Algebraic Recognition of Regular Functions

Lê Thành Dũng (Tito) Nguyễn — nltd@nguyentito. eu - ÉNS Lyon joint work with Mikołaj Bojańczyk (MIMUW, University of Warsaw)

11th Symposium on Compositional Structures - April 20th, 2023

Reminder: automata and regular languages

Languages $=$ sets of words $L \subseteq \Sigma^{*} \cong$ decision problems $\Sigma^{*} \rightarrow\{$ yes, no $\}$
$\underline{\text { Regular languages: fundamental class in comp. sci., many definitions }}$

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and $1 \mathrm{~s} \&$ even number of 1 s "
- finite automata (deterministic or not): e.g. drawing below

Reminder: automata and regular languages

Languages $=$ sets of words $L \subseteq \Sigma^{*} \cong$ decision problems $\Sigma^{*} \rightarrow\{$ yes, no $\}$
Regular languages: fundamental class in comp. sci., many definitions

- regular expressions: $0 *(10 * 10 *) *=$ "only 0 s and $1 \mathrm{~s} \&$ even number of 1 s "
- finite automata (deterministic or not)
- algebraic definition below (very close to automata), e.g. $M=\mathbb{Z} /(2)$

Theorem (classical)

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow there are a monoid morphism $\varphi: \Sigma^{*} \rightarrow M$ to a finite monoid M and a subset $P \subseteq M$ such that $L=\varphi^{-1}(P)=\left\{w \in \Sigma^{*} \mid \varphi(w) \in P\right\}$.
$\Sigma^{*}=\{$ words over the finite alphabet $\Sigma\}=$ free monoid

- monadic 2nd-order logic, simply typed λ-calculus [Hillebrand \& Kanellakis 1996], ...

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite monoid $M \rightarrow\{$ yes, no $\}$
\rightsquigarrow terminology: " M recognizes L "

Algebraic recognition of regular languages

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\begin{gathered}
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite monoid } M \rightarrow\{\text { yes, no }\} \\
\rightsquigarrow \text { terminology: " } M \text { recognizes } L \text { " }
\end{gathered}
$$

Varying the monoids M allowed leads to algebraic language theory

Founding example: Schützenberger's theorem on star-free languages

L is recognized by some aperiodic finite monoid ($\forall x \in M, \exists n \in \mathbb{N}: x^{n}=x^{n+1}$)
\Longleftrightarrow it is described by some star-free expression

$$
E, E^{\prime}::=\varnothing|\overbrace{\varepsilon}^{\text {empty string }}| \underbrace{a}_{\text {letter in a finite alphabet } \Sigma}\left|E \cup E^{\prime}\right| \overbrace{E \cdot E^{\prime}}^{\text {concatenation }} \mid \underbrace{\square}_{\text {complement }} \quad \rightsquigarrow \quad \llbracket E \rrbracket \subseteq \Sigma^{*}
$$

Semigroups instead of monoids

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite semigroup $S \rightarrow\{$ yes, no $\}$

Definition

Semigroup $=$ set + associative binary operation (so monoid $=$ semigroup + unit $)$

Semigroups instead of monoids

A language $L \subseteq \Sigma^{*}$ is regular \Longleftrightarrow the corresponding decision problem factors as $\Sigma^{*} \xrightarrow{\text { some morphism }}$ some finite semigroup $S \rightarrow\{$ yes, no $\}$

Definition

Semigroup $=$ set + associative binary operation (so monoid $=$ semigroup + unit $)$
We still have: star-free language \Longleftrightarrow recognized by aperiodic finite semigroup

Semigroups are sometimes more convenient than monoids

A finite semigroup is aperiodic ($\forall x \in S, \exists n \geq 1: x^{n}=x^{n+1}$)
\Leftrightarrow none of its non-trivial subsemigroups are groups $\quad((\Leftarrow)$ fails with submonoids $)$
Remark: every finite semigroup "is built from" groups \& aperiodic semigroups divides a wreath product of (Krohn-Rhodes decomposition)

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory
What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

Many non-equivalent transducer models: finite-state devices with outputs
(sequential functions, rational functions, polyregular functions...) common property ("sanity check"): L regular $\Longrightarrow f^{-1}(L)$ regular

From languages to functions

Finite semigroups recognize regular languages $L \subseteq \Sigma^{*} \rightsquigarrow$ leads to a rich theory

What about functions $f: \Sigma^{*} \rightarrow \Gamma^{*}$?

Many non-equivalent transducer models: finite-state devices with outputs
(sequential functions, rational functions, polyregular functions...) common property ("sanity check"): L regular $\Longrightarrow f^{-1}(L)$ regular

Regular functions are one of the most robust/canonical classes

- several equivalent definitions (next slides)
- previously, no concise algebraic one \longrightarrow our contribution using a bit of category theory!

