Aziz Kharoof Bilkent University

April 20, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Based on arXiv:2211.00571 joint with Cihan Okay.

A real convex set consists of a set X together with a ternary operation $< -, -, - >: [0, 1] \times X \times X \to X$ satisfying some axioms resembling the behavior of convex linear combinations in Euclidean space(like $< \alpha, x, x >= x$).

A *real convex set* consists of a set X together with a ternary operation $\langle -, -, - \rangle$: $[0, 1] \times X \times X \rightarrow X$ satisfying some axioms resembling the behavior of convex linear combinations in Euclidean space(like $\langle \alpha, x, x \rangle = x$). A convex map is a map that preserve the structure. We get the

category **Conv**.

A *real convex set* consists of a set X together with a ternary operation $\langle -, -, - \rangle$: $[0,1] \times X \times X \to X$ satisfying some axioms resembling the behavior of convex linear combinations in Euclidean space(like $\langle \alpha, x, x \rangle = x$). A convex map is a map that preserve the structure. We get the category **Conv**.

Alternative way to define a real convex set as an algebra over the distribution monad.

The distribution monad

For a set X, we define $D_R(X)$ the set of distributions on X to be

$$D_R(X):=\{p:X o R:\;| extsf{supp}(p)|<\infty extsf{ and }\sum_{x\in X}p(x)=1\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The distribution monad

For a set X, we define $D_R(X)$ the set of distributions on X to be

$$D_R(X):=\{p:X o R:\;| extsf{supp}(p)|<\infty extsf{ and }\sum_{x\in X}p(x)=1\}$$

This give us a monad D_R : **Set** \rightarrow **Set** with the following structure maps:

- $\delta_X : X \to D_R(X)$ sends $x \in X$ to the distribution δ^x .
- $\mu_X : D^2_R(X) \to D_R(X)$ sends a distribution Q to the distribution

$$D_R(Q)(x) = \sum_{p \in D_R(X)} Q(p)p(x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given a monad T on a category **C**. A *T*-algebra consists of an object X of **C** together with a morphism $\pi : T(X) \to X$ of **C** such that the following diagrams commute

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given a monad T on a category **C**. A *T*-algebra consists of an object X of **C** together with a morphism $\pi : T(X) \to X$ of **C** such that the following diagrams commute

A morphism of *T*-algebras is a morphism $f : X \to Y$ of **C** such that $\pi^{Y} \circ T(f) = f \circ \pi^{X}$.

Given a monad T on a category **C**. A *T*-algebra consists of an object X of **C** together with a morphism $\pi : T(X) \to X$ of **C** such that the following diagrams commute

A morphism of *T*-algebras is a morphism $f : X \to Y$ of **C** such that $\pi^{Y} \circ T(f) = f \circ \pi^{X}$.

Proposition: The category of real convex sets **Conv** is isomorphic to the category of $D_{\mathbb{R}>0}$ -algebras.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Given a monad T on a category **C**. A *T*-algebra consists of an object X of **C** together with a morphism $\pi : T(X) \to X$ of **C** such that the following diagrams commute

A morphism of *T*-algebras is a morphism $f : X \to Y$ of **C** such that $\pi^{Y} \circ T(f) = f \circ \pi^{X}$.

Proposition: The category of real convex sets **Conv** is isomorphic to the category of $D_{\mathbb{R}>0}$ -algebras.

Definition: [[Duality for convexity, Bart Jacobs]] A D_R -algebra in the category of sets is called an *R*-convex set. We will denote the category of *R*-convex sets by **Conv**_{*R*}.

