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How should we model the dynamics of a 1d chain of interacting quantum systems?

Brickwork circuits give a minimal local dynamical model, built from 2-site unitary gates:

We want to analyze emergent properties of these circuits, and relate them to real systems.
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Let's verify this property: trivial correlations for measurements outside the light cone.
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Correlation inside light cone

For measurements inside the light cone,
the correlations can take any value.

But now suppose the gates

are also horizontally unitarity: yammN

Then applying a space-time symmetry, the previous proof applies.

So correlations inside the light cone are now also trivial!
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A dual unitary is a 2-site gate which is unitary, and also horizontally unitary.

For these gates, the only nontrivial correlations
are therefore on the lightcone.

Information must travel “at light speed”.

Dual unitarity is currently popular in the physics community (10,000 papers per year!)

As toy models of many-body quantum systems, they have many cool, unusual properties:
» Exact solvability. Single-site correlation functions can be efficiently computed.
» Maximal entanglement velocity. Entanglement spreads at fastest possible rate.

» Maximally chaotic. Ergodic behaviour with same statistics as random matrix models.
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Dual unitary clockwork circuits

Tomaz Prosen recently introduced a different model,
built from 1-site 2-controlled gates:
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He calls them interaction round-a-face, but we call them clockwork circuits.

Prosen gives a new definition of dual unitarity for these circuits.
He then shows they share all the good properties of dual unitary brickwork circuits!

This is surprising — their structure is very different. How can we understand this?
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Shaded tensor networks

A shaded tensor network is a planar string diagram, where some of the regions are shaded.

—

It is a string diagram for a subcategory of the 2Hilb, the 2-category of 2—Hilbert spaces.
To express the linear data of a shaded tensor network in ordinary circuit notation:

e Regions become wires e Vertices are controlled by the wires of adjacent regions
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Biunitarity

In the world of shaded tensor networks, a 4-valent vertex U can be vertically unitary:

It can also be horizontally unitary:

m_)\w @zfu\:{_)\w
Y Y

A 4-valent map is biunitary when it is vertically and horizontally unitary.
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Homogeneous biunitary circuits

Now let's look at biunitary circuits, with all shading the same.

In the unshaded case, these are just ordinary dual unitary brickwork circuits:

Let's see what happens in the shaded case. We get Prosen’s circuits!

So brickwork and clockwork circuits have a unified description using the shaded calculus.

This also recovers Prosen's definition of dual unitarity for clockwork circuits.
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Our more general language lets us try new things. What happens if we drop homogeneity?

The simplest possible structure is a dynamical boundary:
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This boundary moves left-to-right, separating clockwork and brickwork circuits.

At the boundary we require a new sort of vertex,
with two shaded and two unshaded regions.

We can classify these. They are exactly quantum Latin squares: grids of elements
of a Hilbert space, with every row and column giving an orthonormal basis.
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Biunitary circuits — boundary creation

We can create these boundaries dynamically:
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Here a new clockwork region is created within an existing brickwork region.

At point P we encounter another new vertex
type, with one shaded region.

These are known to correspond to unitary error bases, defined as orthogonal and complete
families of unitary matrices. (For example, the Pauli matrices.)
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Biunitary circuits — boundary reflection

Boundaries can also reflect off each other:

Here a clockwork region contracts to zero width, then expands again.

The central point has a vertex with
two non-adjacent shaded regions.

These are known to correspond to Hadamard matrices, unitary matrices where every
coefficient has the same absolute value. (This was discovered by Vaughan Jones.)



