Completeness for arbitrary finite dimensions of ZXW-calculus arXiv:2302.12135

Boldizsár Poór, Quanlong Wang, Razin A. Shaikh, Lia Yeh, Richie Yeung, Bob Coecke

SYCO 11

21st April 2023

The ZX-calculus for qubits

Vilmart, 2019

ZX-calculus

Quantum Circuit Optimisation

Measurement-Based Quantum Computing

ZX-calculus

Quantum Circuit Optimisation

Measurement-Based Quantum Computing

ZW-calculus

Summation

Linear Optical Quantum Computing

ZXW-calculus

Hamiltonian exponentiation (Shaikh et al., 2022)

Differentiation and integration (Wang et al., 2022)

What are Qudits?

Qubits:

$$\left|\psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle$$

Qudits:

$$\left|\psi\right\rangle=a_{0}\left|0\right\rangle+a_{1}\left|1\right\rangle+a_{2}\left|2\right\rangle+\cdots+a_{d-1}\left|d-1\right\rangle$$

Physical Realisation of Qudits

Kjaergaard et al., 2020

What is completeness?

A graphical calculus is complete if for any two diagrams D_1 and D_2 , we can derive $D_1 = D_2$ from the rules of the calculus, given that the interpretation of D_1 and D_2 equal.

Why is completeness important?

• Everything can be shown.

• No 'missing rules'.

• Useful structures.

Previous completeness results

	Qubit $(d=2)$	Qutrit $(d=3)$	Qupit (d is prime)	$\operatorname{Qudit}(d\in\mathbb{N})$
Clifford	Backens, 2014	Wang, 2018	Booth and Carette, 2022	
Clifford + T	Jeandel et al., 2018			
Universal	Hadzihasanovic, 2015			This work!

The qudit ZXW-calculus

Standard basis in qudit ZXW

For $0 \leq j < d$,

 $\begin{array}{ccc} \underbrace{K_{j}} & \overset{\llbracket \cdot \rrbracket}{\longmapsto} & |d-j\rangle \end{array}$

Generator: Z spider

Generator: X spider

Generator: W node

That is:

Understanding the Z box

Z spider:

$$\stackrel{\left[\!\!\left[\begin{array}{c} \bullet \end{array}\right]}{\overset{\left[\!\!\left[\bullet \right] \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}}{\overset{\left[\bullet \right]}}}}}}}}, where \alpha \in \mathbb{R}.$$

Z box:

$$\begin{bmatrix} a \\ \vdots \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}, \quad \text{where } a \in \mathbb{C}.$$

Understanding the qudit Z box

Qubit Z box: for $a \in \mathbb{C}$,

$$\begin{bmatrix} a & & \mathbb{I} \cdot \mathbb{I} \\ a & \longmapsto & \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$$

Qudit Z box: for $\vec{a}=(a_1,a_2,\cdots,a_{d-1})\in\mathbb{C}^{d-1}$,

$$\begin{vmatrix} & & & & \\ \vec{a} & & & \\ & & & \\ \end{vmatrix} \quad \stackrel{[\![\cdot]\!]}{\mapsto} \quad \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & a_{d-1} \end{bmatrix}$$

Compact description of the Z box

where
$$\vec{a} = (a_1, a_2, \cdots, a_{d-1}) \in \mathbb{C}^{d-1}$$
 and $a_0 \coloneqq 1$.

Generator: Z box

where $\vec{a} = (a_1, \cdots, a_{d-1}) \in \mathbb{C}$ and $a_0 \coloneqq 1$.

What did we prove?

Theorem The ZXW-calculus is universally complete for all finite dimensions.

Map-state duality

A Normal Form

Completeness using a normal form

If D_1 and D_2 are state diagrams such that $[\![D_1]\!] = [\![D_2]\!]$, then:

$$\begin{bmatrix} D_1 \\ \cdots \end{bmatrix} \stackrel{r_1, \cdots, r_n}{\Rightarrow} \begin{bmatrix} N_D \\ \cdots \end{bmatrix} \stackrel{s_1, \cdots, s_m}{\leftarrow} \begin{bmatrix} D_2 \\ \cdots \end{bmatrix}$$

So:

Note: Structure of states

Each state diagram has the following structure:

where g_1, \dots, g_k are generators.