Let **C** be a (locally small) category. We define the category $D_R(\mathbf{C})$ to be

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $Obj(D_R(\mathbf{C})) = Obj(\mathbf{C})$
- $D_R(\mathbf{C})(X,Y) = D_R(\mathbf{C}(X,Y))$

Let **C** be a (locally small) category. We define the category $D_R(\mathbf{C})$ to be

- $\operatorname{Obj}(D_R(\mathbf{C})) = \operatorname{Obj}(\mathbf{C})$
- $D_R(\mathbf{C})(X,Y) = D_R(\mathbf{C}(X,Y))$

For objects $p \in D_R(\mathbf{C}(X, Y))$ and $q \in D_R(\mathbf{C}(Y, Z))$, we define the composition $q * p \in D_R(\mathbf{C}(X, Z))$ as the following:

$$(q*p)(f) = \sum_{g_2 \circ g_1 = f} q(g_2)p(g_1)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let **C** be a (locally small) category. We define the category $D_R(\mathbf{C})$ to be

- $\operatorname{Obj}(D_R(\mathbf{C})) = \operatorname{Obj}(\mathbf{C})$
- $D_R(\mathbf{C})(X,Y) = D_R(\mathbf{C}(X,Y))$

For objects $p \in D_R(\mathbf{C}(X, Y))$ and $q \in D_R(\mathbf{C}(Y, Z))$, we define the composition $q * p \in D_R(\mathbf{C}(X, Z))$ as the following:

$$(q * p)(f) = \sum_{g_2 \circ g_1 = f} q(g_2) p(g_1)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This defined a monad D_R : **Cat** \rightarrow **Cat** with structure functors:

• $\delta_{\mathbf{C}} : \mathbf{C} \to D_R(\mathbf{C})$ • $\mu_{\mathbf{C}} : D_R^2(\mathbf{C}) \to D_R(\mathbf{C})$

Let **C** be a (locally small) category. We define the category $D_R(\mathbf{C})$ to be

- $\operatorname{Obj}(D_R(\mathbf{C})) = \operatorname{Obj}(\mathbf{C})$
- $D_R(\mathbf{C})(X, Y) = D_R(\mathbf{C}(X, Y))$

For objects $p \in D_R(\mathbf{C}(X, Y))$ and $q \in D_R(\mathbf{C}(Y, Z))$, we define the composition $q * p \in D_R(\mathbf{C}(X, Z))$ as the following:

$$(q * p)(f) = \sum_{g_2 \circ g_1 = f} q(g_2) p(g_1)$$

This defined a monad D_R : **Cat** \rightarrow **Cat** with structure functors:

• $\delta_{\mathbf{C}} : \mathbf{C} \to D_R(\mathbf{C})$ • $\mu_{\mathbf{C}} : D_R^2(\mathbf{C}) \to D_R(\mathbf{C})$

Definition: A D_R -algebra in **Cat** will be called an *R*-convex category. We denote the category of *R*-convex categories by **ConvCat**_{*R*}.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

What that means to be a convex category?

٠

What that means to be a convex category? It is a category C, such that:

• Every C(X, Y) is *R*-convex set, with

 $\pi_{X,Y}: D_R(\mathbf{C}(X,Y)) \to \mathbf{C}(X,Y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What that means to be a convex category? It is a category C, such that:

• Every C(X, Y) is *R*-convex set, with

$$\pi_{X,Y}: D_R(\mathbf{C}(X,Y)) \to \mathbf{C}(X,Y)$$

• The following diagrams commute

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

What that means to be a convex category? It is a category C, such that:

• Every C(X, Y) is *R*-convex set, with

$$\pi_{X,Y}: D_R(\mathbf{C}(X,Y)) \to \mathbf{C}(X,Y)$$

• The following diagrams commute

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Fact: A category that enriched by *R*-convex sets is an *R*-convex category.

What that means to be a convex category? It is a category C, such that:

• Every C(X, Y) is *R*-convex set, with

$$\pi_{X,Y}: D_R(\mathbf{C}(X,Y)) \to \mathbf{C}(X,Y)$$

• The following diagrams commute

Fact: A category that enriched by *R*-convex sets is an *R*-convex category.

Example: The kleisli category \mathbf{Set}_{D_R} is an *R*-convex category, but not enriched by *R*-convex sets.

Given three experiments a, b, c with outcomes 0 and 1. We can do the three experiments as much as we want, but we can measure just two of them.

