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+ Motivation and context
« Monads and weak distributive laws
« Automata with effects

« The weak distributive law for combining probabilistic choice and
non-determinism

- “Determinization” of automata via (weak) distributive laws
+ Semialgebras and why weak laws are strong ...
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Motivation and context



Composing computational effects

A computational effect is an interaction between a program and its environment.

Examples: error raising, input and output, global/local state, continuations,
non-determinism and probabilistic choice.
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Composing computational effects

A computational effect is an interaction between a program and its environment.

Examples: error raising, input and output, global/local state, continuations,
non-determinism and probabilistic choice.

How can we compose computational effects and how they interact with other basic

constructs in a programming language is a challenging problem in the area of
semantics.

The approach in this talk:

1. model computational effects following the seminal work of Moggi using monads
2. consider automata with “effects”

3. consider an adapted category-theoretic tool for composing monads.
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Semantic models for non-determinism and probabilistic choice

nondeterministic choice probabilistic choice
pvq p+rq
a commutative, satisfying the axioms of a barycentric
idempotent and algebra
associative operation €.8.p+rq=q+1-rp-

How do we combine the two ?
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Combining probabilistic and non-deterministic choice has a long history ...

[3 [Jones and Plotkin]
A probabilistic powerdomain of evaluations, LICS, 1989

[d [Jung and Tix]
The troublesome probabilistic powerdomain, ENTCS, 1998

[3 [Tix, Keimel, Plotkin ]
Semantic Domains for Combining Probability and Non- Determinism, ENTCS 2009

[ [Mislove]
Nondeterminism and probabilistic choice: Obeying the law, CONCUR 2000

[3 [Keimel, Plotkin]
Mixed powerdomains for probability and nondeterminism, LMCS 2017

[ [). Goubault-Larrecq]

A probabilistic and non-deterministic call-by-push-value language, LICS, 2019
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Combining probabilistic and non-deterministic choice has a long history ...

There are various approaches proposed in these studies of combinations of ordinary
and probabilistic non-determinism

« power-cone models,
« prevision models
+ indexed valuations

+ coproducts of monads
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And more recently, a coalgebraic take:

“Determinizing” probabilistic automata yields nondeterministic automata whose
states are probability distributions, i.e., belief-state transformers.
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[3 [Bonchi, Silva, Sokoloval
The Power of Convex Algebras, CONCUR 2017

[§ [Bonchi, Sokolova, Vignudelli]

The Theory of Traces for Systems with Nondeterminism and Probability, LICS 2019
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Monads



A category-theoretic notion generalizing algebraic theories presented by operations
and equations from universal algebra
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A category-theoretic notion generalizing algebraic theories presented by operations
and equations from universal algebra

A monad (5,7, ;1°) consists of a functor 5:C — C and natural transformations
1710 = S, 11°:5? = S subject to coherence axioms.
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A category-theoretic notion generalizing algebraic theories presented by operations
and equations from universal algebra

A monad (5,7, ;1°) consists of a functor 5:C — C and natural transformations
1710 = S, 11°:S? = S subject to coherence axioms.

Intuition in Set :

SX is the set of terms with variables in X for some algebraic theory

ALA .SA

AbA




Monad for non-determinism

To model nondeterministic choice we use the powerset monad, which corresponds to
the algebraic theory of complete sup-semilattices (X, \/).
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the algebraic theory of complete sup-semilattices (X, \/).

The powerset monad (7,,”.;.”) consists of

 the powerset functor P:Set — Set
- for a set X we have PX = {A|Ac X}
- for a function f:X - Y, Pf is defined as direct image

« the unit n}:X -~ PX mapping x to the singleton {x}.
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satisfying the usual axioms.

9/33



A monad for probabilistic choice

For probabilistic choice we use the finite distribution monad, which corresponds to
the algebraic theory of barycentric algebras (X, (+r)ref0,17))-
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A monad for probabilistic choice

For probabilistic choice we use the finite distribution monad, which corresponds to
the algebraic theory of barycentric algebras (X, (+r)ref0,17))-

The finite distribution monad (D, 7", ") consists of

« the finite distribution functor D: Set — Set given by

* X {p:X —[0,1] | supp(¢) finite and > p(x) = 1}
xeX
- for a function f:X — Y we have Df is defined by Df (»)(y) = > ©(x)
yef—1(x)

« the unit nf: X - DX mapping x to the Dirac distribution dy.
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xeX
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yef—1(x)

