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Part I

Role and positional analysis for networks



The idea

Social positions are collections of actors who are similar in their ties with others.

Social roles are patterns of ties, or compound ties, between actors or positions.



Multirelational networks

Definition
A k-graph consists of a finite set V and a family R1, . . . ,Rk of binary relations on V .

We can represent each Ri as a digraph or as a V ˆ V matrix with Boolean entries.

Elements of V are called vertices and pairs pu, vq P Ri are edges of the k-graph.

For us, the vertices represent actors in a system and R1, . . . ,Rk are distinct types of
social relation among them. A k-graph is also called a multirelational network.

Example

In the 2-graph on the right, perhaps
the vertices are employees in a firm,
R1 is the ‘boss of’ relation and R2 is
the ‘collaborator of’ relation.

This running example is from Otter & Porter (2020).
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Positional analysis on (1-)graphs

Let pV ,Rq be a ‘unirelational network’. (That is, V is a finite set and R Ď V ˆ V .)

Definition(ish) The aim of positional analysis is to identify a partition V of V
whose elements are positions in the network, and a relation R on V containing
information about R. The pair pV ,Rq is called a blockmodel for pV ,Rq.

Two types of equivalence relation are commonly used to form blockmodels.

Definition Vertices u, v P V are structurally equivalent if for every w P V

rpu,wq P R ðñ pv ,wq P Rs and rpw , uq P R ðñ pv , uq P R.s

That is, if they have the same ties to all other vertices.

Vertices are regularly equivalent if they have “the same ties to equivalent vertices”.
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Positional analysis on (1-)graphs

Partitioning by structural equivalence, the
‘boss’ and ‘collaborator’ blockmodels of our firm are



Positional analysis on k-graphs

Definition A positional reduction of a k-graph pV , tRiu
k
i“1q consists of a k-graph

pV , tRiu
k
i“1q and a surjective function φ : V Ñ V such that, for each i ,

pu, vq P Ri ðñ pφpuq, φpvqq P R i .

Example Here is a positional reduction of our firm:

Typically, one performs a sequence of several ‘nested’ positional reductions.
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Role analysis on k-graphs

Definition The semigroup of roles in a k-graph pV , tRiu
k
i“1q is the semigroup

generated by the set tR1, . . . ,Rku under composition of relations. Denote it RolepV q.
The elements of RolepV q are called roles or compound ties.

Example Here is the multiplication table for the semigroup of roles in our firm:

»

—

—

—

—

–

R1 R2 R1R2 R1R1

R1 R1R1 R1R2 R1R1 H

R2 R1R2 R2 R1R2 R1R1

R1R2 R1R1 R1R2 R1R1 H

R1R1 H R1R1 H H

fi

ffi

ffi

ffi

ffi

fl

Definition A role reduction for pV , tRiu
k
i“1q consists of a semigroup S and a

surjective semigroup homomorphism RolepV q Ñ S .
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Functoriality of role analysis on graphs

Let GraphkSurj denote the category of k-graphs and positional reductions, and let
SemiGroupSurj denote the category of semigroups and surjective homomorphisms.

Theorem (Otter & Porter, 2020)

The assignment of the semigroup of roles induces a functor

Role : GraphkSurj Ñ SemiGroupSurj.

The theorem tells us that every positional reduction induces a canonical role reduction,
and these behave well under ‘nesting’.



Part II

Higher-order relations



Graphs are not always enough

You’re an ethnographer studying social dynamics among young people in Edinburgh.

Ash and Sam, Sam and Mo, and Mo and Ash have each been pals at different times.

But Meg, Ali and Mick have been an inseparable trio ever since they all first met.

You’re dealing with a higher-order relation.
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Representing higher-order relations

Definition
A hypergraph on a set X is a set K of non-empty subsets of X .
We call the elements of K hyperedges.

A simplicial complex is a hypergraph that’s downward-closed: for
each σ P K and every σ1 Ď X such that σ1 Ď σ, we have σ1 P K .

