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Reminder: automata and regular languages

Languages = sets of words L C ¥* = decision problems ¥* — {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

o regular expressions: 0x (10x10%)* = “only Os and 1s & even number of 1s”

e finite automata (deterministic or not): e.g. drawing below
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Reminder: automata and regular languages

Languages = sets of words L C ¥* = decision problems ¥* — {yes,no}

Regular languages: fundamental class in comp. sci., many definitions

o regular expressions: 0% (10x10%)* = “only Os and 1s & even number of 1s”
e finite automata (deterministic or not)
e algebraic definition below (very close to automata), e.g. M = Z/(2)

Theorem (classical)

A language L C ¥* is regular <= there are a monoid morphism ¢: ¥* — M toa
finite monoid M and a subset P C M such that L = ¢~ (P) = {w € X* | p(w) € P}.

¥* = {words over the finite alphabet ¥} = free monoid
e monadic 2nd-order logic, simply typed A-calculus [Hillebrand & Kanellakis 1996], ...
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Algebraic recognition of regular languages

A language L C ¥* is regular <= the corresponding decision problem factors as

some morphism

x* some finite monoid M — {yes,no}

~- terminology: “M recognizes L”
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Algebraic recognition of regular languages

A language L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite monoid M — {yes,no}

~- terminology: “M recognizes L”

Varying the monoids M allowed leads to algebraic language theory

Founding example: Schiitzenberger’s theorem on star-free languages

L is recognized by some aperiodic finite monoid (Vx € M, In € N : x" = x"*1)
<= it is described by some star-free expression

concatenation

empty string
=
EE:=2| ¢ a |EUE|E-F|-E ~ [EC%*
letter in a finite alphabet ¥ complement
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Semigroups instead of monoids

Alanguage L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite semigroup S — {yes,no}

Semigroup = set + associative binary operation (so monoid = semigroup + unit)
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Semigroups instead of monoids

Alanguage L C ¥* is regular <= the corresponding decision problem factors as

some morphism

E*

some finite semigroup S — {yes,no}

Semigroup = set + associative binary operation (so monoid = semigroup + unit)

We still have: star-free language <= recognized by aperiodic finite semigroup

Semigroups are sometimes more convenient than monoids

A finite semigroup is aperiodic (Vx € S, In > 1: x" = x"+1)
& none of its non-trivial subsemigroups are groups  ((«) fails with submonoids)

Remark: every finite semigroup “is built from” groups & aperiodic semigroups
| S ———

divides a wreath productof ~ (Krohn—-Rhodes decomposition) 413



From languages to functions

Finite semigroups recognize regular languages L C ¥* ~~ leads to a rich theory

What about functions f : ¥* — I'*?
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From languages to functions

Finite semigroups recognize regular languages L C ¥* ~~ leads to a rich theory

What about functions f : ¥* — I'*?

Many non-equivalent transducer models: finite-state devices with outputs

(sequential functions, rational functions, polyregular functions...)

common property (“sanity check”): L regular = f~!(L) regular

Regqular functions are one of the most robust/canonical classes

e several equivalent definitions (next slides)

e previously, no concise algebraic one — our contribution

using a bit of category theory!
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

!
(>4

[ blcl#|bfalcl#][c]b]a]

Output: abccb
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

V<
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

x|x e x|e

4, <l M (x € {a,b,c})

]
(clafblc|#|blalc|#|c|b] ]

Output: abccba#baccab#cbbe
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The first definition of regular functions: (deterministic) two-way transducers

Example: wi# ... #w, —> w; - reverse(w;)# . .. #w, - reverse(w,)

(x € {a,b,c})

)
(>lalblcl#lblafcl#]c]b]<

Output: abccba#baccab#cbbe
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

AN

| clalb #]blcl#]c]al]
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Streaming string transducers = finite automata + string-valued registers
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!
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mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

!
lclalb|#|blc|#|c]a]
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

!
laflclalb|#|b|c|#|c]a]

X=0b Y = baca#
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

]
laflclalb|#|b|c|#|c]a]

X=cb Y = baca+#
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

]
laflclalb|#|b|c|#|c]a]

X=¢ Y = baca#tcb#
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

lalclalb|#]b|c|#][c]|a]
X =uac Y = baca#tcb# mapReverse(...) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