« the unit nf: X - DX mapping x to the Dirac distribution dy.
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Automata with effects




Word automata in Kleisli categories

deterministic automata 1 —-Q — 2 in Set
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Word automata in Kleisli categories
a
deterministic automata 1—Q — 2 in Set

¢

non-deterministic automata 17— Q — 1 in Rel

s O
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Word automata in Kleisli categories

39

deterministic automata 17— Q — 2 in Set
a

non-deterministic automata 17— Q — 1 in Rel
a

weighted automata K— Q — K in Veck
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Word automata in Kleisli categories

a

deterministic automata 1—Q — 2 in Set
a
non-deterministic automata 17— Q — 1 in Rel
a
weighted automata K—Q— K in Veck
a
Subseq. transducers 1—Q — 1 in KL(T)
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Determinization as a right adjoint

We use the lifting of the Kleisli adjunction for the monad 7.

AUtO([,c) AUtO(,CK[(T))
(\//
| |
States States

Fr \L
C (\_i/ KL(T)

Ur

—
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Determinization as a right adjoint

When 7 is the powerset monad, the lifting of U7 is the determinization of a
non-deterministic automaton.

Auto(Lset) 1 Auto(Lgel)
_  —
| |
States ; States
! T 1

Ur
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Do probabilistic automata fit in this framework?
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We would like to say something like

probabilistic automata are functorial automata in KI(PD)
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Do probabilistic automata fit in this framework?
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We would like to say something like

probabilistic automata are functorial automata in KI(PD)
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Do probabilistic automata fit in this framework?

& W b"%k he+Y%% UYs#ot % %
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We would like to say something like

probabilistic automata are functorial automata in KI(PD)
“determinization” is the lifting of a functor from KI{(PD) to KI(P)
but it doesn’t work that nicely...
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Composing monads




How can we combine monads ?

Suppose we have two monads (T,5", ") and (S,7°, 1i°).
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How can we combine monads ?

Suppose we have two monads (T,7", ") and (S,7°, 11°).
How can we get a monad structure on ST?
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A:A

A A AAA
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How can we combine monads ?

Suppose we have two monads (T,7", ") and (S,7°, 11°).
How can we get a monad structure on ST?

How can we define its multiplication STST = ST ?

A:A

A A AAA

It would be nice to have a way of swapping Sand T

We need a natural transformation ~: TS = ST subject to 4 coherence conditions:
compatibility with the units and the multiplications of the monads
15/33



The rich theory of distributive laws

distributive laws
v: TS = ST

= ~

extensions T liftings S
of T to KI(S) of Sto EM(T)

monad structures on ST

EM(S)
/ \

EM(ST) ~-algebras
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The rich theory of distributive laws

Furthermore, given a distributive law TS = ST, we have that KI(ST) is isomorphic to
KI(T), hence we obtain adjunctions

T
Auto(L(s)) 1 Auto(Lysr))
\_/
| |
States E. States
P
KI(S) Il KL(ST)
\_/

Uz
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The rich theory of distributive laws

Furthermore, given a distributive law TS = ST, we have that KI(ST) is isomorphic to
KI(T), hence we obtain adjunctions

T
Auto(L(s)) 1 Auto(Lysr))
\_/
| |
States E. States
P
KI(S) Il KL(ST)
\_/

Uz

So,forS=PandT=D ...
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There is no distributive law of P over D

Plotkin’s counterexample from Daniele Varacca’s PhD thesis:

LLUS UDUALLILE diUULEL UISULIDWUVE 1aW.  LIUWGYEL, 10 LULLS UUL Wldl UIeLe 1
no distributive law at all between the two monads. If (P,n%, uF) is the finite
nonempty powerset monad, and (V,7", 1") is the finite valuation monad in the
category SET, we have

Proposition 3.1.2. There is no distributive law of V over P.

Proof: The idea for this proof is due to Gordon Plotkin. Assume that
: VP—PV is a distributive law. Consider the set X = {a,b, c,d}. Take
= %U{u,h} + %U{c,d} € VP(X). We try to find out what R := dx(Z) is.

