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Real Convex sets

A real convex set consists of a set X together with a ternary
operation < −,−,− >: [0, 1]× X × X → X satisfying some
axioms resembling the behavior of convex linear combinations in
Euclidean space( like < α, x , x >= x).

A convex map is a map that preserve the structure. We get the
category Conv.

Alternative way to define a real convex set as an algebra over the
distribution monad.



Real Convex sets

A real convex set consists of a set X together with a ternary
operation < −,−,− >: [0, 1]× X × X → X satisfying some
axioms resembling the behavior of convex linear combinations in
Euclidean space( like < α, x , x >= x).
A convex map is a map that preserve the structure. We get the
category Conv.

Alternative way to define a real convex set as an algebra over the
distribution monad.



Real Convex sets

A real convex set consists of a set X together with a ternary
operation < −,−,− >: [0, 1]× X × X → X satisfying some
axioms resembling the behavior of convex linear combinations in
Euclidean space( like < α, x , x >= x).
A convex map is a map that preserve the structure. We get the
category Conv.

Alternative way to define a real convex set as an algebra over the
distribution monad.



The distribution monad

For a set X , we define DR(X ) the set of distributions on X to be

DR(X ) := {p : X → R : |supp(p)| < ∞ and
∑
x∈X

p(x) = 1}

This give us a monad DR : Set → Set with the following structure
maps:

δX : X → DR(X ) sends x ∈ X to the distribution δx .

µX : D2
R(X ) → DR(X ) sends a distribution Q to the

distribution

DR(Q)(x) =
∑

p∈DR(X )

Q(p)p(x).
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R-convex set

Given a monad T on a category C. A T -algebra consists of an
object X of C together with a morphism π : T (X ) → X of C such
that the following diagrams commute

X

δX
��

IdX // X T 2(X )
T (π)
//

µX

��

T (X )

π

��

T (X )

π

==

T (X )
π // X

A morphism of T -algebras is a morphism f : X → Y of C such
that πY ◦ T (f ) = f ◦ πX .

Proposition: The category of real convex sets Conv is isomorphic
to the category of DR≥0-algebras.

Definition: [[Duality for convexity, Bart Jacobs]] A DR -algebra in
the category of sets is called an R-convex set. We will denote the
category of R-convex sets by ConvR .
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Convex categories

Let C be a (locally small) category. We define the category DR(C)
to be

Obj(DR(C)) = Obj(C)
DR(C)(X ,Y ) = DR(C(X ,Y ))

For objects p ∈ DR(C(X ,Y )) and q ∈ DR(C(Y ,Z )), we define the
composition q ∗ p ∈ DR(C(X ,Z )) as the following:

(q ∗ p)(f ) =
∑

g2◦g1=f

q(g2)p(g1)

This defined a monad DR : Cat → Cat with structure functors:

δC : C → DR(C)
µC : D2

R(C) → DR(C)

Definition: A DR -algebra in Cat will be called an R-convex
category. We denote the category of R-convex categories by
ConvCatR .
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Convex categories(cont.)

What that means to be a convex category?

It is a category C,
such that:

Every C(X ,Y ) is R-convex set, with

πX ,Y : DR(C(X ,Y )) → C(X ,Y )

.
The following diagrams commute

DR(C(X ,Y ))× DR(C(Y ,Z ))

π×π

��

∗ // DR(C(Y ,Z ))

π

��

C(X ,Y )× C(Y ,Z )
◦ // C(X ,Z )

Fact: A category that enriched by R-convex sets is an
R-convex category.

Example: The kleisli category SetDR
is an R-convex category,

but not enriched by R-convex sets.
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Quantum contextuality

Given three experiments a,b,c with outcomes 0 and 1. We can do
the three experiments as much as we want, but we can measure
just two of them.

So we get the following probability tables:

ab

p1 p2
p3 p4

,

bc

q1 q2
q3 q4

,

ac

s1 s2
s3 s4

We always have

p1 + p2 = s1 + s2 , p1 + p3 = q1 + q2 , q1 + q3 = s1 + s3

But not always the tables are coming from a global probability
table:

abc

r1 r2 r3 r4 r5 r6 r7 r8
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Simplicial approach to contextuality

The tables of probabilities above can be expressed as a simplicial
map X → DR(NZ2), where X is the following space:

A global distribution is an element in DR(sSet(X ,NZ2)).

In addition, we have the following map

ΘX ,NZ2 : DR(sSet(X ,NZ2)) → sSet(X ,DR(NZ2))

In general, we have measurement space X and outcome space Y .

Definition: p ∈ sSet(X ,DR(Y )) is noncontextual/classic if it lies
in the image of ΘX ,Y .
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Convex categories and contextuality

Fact: Let CT be the category of T -algebras. There is an
adjunction T : C ⊣ CT : U.

In particular, we have

DR : Cat ⊣ ConvCatR : U

The monad DR act on sSet by applying DR degree-wise.

We denote by FDR
: sSet → sSetDR

the functor that send a
morphism f : X → Y to the composition δY ◦ f : X → DR(Y ).

Proposition

The transpose of the functor FDR
: sSet → sSetDR

with respect to
the adjunction DR : Cat ⊣ ConvCatR : U is the functor
Θ : DR(sSet) → sSetDR

which is defined as identity on the
objects and as the map ΘX ,Y on morphisms.
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Convex monoids and contextuality

Definition: Convex monoid is a convex category with a single
object.

This is equivalent to saying that (M, πM) is an R-convex set and
the map πM : DR(M) → M is a homomorphism of monoids.

Given a convex monoid (M, πM). Let M∗ be the group of
invertible elements in M.

Definition: An element m ∈ M is called weakly invertible if it lies
in the image of the composition

DR(M
∗) ↪→ DR(M)

πM

−→ M

Example: If Y is a simplicial group, then sSet(X ,DR(Y )) is an
R-convex monoid.
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Theorem

Let R be a zero-sum-free, integral semiring R. Given a simplicial
set X and a simplicial group Y , a distribution p ∈ sSet(X ,DR(Y ))
is non-contextual if and only if p is weakly invertible.
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