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Overview

• Motivation and context
• Monads and weak distributive laws
• Automata with e�ects
• The weak distributive law for combining probabilistic choice and
non-determinism

• “Determinization” of automata via (weak) distributive laws
• Semialgebras and why weak laws are strong ...
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Motivation and context



Composing computational e�ects

A computational e�ect is an interaction between a program and its environment.

Examples: error raising, input and output, global/local state, continuations,
non-determinism and probabilistic choice.

How can we compose computational e�ects and how they interact with other basic
constructs in a programming language is a challenging problem in the area of
semantics.

The approach in this talk:

1. model computational e�ects following the seminal work of Moggi using monads
2. consider automata with “e�ects”
3. consider an adapted category-theoretic tool for composing monads.
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Semantic models for non-determinism and probabilistic choice

nondeterministic choice
p ∨ q

a commutative,
idempotent and

associative operation

probabilistic choice
p +r q

satisfying the axioms of a barycentric
algebra

e.g. p +r q = q +1−r p.

How do we combine the two ?
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Combining probabilistic and non-deterministic choice has a long history ...

[Jones and Plotkin]
A probabilistic powerdomain of evaluations, LICS, 1989
[Jung and Tix]
The troublesome probabilistic powerdomain, ENTCS, 1998
[Tix, Keimel, Plotkin ]
Semantic Domains for Combining Probability and Non- Determinism, ENTCS 2009
[Mislove]
Nondeterminism and probabilistic choice: Obeying the law, CONCUR 2000
[Keimel, Plotkin]
Mixed powerdomains for probability and nondeterminism, LMCS 2017
[J. Goubault-Larrecq]
A probabilistic and non-deterministic call-by-push-value language, LICS, 2019
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Combining probabilistic and non-deterministic choice has a long history ...

There are various approaches proposed in these studies of combinations of ordinary
and probabilistic non-determinism

• power-cone models,
• prevision models
• indexed valuations
• coproducts of monads
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And more recently, a coalgebraic take:

“Determinizing” probabilistic automata yields nondeterministic automata whose
states are probability distributions, i.e., belief-state transformers.

[Bonchi, Silva, Sokolova]
The Power of Convex Algebras, CONCUR 2017
[Bonchi, Sokolova, Vignudelli]
The Theory of Traces for Systems with Nondeterminism and Probability, LICS 2019
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Monads



Monads

A category-theoretic notion generalizing algebraic theories presented by operations
and equations from universal algebra

A monad (S, ηS, µS) consists of a functor S∶C → C and natural transformations
ηS∶ 1C ⇒ S, µS∶S2 ⇒ S subject to coherence axioms.

Intuition in Set :

SX is the set of terms with variables in X for some algebraic theory
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Monad for non-determinism

To model nondeterministic choice we use the powerset monad, which corresponds to
the algebraic theory of complete sup-semilattices (X,⋁).

The powerset monad (P, ηP , µP) consists of

• the powerset functor P ∶Set→ Set
• for a set X we have PX = {A ∣ A ⊆ X}
• for a function f ∶X → Y, Pf is de�ned as direct image

• the unit ηPX ∶X → PX mapping x to the singleton {x}.
• the multiplication µPX ∶PPX → PX given by �attening⋃.

satisfying the usual axioms.
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A monad for probabilistic choice

For probabilistic choice we use the �nite distribution monad, which corresponds to
the algebraic theory of barycentric algebras (X, (+r)r∈[0,1])).

The �nite distribution monad (D, ηD, µD) consists of

• the �nite distribution functor D∶Set→ Set given by
• X ↦ {ϕ∶X → [0, 1] ∣ supp(ϕ) �nite and∑

x∈X
ϕ(x) = 1}

• for a function f ∶X → Y we have Df is de�ned by Df(ϕ)(y) = ∑
y∈f−1(x)

ϕ(x)

• the unit ηDX ∶X → DX mapping x to the Dirac distribution δx.
• the multiplication µDX ∶DDX → DX given by �attening: Φ↦ (x ↦∑Φ(ϕ) ⋅ ϕ(x)).

satisfying the usual axioms.
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Automata with e�ects



Word automata in Kleisli categories

deterministic automata 1 Q 2 in Set

non-deterministic automata in VecK

weighted automata in VecK

Subseq. transducers in Kl(T )

a

a

a

a
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Determinization as a right adjoint

We use the lifting of the Kleisli adjunction for the monad T .