The hyperedges of a simplicial complex are called simplices.

The dimension of a simplex σ is #σ ´ 1. If dimpσq “ n, it’s called an n-simplex.

Simplicial complexes are cheaper to store and have valuable topological structure.
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Complexes from relations

Observation (Dowker, 1952)

From any relation B Ď X ˆ Y we can construct two simplicial complexes:

KLpBq “ tpx0, . . . , xnq | there exists some y P Y with pxi , yq P R for all iu

and

KRpBq “ tpy0, . . . , ynq | there exists some x P X with px , yi q P R for all iu.

Theorem (Dowker, 1952)

The geometric realizations of KLpBq and KRpBq have the same homotopy type.



q-analysis

Observation (Atkin, 1970s)

Relations are everywhere! So simplicial complexes are, too.

Atkin developed a method called q-analysis to study the connectedness of complexes.
For a while, it became very popular with social network theorists.

From Gould & Gattrell, A Structural Analysis of a Game: The Liverpool v Manchester United Cup Final of 1977. Social Networks 2 (1979).
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Discrete homotopy theory

Observation (Barcelo et al, 2001)

Atkins’ q-connected components are the grading-0 part of a discrete homotopy
theory for complexes, which turns out to have many mathematical applications.

Topology
Homology of relations

Social Network Theory
q-analysis

Combinatorics
Discrete homotopy theory



Part III

Role analysis for higher-order relations



Our objective

The Goal A way to ‘compose’ two hypergraphs on the same set of vertices.

Desirable Properties

1. Given two simplicial complexes, their composite should be a simplicial complex.

2. (a) Composition should be associative.
(b) Or, if not, it should at least be ‘associative for a single relation’:

K ˚ pK ˚ K q “ pK ˚ K q ˚ K .

3. The assignment of the ‘object of roles’ should be functorial with respect to a
corresponding ‘positional analysis’ for higher-order relations.

4. Compound ties should be meaningful for (some) social relations!



Two perspectives

Perspective A When we compose edges in a graph, we are taking ‘steps’ in a ‘path’
through the graph.

We need a good notion of ‘path’ for hypergraphs; discrete homotopy theory offers one.

Perspective B Binary relations can be described in several equivalent categorical
ways, including as coalgebras for the covariant powerset functor—and that gives us a
nice way to understand positional analysis. We should start from there.
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Perspective A

Paths



Steps in a q-path

Definition (Atkin 1970s; Barcelo et al, 2001)

Let K be a simplicial complex. Fix q ě 0. A q-path from a simplex σ to a simplex τ is
a sequence of simplices

σ “ σ0, . . . , σk “ τ

such that σi and σi`1 share a q-face: they have at least q ` 1 vertices in common.

Example
In this complex, tau, ta, bu, tb, c , du, tc, du is a
0-path from tau to tc , du. But there’s no 1-path
between these simplices.

Rachel’s idea
The ‘steps’ in a q-path are the things we should be ‘compounding’.
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q-composition

Let K1 and K2 be simplicial complexes on the same set of vertices. Fix q ě 0.

Definition
A pair of simplices σ1 P K1 and σ2 P K2 is q-composable if they share at least one
face of dimension q. The set of q-compounds of σ1 and σ2 is

σ1 ˚q σ2 “ tpσ1 Y σ2qzτ | τ Ď σ1 X σ2 and dimpτq “ qu.

The q-composite of the complexes K1 and K2 is the set

K1 ˚q K2 “
ď

pσ1,σ2q

σ1 ˚q σ2

where the union is over q-composable pairs pσ1, σ2q P K1 ˆ K2.



q-composition in action



Properties of q-composition

Theorem
Let K and K 1 be simplicial complexes on the same set of vertices. For every q ě 0, the
q-composite K ˚q K

1 is a simplicial complex.

Theorem
For every simplicial complex K and every q ě 0 we have

pK ˚q K q ˚q K “ K ˚q pK ˚q K q.

But q-composition is not associative in general.

