A layout algorithm for higher-dimensional string diagrams

Calin Tataru

University of Cambridge

SYCO 10, 20 December 2022
Homotopy.io is a proof assistant for higher category theory. It lets you build terms in finitely-presented n-categories. Terms have a direct geometrical representation.
Example of 2-diagram
Corresponding zigzag diagram
Corresponding zigzag diagram
Poset admits a mono-epi factorization system:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{m_f} & & \downarrow{e_f} \\
E_f & & \\
\end{array}
\]

where \(E_f = A \sqcup (B \setminus f[A]) \), \(m_f \) is the canonical inclusion, \(e_f = [f, \text{id}] \).
Injectification

Definition
Given a diagram in a category \mathcal{C},

$$X : J \rightarrow \mathcal{C}$$

an *injectification* is defined to be a diagram

$$\hat{X} : J \rightarrow \mathcal{C}_{\text{mono}}$$

equipped with a pointwise epi natural transformation

\[
\begin{array}{ccc}
J & \xrightarrow{X} & \mathcal{C} \\
\downarrow{\hat{X}} & & \uparrow{\epsilon} \\
\mathcal{C}_{\text{mono}} & \xrightarrow{\epsilon} & \mathcal{C}
\end{array}
\]
Injectification

- We will show how to compute injectifications for finite poset-shaped diagrams $X : J \rightarrow \text{Poset}$.
Injectification

- We will show how to compute injectifications for finite poset-shaped diagrams $X : J \to \text{Poset}$.
- The construction works by induction on J.
Injectification

- We will show how to compute injectifications for finite poset-shaped diagrams $X : J \to \text{Poset}$.
- The construction works by induction on J.
- For every $i \in J$, let $J \downarrow i = \{ j \in J : j < i \}$.

Injectification

▶ We will show how to compute injectifications for finite poset-shaped diagrams $X : J \to \text{Poset}$.
▶ The construction works by induction on J.
▶ For every $i \in J$, let $J \downarrow i = \{j \in J : j < i\}$.
▶ If $J \downarrow i$ is empty, then define
 \[
 \hat{X}_j := X_j \quad \epsilon_j := \text{id}_{X_j}
 \]
Injectification

- We will show how to compute injectifications for finite poset-shaped diagrams $X : J \rightarrow \text{Poset}$.
- The construction works by induction on J.
- For every $i \in J$, let $J \downarrow i = \{j \in J : j < i\}$.
- If $J \downarrow i$ is empty, then define
 \[
 \hat{X}_j := X_j \quad \epsilon_j := \text{id}_{X_j}
 \]
- If not, \hat{X} and ϵ must already be defined on $J \downarrow i$.
Injectification

\[X_{j_1} \rightarrow X_{j_2} \rightarrow X_{j_3} \rightarrow X_i \]

\[\hat{X}_{j_1} \rightarrow \hat{X}_{j_2} \rightarrow \hat{X}_{j_3} \rightarrow X_i \]
Injectification

\[X_j \]

\[X_j_1 \]

\[X_j_2 \]

\[X_j_3 \]

\[\hat{X}_j_1 \]

\[\hat{X}_j_2 \]

\[\hat{X}_j_3 \]

\[E_j_1 \]

\[E_j_2 \]

\[E_j_3 \]

\[X_i \]
Injectification

\[
\begin{align*}
X_j^1 &\rightarrow X_j^2 &\rightarrow X_j^3 \\
&\downarrow &\downarrow \\
\hat{X}_j^1 &\rightarrow \hat{X}_j^2 &\rightarrow \hat{X}_j^3 \\
&\downarrow &\downarrow \\
&\hat{X}_j &\rightarrow \hat{X}_j^2 &\rightarrow \hat{X}_j^3 \\
&\downarrow &\downarrow &\downarrow \\
&\hat{X}_j &\rightarrow E_j^1 &\rightarrow E_j^2 &\rightarrow E_j^3 \\
&\downarrow &\downarrow &\downarrow &\downarrow \\
&\hat{X}_i &\rightarrow \hat{X}_i := \text{colim } E
\end{align*}
\]
Layout
f_1 \rightarrow f_2 \rightarrow f_3 \rightarrow m_1 \rightarrow f_4 \rightarrow f_5 \rightarrow m_2 \rightarrow f_6
Layout
Layout

\[f_6 \]

\[f_4 \rightarrow f_5 \]

\[f_1 \rightarrow f_2 \rightarrow f_3 \]
Distance constraints

\[f_2 - f_1 \geq 1 \]
\[f_3 - f_2 \geq 1 \]
\[f_3 - f_4 \geq 1 \]
\[f_5 - f_2 \geq 1 \]
\[f_5 - f_4 \geq 1 \]
Fair averaging constraints (strict)

\[
\frac{1}{2}(f_1 + f_2) - f_4 = 0 \\
\quad f_3 - f_5 = 0 \\
\frac{1}{2}(f_4 + f_5) - f_6 = 0
\]
Fair averaging constraints (weak)

minimize \(c_1 + c_2 + c_3 \)

subject to

\[|\frac{1}{2}(f_1 + f_2) - f_4| \leq c_1 \]
\[|f_3 - f_5| \leq c_2 \]
\[|\frac{1}{2}(f_4 + f_5) - f_6| \leq c_3 \]
New version of the tool

- Available at beta.homotopy.io
New version of the tool

- Available at beta.homotopy.io
- New layout algorithm
New version of the tool

- Available at beta.homotopy.io
- **New layout algorithm**
 - Re-engineered 3D renderer
New version of the tool

▶ Available at beta.homotopy.io
▶ **New layout algorithm**
 ▶ Re-engineered 3D renderer
 ▶ 4D renderer (i.e. smooth movies of 3D diagrams)
New version of the tool

- Available at beta.homotopy.io
- **New layout algorithm**
 - Re-engineered 3D renderer
 - 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators
New version of the tool

- Available at beta.homotopy.io
- **New layout algorithm**
 - Re-engineered 3D renderer
 - 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators
- Oriented manifold diagrams
New version of the tool

- Available at beta.homotopy.io
- **New layout algorithm**
 - Re-engineered 3D renderer
 - 4D renderer (i.e. smooth movies of 3D diagrams)
- Invertible generators
- Oriented manifold diagrams
- TikZ export (finally!)