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output:

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output:

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: a

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b c$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: $a b c$

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abcc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#b

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#ba

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bac

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#bacca

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#c

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbb

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

\triangleright	a	b	c	$\#$	b	a	c	$\#$	c	b	\triangleleft

Output: abccba\#baccab\#cbbc

The first definition of regular functions: (deterministic) two-way transducers

Example: $w_{1} \# \ldots \# w_{n} \longmapsto w_{1} \cdot \operatorname{reverse}\left(w_{1}\right) \# \ldots \# w_{n} \cdot \operatorname{reverse}\left(w_{n}\right)$

$$
(x \in\{a, b, c\})
$$

Output: abccba\#baccab\#cbbc

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
\text { mapReverse : }\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \begin{aligned}
& \mapsto \text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
\end{aligned}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=\varepsilon \quad Y=\varepsilon
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=a \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c a \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{array}{cl}
\text { mapReverse : }\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
w_{1} \# \ldots \# w_{n} & \mapsto \text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
\downarrow &
\end{array}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c a \quad Y=\varepsilon
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=\text { baca } \quad Y=\varepsilon
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=\varepsilon \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=b \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c b \quad Y=b a c a \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{gathered}
\text { mapReverse: } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow \\
& \rightarrow a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \text { け reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\\
a & c & a & b & \# & b & c & \# & c & a \\
\hline
\end{array} \\
X=\varepsilon \quad Y=b a c a \# c b \#
\end{gathered}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=c \quad Y=b a c a \# c b \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
& \text { mapReverse: }\{a, b, c, \#\}^{*} \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n} \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right) \\
& \downarrow \\
& X=a c \quad Y=b a c a \# c b \#
\end{aligned}
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\begin{aligned}
\text { mapReverse }:\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned} \begin{aligned}
& \mapsto \operatorname{reverse}\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
\end{aligned}
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\text { mapReverse : } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned}>\text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Regular functions $=$ computed by copyless SSTs
$a \mapsto\left\{\begin{array}{ll}X:=a X \\ Y:=Y\end{array} \quad \# \mapsto \begin{cases}X:=\varepsilon & \text { each register appears } \text { at most once } \\ Y:=Y X \# & \text { on the right of } \mathrm{a}:=\text { in a transition }\end{cases}\right.$

Streaming string transducers $=$ finite automata + string-valued registers

$$
\text { mapReverse : } \begin{aligned}
\{a, b, c, \#\}^{*} & \rightarrow\{a, b, c, \#\}^{*} \\
& w_{1} \# \ldots \# w_{n}
\end{aligned}>\text { reverse }\left(w_{1}\right) \# \ldots \# \text { reverse }\left(w_{n}\right)
$$

a	c	a	b	$\#$	b	c	$\#$	c	a

$$
X=a c \quad Y=b a c a \# c b \# \quad \text { mapReverse }(\ldots)=Y X=b a c a \# c b \# a c
$$

Regular functions $=$ computed by copyless SSTs
$a \mapsto\left\{\begin{array}{ll}X:=a X \\ Y:=Y\end{array} \quad \# \mapsto \begin{cases}X:=\varepsilon & \text { each register appears } \text { at most once } \\ Y:=Y X \# & \text { on the right of } \mathrm{a}:=\text { in a transition }\end{cases}\right.$
\rightsquigarrow connection with linear logic [Gallot, Lemay \& Salvati 2020; N. \& Pradic (in my PhD)]

Recognizing regular functions with functors on semigroups

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite semigroup } \rightarrow\{\text { yes }, \text { no }\}
$$

The main theorem

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups with S finite $\Rightarrow F(S)$ finite
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)
(Monoids instead of semigroups \rightsquigarrow regular functions f such that $f(\varepsilon)=\varepsilon$)

Example

The following regular function maps baa to cccaab:

$$
\{a, b\}^{*} \xrightarrow{\left\langle\left(_c\right), \text { reverse }\right\rangle}\{a, b, c\}^{*} \times\left(\{a, b, c\}^{*}\right)^{\mathrm{op}} \xrightarrow{\text { concatenate }} \Sigma^{*}
$$

- $S^{\text {op }}=S$ where the product is reversed; reverse : $\Sigma^{*} \rightarrow\left(\Sigma^{*}\right)^{\text {op }}$ is a morphism
- $\mathrm{FS}=S \times S^{\mathrm{op}}$ is a finiteness-preserving endofunctor
- . $S: S \times S^{\mathrm{op}} \rightarrow S$ is family of Set-functions natural in S

Some intuitions

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)
- with S finite $\Rightarrow F(S)$ finite

