$

X = ac Y = baca # cb # mapReverse(...) = YX = baca # cb # ac

$$\begin{array}{rcl} \texttt{mapReverse}: & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\ldots \# w_n & \mapsto & \texttt{reverse}(w_1)\#\ldots \#\texttt{reverse}(w_n) \end{array}$$

X = ac Y = baca # cb # mapReverse(...) = YX = baca # cb # ac

Regular functions = computed by copyless SSTs

$$a \mapsto \begin{cases} X := aX \\ Y := Y \end{cases} \quad \# \mapsto \begin{cases} X := \varepsilon \\ Y := YX \# \end{cases}$$

each register appears *at most once* on the right of a := in a transition

$$\begin{array}{rcl} \texttt{mapReverse}: & \{a,b,c,\#\}^* & \to & \{a,b,c,\#\}^* \\ & w_1\#\ldots \# w_n & \mapsto & \texttt{reverse}(w_1)\#\ldots \#\texttt{reverse}(w_n) \end{array}$$

X = ac Y = baca # cb # mapReverse(...) = YX = baca # cb # ac

Regular functions = computed by copyless SSTs

$$a \mapsto \begin{cases} X := aX \\ Y := Y \end{cases} \quad \# \mapsto \begin{cases} X := \varepsilon \\ Y := YX \# \end{cases} \quad \text{each register appears at most once} \\ \text{on the right of a } := \text{ in a transition} \end{cases}$$

→ connection with *linear logic* [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD)]

Recognizing regular functions with functors on semigroups

A language is regular \iff the corresponding decision problem factors as $\Sigma^* \xrightarrow{\text{some morphism}}$ some finite semigroup \rightarrow {yes, no}

The main theorem

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\operatorname{out}_{\Gamma^*}} \Gamma^*$$

- for some *endofunctor* F on semigroups with *S* finite \Rightarrow *F*(*S*) finite
- and some *natural transformation* out: $UF \Rightarrow U$ (where U =forgetful to **Set**)

(Monoids instead of semigroups \rightsquigarrow regular functions f such that $f(\varepsilon) = \varepsilon$)

The following regular function maps baa to cccaab:

$$\{a,b\}^* \xrightarrow{\langle (_ \mapsto c), \texttt{reverse} \rangle} \{a,b,c\}^* \times (\{a,b,c\}^*)^{\text{op}} \xrightarrow{\text{concatenate}} \Sigma^*$$

- $S^{\text{op}} = S$ where the product is reversed; reverse: $\Sigma^* \to (\Sigma^*)^{\text{op}}$ is a morphism
- $FS = S \times S^{op}$ is a finiteness-preserving endofunctor
- $\cdot_S : S \times S^{\mathrm{op}} \to S$ is family of **Set**-functions natural in *S*

Some intuitions

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\operatorname{out}_{\Gamma^*}} \Gamma^*$$

• for some *endofunctor* F on semigroups

• and some *natural transformation* out: $UF \Rightarrow U$ (where U =forgetful to **Set**)

• with *S* finite \Rightarrow *F*(*S*) finite

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\mathsf{out}_{\Gamma^*}} \Gamma^*$$

• for some *endofunctor* F on semigroups

 \rightsquigarrow FS = a data structure storing some elements from *S*, encoding compositional information

• and some *natural transformation* out: $UF \Rightarrow U$ (where U =forgetful to **Set**)

• with *S* finite \Rightarrow *F*(*S*) finite

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\mathsf{out}_{\Gamma^*}} \Gamma^*$$

• for some *endofunctor* F on semigroups

 \rightsquigarrow FS = a data structure storing some elements from *S*, encoding compositional information

and some *natural transformation* out: UF ⇒ U (where U = forgetful to Set)
→ extract an element of S "uniformly" from FS: procedure whose

control flow should only depend on S-independent parts

• with *S* finite \Rightarrow *F*(*S*) finite

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\mathsf{out}_{\Gamma^*}} \Gamma^*$$

• for some *endofunctor* F on semigroups

 \rightsquigarrow FS = a data structure storing some elements from *S*, encoding compositional information

and some *natural transformation* out: UF ⇒ U (where U = forgetful to Set)
→ extract an element of *S* "uniformly" from F*S*: procedure whose

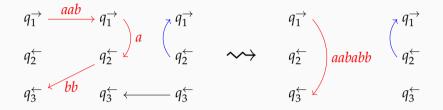
control flow should only depend on S-independent parts