State \Rightarrow normal form I.

State \Rightarrow normal form II.

State \Rightarrow normal form III.

State \implies normal form IV.

State \implies normal form V.

State \Rightarrow normal form VI.

Summary: state \Rightarrow normal form

We need to rewrite the following into their normal form:

- Generators
- Tensor product of two normal forms
- Partial-traced normal form

ZXW-calculus is more than just the sum of its parts

1. Rules of ZX

2. Rules of ZW

3. Rules of ZXW

The ZX-part of the rules I

The ZX-part of the rules II

Definition of multipliers

The ZW-part of the rules

The ZXW-part of the rules I

The trialgebra rule

The ZXW-part of the rules II

where
$$\overrightarrow{a_{d-1}} = (a_{d-1}, a_{d-1}, \ldots, a_{d-1})$$
 .

Outlook

• Speedy evaluation of ZXW-diagrams

• Prove completeness of qufinite ZXW-calculus

- More applications for photonics using ZXW
- Analyse the circuit extraction of ZXW-diagrams

Useful notation: The multiplier

m can be labeled modulo d due to the Hopf law.

Example: The multiplier

Notation: The Hadamard inverse

Notation: The dualiser

Notation: The Vand M boxes

with

÷

$$rac{\left|}{V}$$
 $\stackrel{\left[\!\left[\cdot
ight]\right]}{\mapsto}$ $\left|0
ight
angle\left\langle0
ight|+\sum_{i=1}^{d-1}\left|i
ight
angle\left\langle-1
ight|$

References I

Backens, Miriam (Sept. 2014). 'The ZX-calculus Is Complete for Stabilizer Quantum Mechanics'. In: New Journal of Physics 16.9, p. 093021. ISSN: 1367-2630. DOI: 10.1088/1367-2630/16/9/093021. Booth, Robert I. and Titouan Carette (6th July 2022). Complete ZX-calculi for the Stabiliser Fragment in Odd Prime Dimensions. DOI: 10.48550/arXiv.2204.12531. Hadzihasanovic, Amar (6th July 2015). 'A Diagrammatic Axiomatisation for Qubit Entanglement'. In: Proceedings of the 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '15, USA: IEEE Computer Society, pp. 573–584. ISBN: 978-1-4799-8875-4, DOI: 10.1109/LICS.2015.59. arXiv: 1501.07082 [quant-ph].

References II

Jeandel, Emmanuel, Simon Perdrix and Renaud Vilmart (9th July 2018). 'A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics'. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '18. New York, NY, USA: Association for Computing Machinery, pp. 559–568. ISBN: 978-1-4503-5583-4. DOI: 10.1145/3209108.3209131.arXiv:1705.11151 [guant-ph]. Kjaergaard, Morten et al. (Mar. 2020). 'Superconducting Oubits: Current State of Play'. In: Annual Review of Condensed Matter Physics 11.1, pp. 369–395. DOI: 10.1146/annurev-conmatphys-031119-050605. Shaikh, Razin A., Quanlong Wang and Richie Yeung (8th Dec. 2022). How to Sum and Exponentiate Hamiltonians in ZXW Calculus. Accepted to QPL 2022. DOI:

10.48550/arXiv.2212.04462.

References III

 Vilmart, Renaud (June 2019). 'A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics'. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10. DOI: 10.1109/LICS.2019.8785765. arXiv: 1812.09114 [quant-ph].
 Wang, Quanlong (27th Feb. 2018). 'Qutrit ZX-calculus Is Complete for Stabilizer Quantum Mechanics'. In: Electronic

Proceedings in Theoretical Computer Science 266, pp. 58–70. ISSN: 2075-2180. DOI: 10.4204/EPTCS.266.3.

Wang, Quanlong, Richie Yeung and Mark Koch (24th Nov. 2022). Differentiating and Integrating ZX Diagrams with Applications to Quantum Machine Learning. Version 4. DOI: 10.48550/arXiv.2201.13250.