Property ˚q

1 3

2(a) 7

2(b) 3

3 ?
4 ?
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Perspective B

Coalgebra



From relations to coalgebras

Definition Let C be a category, and T : CÑ C a functor. A coalgebra for T is an
object X in C and a C-morphism X Ñ TX .

If T happens to be a monad, a
T -coalgebra structure on X is also an endomorphism of X in the Kleisli category CT .

Example Let P : SetÑ Set be the powerset monad. Since Set is cartesian closed,
for every set X there’s a bijection PpX ˆ X q – SetpX ,PpX qq. So binary relations on
X are the same thing as P-coalgebra structures on X and elements of SetPpX ,X q.

Well-known fact Composition in SetPpX ,X q is composition of relations.

Nima’s insight Regular equivalences are bisimulation equivalences!
So a positional reduction is a quotient in a category of coalgebras.*

* Provided we are careful about the coalgebra morphisms we use.
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Positional analysis for coalgebras

Definition
Let T be a functor CÑ C. A k-coalgebra for T is a pair V “ pV , tV

ρi
ÝÑ TV uki“1q

where V is an object of C and the ρi are C-morphisms.

A positional reduction of V consists of a k-coalgebra pW , tW
σi
ÝÑ TW uki“1q and a

split epimorphism f : V ÑW in C which is a coalgebra morphism ρi Ñ σi for every i .

Let TCoalgkSurj denote the category whose objects are k-coalgebras for T and whose
morphisms are positional reductions.
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Definition
Let T be a monad on C, and V a k-coalgebra for T. The semigroup of T-roles in V
is the subsemigroup of CTpV ,V q generated by tV

ρi
ÝÑ TV uki“1. Denote it RoleTpVq.

Theorem
The assignment of the semigroup of T-roles extends to a functor

RoleT : TCoalgkSurj Ñ SemiGroupSurj.

Taking T to be P : SetÑ Set recovers Otter & Porter’s theorem.
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Encoding complexes as coalgebras

tsimplical complexes on X u PpX ˆ PpX qq SetpX ,PPpX qq
BelongingBelonging

E

KLKL

–

Definition (The belonging relation)

Let K be a simplicial complex on X . Then px , σq P BelongingpK q if σ P K and x P σ.

Definition (The coalgebra encoding)

Given a simplicial complex K on X and a point x P X ,

E pK qpxq “ tσ P K | x P σu P PPpX q.
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Uh-oh!



We don’t need a monad

Definition
Let T : CÑ C be a functor and µ : TT Ñ T a natural transformation such that

TTTT TT

TT T

Tµ

µT

µ

µ

commutes. The Kleisli semi-category CpT ,µq of T has as objects those of X , with
morphisms X Ñ Y given by C-morphisms X Ñ TY . Composition is defined using µ.

Definition
Let pT , µq be as above, V a k-coalgebra for T . The semigroup of roles in V is the

subsemigroup of CpT ,µqpV ,V q generated by tV
ρi
ÝÑ TV uki“1. Denote it RolepT ,µqpVq.

Theorem This extends to a functor RolepT ,µq : TCoalgkSurj Ñ SemiGroupSurj.
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Multiplications on PP

In 2018 John Baez asked on the n-Category Cafe. . .

Greg Egan answered: Yes! There are at least two:

µ1 : PPPP µPP
ùùñ PPP µP

ùñ PP and µ2 : PPPP PPµ
ùùñ PPP Pµ

ùñ PP

where µ is the multiplication of the monad P.



Associative and functorial role analysis

Theorem
Any associative multiplication µ on PP : SetÑ Set gives a role analysis functor

Roleµ : PPCoalgkSurj Ñ SemiGroupSurj.

So there are at least two functorial ways to assign a
semigroup of roles to a multirelational simplicial complex.

What they look like remains to be seen!

Property ˚q ˚µ1 ˚µ2
1 3 7 7

2(a) 7 3 3

2(b) 3 3 3

3 ? 3 3

4 ? ? ?
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