{X =aX {X =c each register appears at most once
a— —

Y =Y Y ;= YX# on the right of a := in a transition
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Streaming string transducers = finite automata + string-valued registers

mapReverse : {a,b,c,#}* — {a,b,c,#}*
w1# ... #w, +— reverse(wy)#...#reverse(wy)

lalclalb[#[b|c|[#][c[a]
X=uac Y = baca#tcb# mapReverse(...) = YX = baca#cb#ac

Regular functions = computed by copyless SSTs

X :=aX X:=¢ each register appears at most once

ar— —
Y =Y Y ;= YX# on the right of a := in a transition

~ connection with linear logic [Gallot, Lemay & Salvati 2020; N. & Pradic (in my PhD) |
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Recognizing regular functions with functors on semigroups

A language is regular <= the corresponding decision problem factors as

some morphism

z* some finite semigroup — {yes,no}

The main theorem

A string-to-string function is regular < it factors as

o some morphism FT* outpx *

o for some endofunctor F on semigroups with S finite = F(S) finite

e and some natural transformation out: UF = U (where U = forgetful to Set)

(Monoids instead of semigroups ~~ regular functions f such that f(e) = ¢)
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The following regular function maps baa to cccaab:

,reverse

{a7 b}* ((L—=0) ) {a7 b7 C}* % ({ll, b, C}*)Op concatenate e

e 5°° = S where the product is reversed; reverse: ¥* — (X*)°P is a morphism
e FS =5 x S is a finiteness-preserving endofunctor

® 5: S x S — Sis family of Set-functions natural in S
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Some intuitions

A string-to-string function is regular <= it factors as

some morphism

)3 FL* 22, =

o for some endofunctor F on semigroups

e and some natural transformation out: UF = U (where U = forgetful to Set)

e with S finite = F(S) finite
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Some intuitions

A string-to-string function is regular <= it factors as

some morphism

* Fp 2 T

o for some endofunctor F on semigroups
~+ FS = a data structure storing some elements from S,
encoding compositional information

e and some natural transformation out: UF = U (where U = forgetful to Set)
~+ extract an element of S “uniformly” from FS: procedure whose
control flow should only depend on S-independent parts

o with S finite = F(S) finite ~ S-independent part ~ some finite state
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Proof idea (1): two-way transducer —> functor

Behaviors of two-way transducers have a semigroup structure:

b

v/?Lv/T> <4? a <v/?
a

95 95 95 N> 45 |aababb 95

%

+—

95 +——q5 q3 5

95 q3

connection with traced monoidal categories: shapes = Int(Setyartia) (Q, Q) [Hines 2003 ]
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Proof idea (1): two-way transducer —> functor

Behaviors of two-way transducers have a semigroup structure:

b

EITLW> <6/? a <v/?
a

95 95 9 N 45 |aababb 93

- % - - - -

q3 qz «— 13 q3 qs

connection with traced monoidal categories: shapes = Int(Setyartia) (Q, Q) [Hines 2003 ]

Finitely many “shapes” ~ finiteness-preserving FS = Z gnumber of labels
shapes

(Actual proof in paper: similar phenomenon for streaming string transducers)
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Proof idea (2): functor — streaming string transducer

Key property of a “functorially recognized” function f: ¥* — I'*

For all u,v € ¥*, the parts of the output f(uv) “caused by” the input prefix u

consist of a bounded number of factors (contiguous subwords).

For f: w + cl?l . reverse(w), at most 2 factors: f(baa) = cccaab

— build a transducer whose registers store these factors after reading u
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Key property of a “functorially recognized” function f: ¥* — I'*

For all u,v € ¥*, the parts of the output f(uv) “caused by” the input prefix u
consist of a bounded number of factors (contiguous subwords).

For f: w + cl?l . reverse(w), at most 2 factors: f(baa) = cccaab
— build a transducer whose registers store these factors after reading u

outpx

Formally: for f factored into ¥* 2y Fr I'*, consider (@ = coproduct)

out (Fu(h(ba)) - Fu(h(a))) = cc-ca-ab € ¥* & ¥

Its “shape” 1 -1 - 1 is determined by (FT (h(ba)), FT (h(a))) € (F1)? (T:2*—=1)
+ (1 finite = F1 finite) ~~ finitely many shapes ~~ desired bound
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Conclusion

A language is regular <= the corresponding decision problem factors as

some morphism

E*

some finite (monoid|semigroup) — {yes,no}

The main theorem
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