A Categorical Approach to Descriptive Complexity Theory

Damiano Mazza CNRS, LIPN, Université Paris 13

SYCO 11 École Polytechnique, 20 April 2023

Descriptive Complexity

- Decision problem := subset of $\{0,1\}^*$.
- Complexity theory: classify decision problems according to how hard it is to decide them, in terms of resources needed.
- Theory $Str := binary \leq$, axiomatized as total order, unary isOne. FinMod(Str) = {0,1}* (finite models of Str modulo iso).
- Descriptive complexity: classify problems according to how hard it is to describe them, in terms of logical language needed.
- Example: the following formula describes palindromes:

 $\forall x.\forall y.\forall m.\mathrm{Max}(m) \land \mathrm{Plus}(x, y, m) \Rightarrow (\mathrm{isOne}(x) \Leftrightarrow \mathrm{isOne}(y))$

Boolean Categories

Boolean toposes	higher-order theories
Boolean pretoposes	first-order theories
Boolean lextensive categories	"quantifier-free" theories

- Boolean (lextensive) category [Carboni, Lack, Walters 1993]:
 - finite products (the structure below in fact implies all finite limits);
 - finite coproducts;
 - 1 + 1 is disjoint, pullback-stable and the subobject classifier.
- Logical functor: functor preserving fin. prods. and fin. coprods.
- Examples (small):
 - \mathcal{F} : (skeleton of) finite sets and functions;
 - \mathcal{F}_{ω} : (skeleton of) countable sets and functions;
 - syntactic categories of Boolean theories (next slide).

Boolean Categories of Finite Presentation

- Finite Boolean theory $\mathbb{T} := (Sort, Rel, Ax)$:
 - Sort finite set of *sorts*;
 - Rel finite set of *relation symbols*, $R \rightarrow A_1, \ldots, A_k$, with A_i sorts;
 - Ax finite set of axioms, quantifier-free (except for provably unique \exists). (So a Boolean theory is a multisorted, relational FO theory with equality, with closed axioms of the form $\forall \vec{x}. \varphi$ with φ quantifier-free except for provably unique \exists).
- $\mathcal{F}[\mathbb{T}]$: the cat of definable sets and functions in \mathbb{T} . It is Boolean.
 - $\mathcal{F} = \mathcal{F}[\mathbb{E}]$ where \mathbb{E} is the empty theory.
 - The obj. of $\mathcal{F}[N; E \rightarrow N^2]$ are "polynomials" on N, E and \overline{E} .
 - \mathcal{F}_{ω} is not of finite presentation.
- $\mathcal{B}ool\mathcal{C}at_{\mathrm{fp}} := \mathrm{fin.}\ \mathrm{pres.}\ \mathrm{Bool}\ \mathrm{cats}\ \mathrm{and}\ \mathrm{logical}\ \mathrm{functors}\ \mathrm{modulo}\ \mathrm{iso.}$
- \mathcal{F} is the initial object of $\mathcal{B}ool\mathcal{C}at_{\mathrm{fp}}$.

Data Specifications and Complexity

- $\mathcal{D}ata := \mathcal{B}ool\mathcal{C}at_{fp}^{op}$ is lextensive. Write $\operatorname{Spec} \mathcal{B}$ for \mathcal{B} as obj. of $\mathcal{D}ata$.
- Global section functor $\Gamma := \mathcal{D}ata(\operatorname{Spec} \mathcal{F}, -) : \mathcal{D}ata \to \operatorname{Set}.$ $\Gamma(\operatorname{Spec} \mathcal{F}[\mathbb{T}]) = \operatorname{FinMod}(\mathbb{T}).$
- If $f : \mathcal{F}[\mathbb{T}] \to \mathcal{B}$ with \mathcal{B} fin. pres., then $\mathcal{B} \cong \mathcal{F}[\mathbb{T}_f]$ with \mathbb{T}_f extending \mathbb{T} and $f = iso \circ inclusion$. We say that $f : X \to \operatorname{Spec} \mathcal{F}[\mathbb{T}]$ in $\mathcal{D}ata$ is
 - propositional if $Sort(\mathbb{T}_f) = Sort(\mathbb{T})$;
 - Horn if propositional + constraints on $Ax(\mathbb{T}_f) \setminus Ax(\mathbb{T})$;
 - Krom-Horn if Horn + other constraints on $Ax(\mathbb{T}_f) \setminus Ax(\mathbb{T})$.

Theorem. $A \subseteq \{0,1\}^*$ is r.e. iff $\exists f : X \to \operatorname{Spec} \mathcal{F}[\operatorname{Str}]$ s.t. $A = \operatorname{im} \Gamma(f)$. Moreover:

- $A \in \mathsf{NP}$ iff f is propositional;
- $A \in \mathsf{P}$ iff f is Horn;
- $A \in \text{coNL}$ iff f is Krom-Horn.

The Category of Reductions

- In $\mathcal{D}ata/S$, we define $f \approx f'$ iff $\operatorname{im} \Gamma(f) = \operatorname{im} \Gamma(f')$.
- Decision problem on $S := \approx$ -class of morphisms of $\mathcal{D}ata/S$.
- A (quantifier-free) reduction $[g]/T \rightarrow [f]/S$ is defined by:
 - an arithmetical morphism $a: T_{+\times} \to T$;
 - a morphism $r: T_{+\times} \to S$ s.t. $a \circ r^* f \approx g$.
- Descriptive complexity allows to speak of complexity over arbitrary ordered structures. We see this as change of base.
- Usual completeness results (e.g. Cook-Levin theorem) may be reproved in this setting (as corollaries of the above Theorem).

Universal Problems via Yoneda

- Define R, R_• : Data^{op} → Set by (on arrows, act by pullback): R(B) := {propositional morphisms over Spec B} R_•(B) := {(f,s) | f prop. morphism over Spec B, f ∘ s = id}
- Proj. $u: R_{\bullet} \to R =$ "universal" NP problem:



$$\begin{split} \Gamma(R) &= \{ \text{prop. formulas } \varphi \} / \text{Morita equiv.,} \\ \Gamma(R_{\bullet}) &= \{ (\varphi, \sigma) \mid \sigma \models \varphi \} / \text{Morita equiv.,} \\ &\inf \Gamma(u) = \text{semantic version of Sat.} \end{split}$$

• Can do the same with Horn and Krom-Horn morphisms.

Perspectives

- More complexity classes?
 - L and CSPs are immediate. Uniform $AC^0 = LH = FO$ seems easy.
 - Don't know about PH or PSPACE.
 - In any case, is the "universal problem" of these classes meaningful?
- Tools from finite model theory? Structural complexity?
 A "fibrational" view of (search) problems?
- Colimits of presheaves are bad. We need sheaves.
- Algebraic geometry with Boolean cats instead of comm. rings?
 - Bool cats are intriguingly similar to algebras on a non-alg. closed field.
 - Zarisky topology? Data schemes = locally representable sheaves? (*Categories of spaces built from local models* [Zhen Lin Low 2016]).
 - A unifying theory? (Work in progress with Morgan Rogers).