Given three experiments a,b,c with outcomes 0 and 1. We can do the three experiments as much as we want, but we can measure just two of them. So we get the following probability tables:

ab	0	١]	bc	0	١]	ac	0	١
0	p_1	<i>p</i> ₂],	0	q_1	q_2	,	0	<i>s</i> ₁	<i>s</i> ₂
۱	<i>p</i> 3	p_4		١	q 3	q_4		١	<i>s</i> 3	<i>s</i> 4

(日) (國) (필) (필) (필) 표

Given three experiments a,b,c with outcomes 0 and 1. We can do the three experiments as much as we want, but we can measure just two of them. So we get the following probability tables:

ab	0	١		bc	0	١		ac	0	١
0	p_1	<i>p</i> ₂],	0	q_1	q_2	,	0	<i>s</i> ₁	<i>s</i> ₂
1	<i>p</i> 3	p_4		۱ ا	<i>q</i> 3	q_4		۱ ا	<i>s</i> 3	<i>s</i> 4

We always have

 $p_1 + p_2 = s_1 + s_2$, $p_1 + p_3 = q_1 + q_2$, $q_1 + q_3 = s_1 + s_3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given three experiments a,b,c with outcomes 0 and 1. We can do the three experiments as much as we want, but we can measure just two of them. So we get the following probability tables:

ab	0	١		bc	0	١]	ac	0	١
0	p_1	<i>p</i> ₂	,	0	q_1	q_2	,	0	<i>s</i> ₁	<i>s</i> ₂
1	<i>p</i> 3	p_4		۱ ا	<i>q</i> 3	q_4		۱	<i>s</i> 3	<i>s</i> 4

We always have

$$p_1 + p_2 = s_1 + s_2$$
, $p_1 + p_3 = q_1 + q_2$, $q_1 + q_3 = s_1 + s_3$

But not always the tables are coming from a global probability table:

The tables of probabilities above can be expressed as a simplicial map $X \to D_R(N\mathbb{Z}_2)$, where X is the following space:

< □ > < □ > < □ > < □ > < □ > < □ > = □

The tables of probabilities above can be expressed as a simplicial map $X \to D_R(N\mathbb{Z}_2)$, where X is the following space:

(日) (四) (문) (문) (문)

A global distribution is an element in $D_R(s\mathbf{Set}(X, N\mathbb{Z}_2))$.

The tables of probabilities above can be expressed as a simplicial map $X \to D_R(N\mathbb{Z}_2)$, where X is the following space:

A global distribution is an element in $D_R(s\mathbf{Set}(X, N\mathbb{Z}_2))$. In addition, we have the following map

$$\Theta_{X,N\mathbb{Z}_2}: D_R(s\mathbf{Set}(X,N\mathbb{Z}_2)) \to s\mathbf{Set}(X,D_R(N\mathbb{Z}_2))$$

(日) (四) (코) (코) (코) (코)

The tables of probabilities above can be expressed as a simplicial map $X \to D_R(N\mathbb{Z}_2)$, where X is the following space:

A global distribution is an element in $D_R(s\mathbf{Set}(X, N\mathbb{Z}_2))$. In addition, we have the following map

$$\Theta_{X,N\mathbb{Z}_2}: D_R(s\mathbf{Set}(X,N\mathbb{Z}_2)) \to s\mathbf{Set}(X,D_R(N\mathbb{Z}_2))$$

In general, we have measurement space X and outcome space Y.

The tables of probabilities above can be expressed as a simplicial map $X \to D_R(N\mathbb{Z}_2)$, where X is the following space:

A global distribution is an element in $D_R(s\mathbf{Set}(X, N\mathbb{Z}_2))$.

In addition, we have the following map

$$\Theta_{X,N\mathbb{Z}_2}: D_R(s\mathbf{Set}(X,N\mathbb{Z}_2)) \to s\mathbf{Set}(X,D_R(N\mathbb{Z}_2))$$

In general, we have measurement space X and outcome space Y.

Definition: $p \in s$ **Set** $(X, D_R(Y))$ is *noncontextual/classic* if it lies in the image of $\Theta_{X,Y}$.

Fact: Let \mathbf{C}^T be the category of *T*-algebras. There is an adjunction $T : \mathbf{C} \dashv \mathbf{C}^T : U$.