Let Y := {a, b}. Consider:

m =

f:X—->Y f:

1171
SR o

AL o2

X =Y f:

1111
L oo

a8
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Missing category theoretic understanding

In Part IT we study the notion of indexed valuation, as a denotational model
for probabilistic computation. This model arises from the need of combining
probabilities and nondeterminism. The probabilistic powerdomain and the non-
deterministic powerdomain do not combine nicely. In technical terms, there is
no distributive law between the two monads. We face this mathematical prob-
lem discovering where the core of the problem lies and we propose our solution
which amounts to a modification of the probabilistic powerdomain. First, we
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Missing category theoretic understanding
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¢ would like to take /" = P* and M = D and reuse the above construction but, unfortunately,
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Missing category theoretic understanding
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More negative results

W [Klin, Salamanca]
[terated Covariant Powerset is not a Monad

+ there is no distributive law of the monad P over itself

« there is no monad structure on PP
+ there is no distributive law TP = PT, when T satisfies some further conditions.

3 [zwart,Marsden]
Don’t try this at home: No-Go Theorems for Distributive Laws, LICS 2019

- generalized Plotkin’s theorem
- a fine analysis of non-existence of distributive laws
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« use instead of D the monad of indexed valuations (Varacca’s solution)

- define by hand a monad P, on the category of Eilenberg-Moore algebras for D -
going back to Tix et al, more recently exploited in

[3 [Bonchi, Silva, Sokoloval
The Power of Convex Algebras, CONCUR 2017
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« use instead of D the monad of indexed valuations (Varacca’s solution)

- define by hand a monad P, on the category of Eilenberg-Moore algebras for D -
going back to Tix et al, more recently exploited in

[3 [Bonchi, Silva, Sokoloval
The Power of Convex Algebras, CONCUR 2017

+ But these constructions remain a bit mysterious from a category-theoretic
perspective. Are they canonical in some sense?
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How far away are we from a distributive law?

« Can we at least obtain a natural transformation DP = PD ?
« If yes, which axioms does it satisfy ?

« It turns out that we do have such a natural transformation, satisfying all but the
axiom involving the unit of D.

« This is a so called weak distributive law in the sense of [Garner, 2019].

 Garner exhibited a weak distributive law between P and the ultrafilter monad 3
and showed how the Vietoris monad on compact Hausdorff spaces can be seen as
a weak lifting of P.
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The rich theory of distributive laws (Garner, 2019)

weak distributive laws
~v:TS = ST

=

weak extensions T weak liftings §
of T to KI(S) of Sto EM(T)

monad structures ST

EM(S)

—

EM(ST) ~v-algebras
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The rich theory of distributive laws (Garner, 2019)

KI(S) —— KI(S) EM(T) —>— EM(T)
- .. . ;=
FT TF weak distributive laws U\L L///;l \LU
weak extensions T wealk liftings S
of T to KI(S) of S to EM(T)

monad structures ST

EM(S)

—

EM(ST) ~v-algebras
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The rich theory of distributive laws (Garner, 2019)

KI(S) —T— KI(S) EM(T) —S—5 EM(T)

7
FT TF weak distributive laws ul L/}r lU
1?557

weak extensions T weak liftings §

of T to KI(S) of S to EM(T)

monad structures ST TSX — s STX

b 1 Sa

é;::::::::::::::::ﬁ? <&:::::=::::::;; AS
- X
EM(ST) ~-algebras
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The complicated theory of distributive laws

Now KI(T) is not a category, but a semi-catgeory.
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The complicated theory of distributive laws

Now KI(T) is not a category, but a semi-catgeory.

There are semi-functors between KI[(T) and K[(ST), but they do not give a
semi-adjunction.

There are “obvious” functors between KI(ST) and KI(S), but they do not give an

adjunction.
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Combining nondeterminism and probabilistic choice via weak laws

Theorem (Goy, P, LICS 2020)
There exists a weak distributive law of the powerset monad over the finite distribution

monad. The corresponding weak lifting of the powerset monad to the category of
convex algebras is the convex powerset monad.