Auto(LC) � Auto(LKl(T ))

C � Kl(T )

States States
FT

UT
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Determinization as a right adjoint

When T is the powerset monad, the lifting of UT is the determinization of a
non-deterministic automaton.

Auto(LSet) � Auto(LRel)

Set � Rel

States States
FT

UT
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Do probabilistic automata �t in this framework?

We would like to say something like

probabilistic automata are functorial automata in Kl(PD)

“determinization” is the lifting of a functor from Kl(PD) to Kl(P)
but it doesn’t work that nicely...
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Composing monads



How can we combine monads ?

Suppose we have two monads (T, ηT, µT) and (S, ηS, µS).

How can we get a monad structure on ST?

How can we de�ne its multiplication STST ⇒ ST ?

It would be nice to have a way of swapping S and T

We need a natural transformation γ∶TS⇒ ST subject to 4 coherence conditions:
compatibility with the units and the multiplications of the monads
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The rich theory of distributive laws

distributive laws
γ∶TS⇒ ST

extensions T̂
of T to Kl(S)

liftings Ŝ
of S to EM(T)

monad structures on ST

EM(Ŝ)

EM(ST) γ-algebras

Kl(S) Kl(S)

C C

T̂

F

T

F

EM(T) EM(T)

C C

Ŝ

U U

S

TSX STX

TX SX

X

Tb

γ

Sa

a b
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The rich theory of distributive laws

Furthermore, given a distributive law TS⇒ ST, we have that Kl(ST) is isomorphic to
Kl(T̂), hence we obtain adjunctions

Auto(LKl(S)) � Auto(LKl(ST))

Kl(S) � Kl(ST)

States StatesFT̂

UT̂

So, for S = P and T = D ...
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There is no distributive law of P over D

Plotkin’s counterexample from Daniele Varacca’s PhD thesis:
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Missing category theoretic understanding
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More negative results

[Klin, Salamanca]
Iterated Covariant Powerset is not a Monad

• there is no distributive law of the monad P over itself
• there is no monad structure on PP
• there is no distributive law TP ⇒ PT, when T satis�es some further conditions.

[Zwart,Marsden]
Don’t try this at home: No-Go Theorems for Distributive Laws, LICS 2019

• generalized Plotkin’s theorem
• a �ne analysis of non-existence of distributive laws
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Workarounds

• use instead of D the monad of indexed valuations (Varacca’s solution)
• de�ne by hand a monad Pc on the category of Eilenberg-Moore algebras for D –
going back to Tix et al, more recently exploited in

[Bonchi, Silva, Sokolova]
The Power of Convex Algebras, CONCUR 2017

• But these constructions remain a bit mysterious from a category-theoretic
perspective. Are they canonical in some sense?
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How far away are we from a distributive law?

• Can we at least obtain a natural transformation DP ⇒ PD ?
• If yes, which axioms does it satisfy ?
• It turns out that we do have such a natural transformation, satisfying all but the
axiom involving the unit of D.

• This is a so called weak distributive law in the sense of [Garner, 2019].
• Garner exhibited a weak distributive law between P and the ultra�lter monad β
and showed how the Vietoris monad on compact Hausdor� spaces can be seen as
a weak lifting of P .
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The rich theory of weak distributive laws (Garner, 2019)

weak distributive laws
γ∶TS⇒ ST

weak extensions T̂
of T to Kl(S)

weak liftings Ŝ
of S to EM(T)

monad structures ŜT

EM(Ŝ)

EM(ŜT) γ-algebras

Kl(S) Kl(S)

C C

T̂

F

T

F

EM(T) EM(T)

C C

Ŝ

U U

S

TSX STX

TX SX

X

Tb

γ

Sa

a b
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The complicated theory of weak distributive laws

Now Kl(T̂) is not a category, but a semi-catgeory.

There are semi-functors between Kl(T̂) and Kl(ŜT), but they do not give a
semi-adjunction.