Fact: Let \mathbf{C}^T be the category of *T*-algebras. There is an adjunction $T : \mathbf{C} \dashv \mathbf{C}^T : U$. In particular, we have

 D_R : Cat \dashv ConvCat_R : U

Fact: Let \mathbf{C}^T be the category of *T*-algebras. There is an adjunction $T : \mathbf{C} \dashv \mathbf{C}^T : U$. In particular, we have

 $D_R : \mathbf{Cat} \dashv \mathbf{ConvCat}_R : U$

The monad D_R act on sSet by applying D_R degree-wise.

Fact: Let \mathbf{C}^T be the category of *T*-algebras. There is an adjunction $T : \mathbf{C} \dashv \mathbf{C}^T : U$. In particular, we have

 D_R : Cat \dashv ConvCat_R : U

The monad D_R act on sSet by applying D_R degree-wise.

We denote by F_{D_R} : s**Set** $\rightarrow s$ **Set** $_{D_R}$ the functor that send a morphism $f : X \rightarrow Y$ to the composition $\delta_Y \circ f : X \rightarrow D_R(Y)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Fact: Let \mathbf{C}^T be the category of *T*-algebras. There is an adjunction $T : \mathbf{C} \dashv \mathbf{C}^T : U$. In particular, we have

 $D_R : \mathbf{Cat} \dashv \mathbf{ConvCat}_R : U$

The monad D_R act on sSet by applying D_R degree-wise.

We denote by F_{D_R} : s**Set** $\rightarrow s$ **Set** $_{D_R}$ the functor that send a morphism $f : X \rightarrow Y$ to the composition $\delta_Y \circ f : X \rightarrow D_R(Y)$.

Proposition

The transpose of the functor $F_{D_R} : s\mathbf{Set} \to s\mathbf{Set}_{D_R}$ with respect to the adjunction $D_R : \mathbf{Cat} \dashv \mathbf{ConvCat}_R : U$ is the functor $\Theta : D_R(s\mathbf{Set}) \to s\mathbf{Set}_{D_R}$ which is defined as identity on the objects and as the map $\Theta_{X,Y}$ on morphisms.

Definition: Convex monoid is a convex category with a single object.

Definition: Convex monoid is a convex category with a single object.

This is equivalent to saying that (M, π^M) is an *R*-convex set and the map $\pi^M : D_R(M) \to M$ is a homomorphism of monoids.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition: Convex monoid is a convex category with a single object.

This is equivalent to saying that (M, π^M) is an *R*-convex set and the map $\pi^M : D_R(M) \to M$ is a homomorphism of monoids.

Given a convex monoid (M, π^M) . Let M^* be the group of invertible elements in M.

Definition: An element $m \in M$ is called *weakly invertible* if it lies in the image of the composition

$$D_R(M^*) \hookrightarrow D_R(M) \xrightarrow{\pi^M} M$$

Definition: Convex monoid is a convex category with a single object.

This is equivalent to saying that (M, π^M) is an *R*-convex set and the map $\pi^M : D_R(M) \to M$ is a homomorphism of monoids.

Given a convex monoid (M, π^M) . Let M^* be the group of invertible elements in M.

Definition: An element $m \in M$ is called *weakly invertible* if it lies in the image of the composition

$$D_R(M^*) \hookrightarrow D_R(M) \xrightarrow{\pi^M} M$$

Example: If Y is a simplicial group, then s**Set** $(X, D_R(Y))$ is an *R*-convex monoid.

Theorem

Let R be a zero-sum-free, integral semiring R. Given a simplicial set X and a simplicial group Y, a distribution $p \in s$ **Set** $(X, D_R(Y))$ is non-contextual if and only if p is weakly invertible.

Theorem

Let R be a zero-sum-free, integral semiring R. Given a simplicial set X and a simplicial group Y, a distribution $p \in s\mathbf{Set}(X, D_R(Y))$ is non-contextual if and only if p is weakly invertible.

・ロト ・雪ト ・油ト ・油ト

æ

Thank you for listening