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Quantum Group, Oxford



Where are we going?

Claim (Playing with Foam)

The free monoidal category on one object
equipped with a frobenius algebra is a category of
open two-player games with choice-multiplicity.



Frobenius Foam

A recipe for “open X”; find a monoidal

category where the scalars are “X”.



The PRO Game

We can spell out the PRO (no symmetry
braidings!) as a finitely-presented ∞−category.



The PRO Game: 0-cells

Just one, which we will call ◦.



The PRO Game: 1-cells

Just one, • := ◦ → ◦.



The PRO Game: 2-cells

(Co)multiplications:

:= (•; •) → • := • → (•; •)

(Co)units:

:= (◦ = ◦) → • := • → (◦ = ◦)



The PRO Game: 3-cells

Ass.
=

Coass.
=



The PRO Game: 3-cells

Unit
=

Unit
=

Counit
=

Counit
=



The PRO Game: 3-cells

Frob.
=

Frob.
=



Swapping connected bubbles 11
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Swapping connected bubbles 11

Coass.
=



Swapping connected bubbles 11

Ass.
=



Swapping connected bubbles 11

Frob.
=



Chain Normal Form 12

Consider the outermost ⊗-non-separable scalar, which we
consider to have K enclosed regions which each may contain
some scalars.



Chain Normal Form 12

Force all comultiplications to come before all multiplications.



Chain Normal Form 12

Gather the comultiplications and multiplications such that the
outermost scalar starts with a single unit and ends with a single
counit.



Chain Normal Form 12

Unit equalities force exactly K multiplications and K
comultiplications.



Chain Normal Form 12

We can then use associativity to get a tower of hanoi.



Chain Normal Form 12

Which we can reshape into a chain.

=

=



▶ We can swap links in chains: Baglike.

▶ ⊗-collections of scalars: Baglike.

A Foam is either the empty scalar ◦, or a bag of bags of foam:

F ::= ◦ | Bag(Bag(F))

A (finite two-player game with choice-multiplicity) is either the
empty game, or a turn, where Eloise chooses (from a finite bag
of choices) a bag of choices for Abelard, who chooses choices for

Eloise, who...
Is there a correspondence between foam and the

algebraic data type?



Data structures via PROPs

=



From Backus-Naur to string diagrams

List(A) := empty | Cons A List(A) → List(A)



From Backus-Naur to string diagrams

empty : 0 → List(A)

Cons : A⊗ List(A) → List(A)



From Backus-Naur to string diagrams

empty :

Cons :



From Lists to Bags

List(A)
?
=

1

1− A

List(A) 7→ 1 + A× List(A)

List(A) ≃ 1 + A+ A2 + A3 · · · ≡
∑
i∈N

Ai

Bag(A)
?≃ 1 + A+

A2

2!
+

A3

3!
+ · · · ≡

∑
i∈N

Ai

i!
:= eA



From Lists to Bags

The one difference between a bag and a list is
that putting things in bags is

order-independent.

=



From Lists to Bags

= =

The denominators of
1 + A+ A2

2! +
A3

3! + · · · ≡
∑
i∈N

Ai

i! arise from

counting diagrams; we are overcounting braids.



Games, PROP-algebraically

Bag(Bag) ::= | | =

Bag(Bag) ::= | | =

Mutual recursion is easy in PROPs!



Games and Foam

↔ ◦ (the tensor unit)

↔

↔



Games and Foam

↔



Relating Games and Foam



Relating Games and Foam

↔ ↔

↔



Relating Games and Foam

↔

↔



Relating Games and Foam

↔ ↔



Relating Games and Foam

↔ ↔



Relating Games and Foam

What structure relates generators of Games to
context-dependent collections of open Foam?

Monoidal Discrete Fibrations



Monoidal Discrete Fibrations

Functor Boxes:

F

f

A

B

FA

FB

:=:Ff

FA

FB



Monoidal Discrete Fibrations

Functor Boxes respect composition and
identities

F

f

g

C

A

FA

FC

=
F

f

A

B

FA

FB

F

g

B

C

FC

B



Monoidal Discrete Fibrations

Monoidal Functor Boxes respect parallel
composition.

F

f g

B D

A C

FA FC

FB FD

=

F

f

A

B

FA

FB

F

g

C

D

FC

FD



Monoidal Discrete Fibrations

Symmetric Monoidal Functor Boxes also
respect braidings.

F
A B

FA FB

FBFA

=

F
B A

A B

FA FB

FB FA

=

F
A B

FA FB

FBFA



Monoidal Discrete Fibrations

You can always slide the insides of functor
boxes out, but in general you can’t slide the

outsides in.

F

f

A

B

FA

FB F

f

A

B

FA

FB

F
A

FA

F
A

FA

FA
=

Ff

FB

=



Monoidal Discrete Fibrations

Discrete fibrations are functors that let you
slide outsides in from below.

F

A

ΦA
f

FA

B

=

f

FA

B

F
A

FA

φf

∀f : FA → B ∈ D
∃!φf : A → ΦA

f ∈ C



Monoidal Discrete Fibrations

Discrete opfibrations are functors that let you
slide outsides in from above.

F

A

Φ
A
f

FA

B

=

f

FA

B

F
A

FA

φf

∀f:FA→B∈D
∃!φf:A→Φ

A
f∈C



Monoidal Discrete Fibrations

A Discrete monoidal fibration additionally
satisfies interchange: the order of sliding-in

doesn’t matter.

F

A

ΦA
f

FA

B

=

f

FA

B

F
A

FA

φf

g

D

C

FC

FC

F

A

φA
f

FA

B

φf

C

ΦC
g

φg

FC

D

FC

C

FC

g

D

F

C

ΦC
g

FA

B

=

φg

FC

A

FA

f

D

=



Shapeshifting Games and Foam using a
monoidal discrete opfibration
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Shapeshifting Games and Foam using a
monoidal discrete opfibration



Shapeshifting Games and Foam using a
monoidal discrete opfibration



Shapeshifting Games and Foam using a
monoidal discrete opfibration



Where did we start again?

Claim (Playing with Foam)

The free monoidal category on one object
equipped with a frobenius algebra is a category of
open two-player games with choice-multiplicity.
Because the scalars of the category are, up to
equality, the domain of a discrete monoidal
fibration into a PROP-representation of games as
a data structure.



What have we achieved?

Nothing, but we had some fun.
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