• with *S* finite \Rightarrow *F*(*S*) finite

 \rightsquigarrow *S*-independent part \simeq some *finite state*

Proof idea (1): two-way transducer \longrightarrow functor

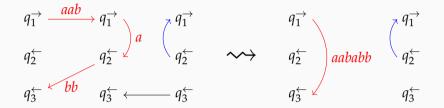
Behaviors of two-way transducers have a semigroup structure:



connection with traced monoidal categories: shapes = $Int(Set_{partial})(Q, Q)$ [Hines 2003]

Proof idea (1): two-way transducer \longrightarrow functor

Behaviors of two-way transducers have a semigroup structure:



connection with traced monoidal categories: shapes = $Int(Set_{partial})(Q, Q)$ [Hines 2003] Finitely many "shapes" \rightsquigarrow finiteness-preserving $FS = \sum_{shapes} S^{number of labels}$

(Actual proof in paper: similar phenomenon for streaming string transducers)

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^* \to \Gamma^*$

For all $u, v \in \Sigma^*$, the parts of the output f(uv) "caused by" the input prefix u consist of *a bounded number of factors* (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \texttt{reverse}(w)$, at most 2 factors: $f(\underline{ba}a) = \underline{cc}ca\underline{ab}$

 \longrightarrow build a transducer whose registers store these factors after reading *u*

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^* \to \Gamma^*$

For all $u, v \in \Sigma^*$, the parts of the output f(uv) "caused by" the input prefix u consist of *a bounded number of factors* (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \texttt{reverse}(w)$, at most 2 factors: $f(\underline{ba}a) = \underline{cc}ca\underline{ab}$

 $\longrightarrow \text{ build a transducer whose registers store these factors after reading } u$ Formally: for *f* factored into $\Sigma^* \xrightarrow{h} \mathsf{F}\Gamma^* \xrightarrow{\mathsf{out}_{\Gamma^*}} \Gamma^*$, consider $(\oplus = \text{coproduct})$

 $\operatorname{out}(\mathsf{F}_{\underline{\iota}}(h(ba)) \cdot \mathsf{F}_{\iota}(h(a))) = \underline{cc} \cdot ca \cdot \underline{ab} \in \underline{\Sigma^*} \oplus \Sigma^*$

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^* \to \Gamma^*$

For all $u, v \in \Sigma^*$, the parts of the output f(uv) "caused by" the input prefix u consist of *a bounded number of factors* (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \texttt{reverse}(w)$, at most 2 factors: $f(\underline{baa}) = \underline{cc}ca\underline{ab}$

 $\longrightarrow \text{ build a transducer whose registers store these factors after reading } u$ Formally: for *f* factored into $\Sigma^* \xrightarrow{h} \mathsf{F}\Gamma^* \xrightarrow{\mathsf{out}_{\Gamma^*}} \Gamma^*$, consider $(\oplus = \text{coproduct})$

 $\operatorname{out}(\mathsf{F}_{\underline{\iota}}(h(ba)) \cdot \mathsf{F}_{\iota}(h(a))) = \underline{cc} \cdot ca \cdot \underline{ab} \in \underline{\Sigma^*} \oplus \Sigma^*$

Its "shape" $\underline{1} \cdot 1 \cdot \underline{1}$ is determined by $(\mathsf{F}^{\top}(h(ba)), \mathsf{F}^{\top}(h(a))) \in (\mathsf{F}1)^2$ $(\top : \Sigma^* \to 1)$ + (1 finite \implies F1 finite) \rightsquigarrow finitely many shapes \rightsquigarrow desired bound

Conclusion

A language is regular \iff the corresponding decision problem factors as $\Sigma^* \xrightarrow{\text{some morphism}}$ some finite (monoid|semigroup) \rightarrow {yes, no}

The main theorem

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\operatorname{out}_{\Gamma^*}} \Gamma^*$$

- for some *endofunctor* F on semigroups with *S* finite \Rightarrow *F*(*S*) finite
- and some *natural transformation* out: $UF \Rightarrow U$ (where U =forgetful to **Set**)

Regular functions = computed by two-way transducers, or copyless streaming string transducers, or... Conclusion

A language is regular \iff the corresponding decision problem factors as $\Sigma^* \xrightarrow{\text{some morphism}}$ some finite (monoid|semigroup) \rightarrow {yes, no}

The main theorem

A string-to-string function is regular \iff it factors as

$$\Sigma^* \xrightarrow{\text{some morphism}} \mathsf{F}\Gamma^* \xrightarrow{\operatorname{out}_{\Gamma^*}} \Gamma^*$$

- for some *endofunctor* F on semigroups with *S* finite \Rightarrow *F*(*S*) finite
- and some *natural transformation* out: $UF \Rightarrow U$ (where U =forgetful to **Set**)

Regular functions = computed by two-way transducers, or copyless streaming string transducers, or...