There are “obvious” functors between Kl(ŜT) and Kl(S), but they do not give an
adjunction.
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Combining nondeterminism and probabilistic choice via weak laws

Theorem (Goy, P., LICS 2020)
There exists a weak distributive law of the powerset monad over the �nite distribution
monad. The corresponding weak lifting of the powerset monad to the category of
convex algebras is the convex powerset monad.

• we rely on results of Barr for relational extensions of functors and natural
transformations

• Rel is the Kleisli category of P
• the functor D preserves weak pullbacks, hence it can be extened to Rel
• the unit of D is not weakly cartesian
• but the multiplication of D is weakly cartesian
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Applications



“Determinizing” probabilistic automata

Can we determize PAs into belief-state transformers using weak distrbutive law ?
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Generalized determinization of probabilistic automata

Lemma
Consider a weak distributive law γ∶TS⇒ ST of S over T and let Ŝ be the corresponding
weak lifting of S to EM(T). Then, we have the following liftings

Coalg(ST) Coalg(Ŝ) Coalg(Ŝ) Coalg(S)

C EM(T) EM(T) C

F̂T ÛT

FT UT

This instantiates to transforming a PD-coalgebra on X into a Pc-coalgebra on DX, that
is, to the transformation of a PA into a belief-state transformer, obtained in

[Bonchi, Silva, Sokolova]
The Power of Convex Algebras, CONCUR 2017
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Combining algebraic theories of nondeterminism and probability

We obtain an immediate concrete presentation for the PcD-algebras, i.e., convex
semilattices, see

[Bonchi, Sokolova, Vignudelli]
The Theory of Traces for Systems with Nondeterminism and Probability, LICS 2019

DPX PDX

DX PX

X

γX

D⋁ Pa

a ⋁

(X,⋁, (+r)r∈[0,1]) so that
• (X,⋁) is a complete
sup-semilattice,

• (X, (+r)r∈[0,1])) is a convex algebra
• the distributivity axiom holds
(⋁ xi) +r y =⋁(xi +r y).
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Weak laws in a continuous setting

Theorem (Goy, Aiguier and P., ICALP 2021)
There exists a weak distributive law VV ⇒ VV of the Vietoris monad on compact
Hausdor� spaces over itself.

• we rely on KHaus being a regular category
• we use the [Carboni, Kelly and Wood, 1991] results for extending functors to
relations on regular categories

• the Kleisli category Kl(V) can be seen as a category of relations satisfying
additional continuity constraints

• the Vietoris functor nearly preserves pullbacks, so it can be extended to
Rel(KHaus). The extension restricts to Kl(V).

• the multiplication of V is nearly cartesian but the unit is not.
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Semialgebras and why weak laws
are strong...



Semialgebras for a monad

Given a monad T, a semialgebra for T is a morphism a∶TX → X such that only the
associativity axiom holds:

T2X TX

TX X

µX

Ta a

a

A weak distributive law TS⇒ ST also corresponds to a lifting of the monad S to the
category of semialgebras for the monad T.

Semialgebras are morally algebras ....
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Example: Semialgebras for the Maybe monad

Consider the Maybe monad − + 1∶Set→ Set.

Algebras for this monad are pointed sets, so they are presented by a constant
operation ●∶0 and no equations.

In a semialgebra a∶TX → X, the composite a ○ ηX is only an idempotent, and not
necessarily the identity.

Seminalgebras for the maybe monad are presented by the following signature:

Σ = {a∶ 1, ●∶0}

and
E = {aa = a,a● = ●}

It turns out that adding an idempotent to a given presentation of algebras for a
Set-monad T, and suitably transforming the equations leads to a presentations of
semialgebras.
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Weak laws are strong...

Theorem (P., Sarkis, MFPS 2021)
Given a monad T on a category with coproducts, there is a monad structure on idC + T,
called the semifree monad Ts on T, so that there is an isomorphism between
Eilenberg-Moore algebras for Ts and semialgebras for T.

Theorem (P., Sarkis, MFPS 2021)
Weak distributive laws TS⇒ ST are in one-to-one correspondence with distributive
laws TsS⇒ STs subject to an additional axiom.

[Rosset, Hansen, Endrullis, 2022] further proved an open problem we left open for the
concrete algebraic presentation of the semifree monad Ts.
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