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Composition in Globular Sets

Composition of 1 cells
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Weak Infinity Categories

@ In strict category theory, we add equalities between certain arrows.

@ In higher category theory we can instead require that equivalences exist between
certain arrows.
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Weak Infinity Categories

@ In strict category theory, we add equalities between certain arrows.

@ In higher category theory we can instead require that equivalences exist between
certain arrows.

Coherence

@ For a l-cell f:x — y, there are unitors A¢ : idyof — f and pf: foid,.
@ Ay, and piq, are both arrows idy oidy, — idy.

@ These should be equivalent.
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Strictification

@ Strict categories are easier to work with while there are more examples of weak
categories.
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Strictification

@ Strict categories are easier to work with while there are more examples of weak
categories.

@ All weak monoidal categories and all weak 2-categories are equivalent to a strict
version of themselves.

@ However this is no longer possible at dimensions 3 and higher.
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Semistrictness

@ Since full strictification is not possible, we want to do the best possible.
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@ Since full strictification is not possible, we want to do the best possible.
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Semistrictness

@ Since full strictification is not possible, we want to do the best possible.
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CaTT is a type theory for weak infinity categories.

3Finster and Mimram, A Type- Theoretical Definition of Weak w-Categories.
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CaTT is a type theory for weak infinity categories.

There are 4 pieces of syntax, all defined by mutual induction:

o Contexts: Generating data of an infinity category.
@ Terms: Operations in an infinity category.
@ Types: Source and Target for a term.

@ Substitutions: A mapping from variables of one context to terms of another.

3Finster and Mimram, A Type- Theoretical Definition of Weak w-Categories.
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Types in CaTT

Types in CaTT have 2 constructors.
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Types in CaTT

Types in CaTT have 2 constructors.

@ The % constructor takes no arguments.
A term of type x represents a 0-cell.

@ The arrow constructor takes 2 terms and a type as arguments.
A term of type s — t has source s, target t and lower dimensional sources and
targets given by A.

a:f =y, 8
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Contexts consist of a list of pairs of variable names and types.
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Contexts

Contexts consist of a list of pairs of variable names and types.

Disc contexts
For each natural number we can define the disc context D,,.

Do Dy Ds Ds
: — T T
~— N

Dy =x:xy:ixfix—=,y,8:x—cy,a:f—=,,8
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Composition in CaTT

Composition can be done with the coh constructor.

coh constructor

Given:
@ A context [ - the shape of the composition,
@ A type Ain I - the boundary of the composition,
@ A substitution o : [ — A - the terms to be composed,

we get a term in A:

coh (' : A)[o]

The contexts for which the coh constructor is well typed are called pasting contexts
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Example composition

Suppose we have:
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Example composition

Suppose we have:

f g h
e—>e0e—e0— e

letFT=o 2020 lNisa pasting context. Then:

f-g:=coh(l:x—z)[larf,
b g]
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Example composition

Suppose we have:
f g h
e — 06— 00— 0

letFT=o 2020 lNisa pasting context. Then:

f-g:=coh(l:x—z)[larf,
b g]

(f-g)-h:=coh(l:x—z)[ar—T-g,
b h]
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Type theories for semistrict languages

@ CaTT as we have presented it has no non-trivial equality and no computation.

@ The idea is to implement a reduction relation that unifies the operations we want
to strictify.

@ By doing this we obtain a type theory for which the models are semistrict
categories.
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Insertion

CaTTs, has a definitional equality based on an operation we call insertion.

1-associator

g {7 g’
X ——>y —>2z X' ——y —= 7

is sent to:

A
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Components of insertion
h/

h
/Bh P //5/\ ,
A= x g~y ——> 2z O = x g—y
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o
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Components of insertion
h/

h
/Bh P //5/\ ,
A= x g~y ——> 2z O = x g—y
\O((T_/( \O/T_T/
f f'/
h
B

h,
A <a O = X/ﬂ j{y’#z
«

f!

1:0 - A<a©

kA= A<a®

Given o : A —T and 7: © — I we get:
cKaT: Ao ® =T
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Universal Property of Insertion

Insertion also satisfies a universal property. Suppose we have coh (A : A)[o] where
o(a) = coh (© : B)[1].
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Properties of Insertion

Insertion generates a reduction relation for Cattg,:
coh (A : A)[o] ~» coh (A <a © : A[k])[o <a 7]

where o(«) = coh (A : B)[r].
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Properties of Insertion

Insertion generates a reduction relation for Cattg,:
coh (A : A)[o] ~» coh (A <a © : A[k])[o <a 7]
where o(«) = coh (A : B)[r].

This reduction has been proven to have the following properties:
@ Subject reduction
@ Termination

@ Confluence
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