+ we rely on results of Barr for relational extensions of functors and natural
transformations

Rel is the Kleisli category of P

the functor D preserves weak pullbacks, hence it can be extened to Rel
the unit of D is not weakly cartesian

but the multiplication of D is weakly cartesian
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Applications




“Determinizing” probabilistic automata

Can we determize PAs into belief-state transformers using weak distrbutive law ?
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Generalized determinization of probabilistic automata

Lemma
Consider a weak distributive law v: TS = ST of S over T and let 5 be the corresponding

weak lifting of S to EM(T). Then, we have the following liftings

Coalg(ST) —— Coalg() Coalg(8) —Z Coalg(s)
c —F M emT —Y ¢
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Generalized determinization of probabilistic automata

Lemma
Consider a weak distributive law v: TS = ST of S over T and let 5 be the corresponding

weak lifting of S to EM(T). Then, we have the following liftings

Coalg(ST) —— Coalg() Coalg(8) —Z Coalg(s)
c —F M emT —Y ¢

This instantiates to transforming a PD-coalgebra on X into a P.-coalgebra on DX, that
is, to the transformation of a PA into a belief-state transformer, obtained in

[3 [Bonchi, Silva, Sokoloval
The Power of Convex Algebras, CONCUR 2017
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Combining algebraic theories of nondeterminism and probability

We obtain an immediate concrete presentation for the P.D-algebras, i.e., convex
semilattices, see

[§ [Bonchi, Sokolova, Vignudelli]
The Theory of Traces for Systems with Nondeterminism and Probability, LICS 2019

(X, /s (+r)re[0,17) SO that

DPX — X & PDX « (X,\/) is a complete
DV| 1Pa sup-semilattice,
DX PX

* (X, (+r)re[01])) IS @ convex algebra

oy
X

- the distributivity axiom holds

(VX)) +ry =\ (X +y).

28/33



Weak laws in a continuous setting

Theorem (Goy, Aiguier and P., ICALP 2021)
There exists a weak distributive law VYV = VV of the Vietoris monad on compact

Hausdorff spaces over itself.

- we rely on KHaus being a regular category

- we use the [Carboni, Kelly and Wood, 1991] results for extending functors to
relations on regular categories

« the Kleisli category KL(V) can be seen as a category of relations satisfying
additional continuity constraints

- the Vietoris functor nearly preserves pullbacks, so it can be extended to
Rel(KHaus). The extension restricts to KI(V).

+ the multiplication of V is nearly cartesian but the unit is not.
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Semialgebras and why weak laws
are strong...




Semialgebras for a monad

Given a monad T, a semialgebra for T is @ morphism a: TX — X such that only the
associativity axiom holds:

X ™ 1%

ra ls
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Semialgebras for a monad

Given a monad T, a semialgebra for T is @ morphism a: TX — X such that only the
associativity axiom holds:

T2X 21X

W e

A weak distributive law TS = ST also corresponds to a lifting of the monad S to the
category of semialgebras for the monad T.
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Semialgebras for a monad

Given a monad T, a semialgebra for T is @ morphism a: TX — X such that only the
associativity axiom holds:

T2X 21X

W e

A weak distributive law TS = ST also corresponds to a lifting of the monad S to the
category of semialgebras for the monad T.

Semialgebras are morally algebras ....
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Example: Semialgebras for the Maybe monad

Consider the Maybe monad - + 1: Set — Set.

Algebras for this monad are pointed sets, so they are presented by a constant
operation ¢:0 and no equations.
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Example: Semialgebras for the Maybe monad
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Example: Semialgebras for the Maybe monad

Consider the Maybe monad - + 1: Set — Set.

Algebras for this monad are pointed sets, so they are presented by a constant
operation ¢:0 and no equations.

In a semialgebra a: TX — X, the composite a o 7y is only an idempotent, and not
necessarily the identity.

Seminalgebras for the maybe monad are presented by the following signature:
Y ={a:1,e:0}
and

E={aa=a,ae =9}

It turns out that adding an idempotent to a given presentation of algebras for a
Set-monad T, and suitably transforming the equations leads to a presentations of
semialeebras. 31/33



Weak laws are strong...

Theorem (P, Sarkis, MFPS 2021)
Given a monad T on a category with coproducts, there is a monad structure on id¢ + T,

called the semifree monad T° on T, so that there is an isomorphism between
Eilenberg-Moore algebras for T° and semialgebras for T.
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Theorem (P, Sarkis, MFPS 2021)
Given a monad T on a category with coproducts, there is a monad structure on id¢ + T,

called the semifree monad T° on T, so that there is an isomorphism between
Eilenberg-Moore algebras for T° and semialgebras for T.

Theorem (P, Sarkis, MFPS 2021)
Weak distributive laws TS = ST are in one-to-one correspondence with distributive

laws T°S = ST° subject to an additional axiom.

[Rosset, Hansen, Endrullis, 2022] further proved an open problem we left open for the
concrete algebraic presentation of the semifree monad T°.
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