Some intuitions

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups
$\rightsquigarrow \mathrm{FS}=$ a data structure storing some elements from S, encoding compositional information
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)
- with S finite $\Rightarrow F(S)$ finite

Some intuitions

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups
$\rightsquigarrow \mathrm{FS}=$ a data structure storing some elements from S, encoding compositional information
- and some natural transformation out : $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set) \rightsquigarrow extract an element of S "uniformly" from FS: procedure whose control flow should only depend on S-independent parts
- with S finite $\Rightarrow F(S)$ finite

Some intuitions

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups
$\rightsquigarrow \mathrm{FS}=$ a data structure storing some elements from S, encoding compositional information
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set) \rightsquigarrow extract an element of S "uniformly" from FS: procedure whose control flow should only depend on S-independent parts
- with S finite $\Rightarrow F(S)$ finite
$\rightsquigarrow S$-independent part \simeq some finite state

Proof idea (1): two-way transducer \longrightarrow functor

Behaviors of two-way transducers have a semigroup structure:

connection with traced monoidal categories: shapes $=\operatorname{lnt}\left(\right.$ Set $\left._{\text {partial }}\right)(Q, Q)$ [Hines 2003]

Proof idea (1): two-way transducer \longrightarrow functor

Behaviors of two-way transducers have a semigroup structure:

connection with traced monoidal categories: shapes $=\operatorname{lnt}\left(\operatorname{Set}_{\text {partial }}\right)(Q, Q)$ [Hines 2003]
Finitely many "shapes" \rightsquigarrow finiteness-preserving FS $=\sum_{\text {shapes }} S^{\text {number of labels }}$
(Actual proof in paper: similar phenomenon for streaming string transducers)

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$
For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{b a a})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$

For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{\text { baa }})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u
Formally: for f factored into $\Sigma^{*} \xrightarrow{h} \mathrm{~F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}$, consider $\quad(\oplus=$ coproduct)

$$
\operatorname{out}\left(\mathrm{F}_{\underline{\iota}}(h(b a)) \cdot \mathrm{F} \iota(h(a))\right)=\underline{c c} \cdot c a \cdot \underline{a b} \in \underline{\Sigma}^{*} \oplus \Sigma^{*}
$$

Proof idea (2): functor \longrightarrow streaming string transducer

Key property of a "functorially recognized" function $f: \Sigma^{*} \rightarrow \Gamma^{*}$

For all $u, v \in \Sigma^{*}$, the parts of the output $f(u v)$ "caused by" the input prefix u consist of a bounded number of factors (contiguous subwords).

For $f: w \mapsto c^{|w|} \cdot \operatorname{reverse}(w)$, at most 2 factors: $f(\underline{\text { baa }})=\underline{c c c a a b}$
\longrightarrow build a transducer whose registers store these factors after reading u
Formally: for f factored into $\Sigma^{*} \xrightarrow{h} \mathrm{~F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}$, consider $\quad(\oplus=$ coproduct)

$$
\operatorname{out}\left(\mathrm{F}_{\underline{\iota}}(h(b a)) \cdot \mathrm{F} \iota(h(a))\right)=\underline{c c} \cdot c a \cdot \underline{a b} \in \underline{\Sigma}^{*} \oplus \Sigma^{*}
$$

Its "shape" $\underline{1} \cdot 1 \cdot \underline{1}$ is determined by $(\mathrm{FT}(h(b a)), \mathrm{FT}(h(a))) \in(\mathrm{F} 1)^{2} \quad\left(\top: \Sigma^{*} \rightarrow 1\right)$ $+(1$ finite \Longrightarrow F1 finite $) \rightsquigarrow$ finitely many shapes \rightsquigarrow desired bound

Conclusion

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite (monoid|semigroup) } \rightarrow\{\text { yes, no }\}
$$

The main theorem

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups with S finite $\Rightarrow F(S)$ finite
- and some natural transformation out: $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)

Regular functions $=$ computed by two-way transducers, or copyless streaming string transducers, or...

Conclusion

A language is regular \Longleftrightarrow the corresponding decision problem factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \text { some finite (monoid|semigroup) } \rightarrow\{\text { yes, no }\}
$$

The main theorem

A string-to-string function is regular \Longleftrightarrow it factors as

$$
\Sigma^{*} \xrightarrow{\text { some morphism }} \mathrm{F} \Gamma^{*} \xrightarrow{\text { out }_{\Gamma^{*}}} \Gamma^{*}
$$

- for some endofunctor F on semigroups with S finite $\Rightarrow F(S)$ finite
- and some natural transformation out : $\mathrm{UF} \Rightarrow \mathrm{U}$ (where $\mathrm{U}=$ forgetful to Set)

Regular functions $=$ computed by two-way transducers, or copyless streaming string transducers, or...

