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Globular Sets

Globular sets are one natural shape of higher categories.

They contain:

A set of objects or 0-cells G .

For each pair of objects x , y ∈ G , a set of arrows or 1-cells with source x and
target y .

For each pair of parallel arrows f , g , a set of 2-arrows (or 2-cells) from f to g .
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Composition in Globular Sets

Composition of 1 cells

• • •f g

Composition of 2 cells

Composition along a 1-boundary: • •
α

β

Composition along a 0-boundary: • • •α β
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Weak Infinity Categories

In strict category theory, we add equalities between certain arrows.

In higher category theory we can instead require that equivalences exist between
certain arrows.

Coherence

For a 1-cell f : x → y , there are unitors λf : idx ◦f → f and ρf : f ◦ idy .
λidx and ρidx are both arrows idx ◦ idx → idx .

These should be equivalent.
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Strictification

Strict categories are easier to work with while there are more examples of weak
categories.

All weak monoidal categories and all weak 2-categories are equivalent to a strict
version of themselves.

However this is no longer possible at dimensions 3 and higher.
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Semistrictness

Since full strictification is not possible, we want to do the best possible.

Therefore, we look for semistrict definitions of infinity categories.

We can strictify:
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1 CaTTsa

2

Associators
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Unitors

✓ ✓ ✓

Interchangers

✓ ✓
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CaTT

CaTT is a type theory for weak infinity categories3.

There are 4 pieces of syntax, all defined by mutual induction:

Contexts: Generating data of an infinity category.

Terms: Operations in an infinity category.

Types: Source and Target for a term.

Substitutions: A mapping from variables of one context to terms of another.

3Finster and Mimram, A Type-Theoretical Definition of Weak ω-Categories.
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Types in CaTT

Types in CaTT have 2 constructors.

The ⋆ constructor takes no arguments.
A term of type ⋆ represents a 0-cell.

The arrow constructor takes 2 terms and a type as arguments.
A term of type s →A t has source s, target t and lower dimensional sources and
targets given by A.
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α : f →x→⋆y g
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Contexts

Contexts consist of a list of pairs of variable names and types.

Disc contexts

For each natural number we can define the disc context Dn.

D0 D1 D2 D3

• • • • • • •

D2 := x : ⋆, y : ⋆, f : x →⋆ y , g : x →⋆ y , α : f →x→⋆y g
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Composition in CaTT

Composition can be done with the coh constructor.

coh constructor

Given:

A context Γ - the shape of the composition,

A type A in Γ - the boundary of the composition,

A substitution σ : Γ → ∆ - the terms to be composed,

we get a term in ∆:
coh (Γ : A)[σ]

The contexts for which the coh constructor is well typed are called pasting contexts
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Example composition

Suppose we have:

• f→ • g→ • h→ •

Let Γ = • a→ • b→ •. Γ is a pasting context. Then:

f · g := coh (Γ : x → z)[a 7→ f ,

b 7→ g ]

(f · g) · h := coh (Γ : x → z)[a 7→ f · g ,
b 7→ h]

11 / 16



Example composition

Suppose we have:

• f→ • g→ • h→ •

Let Γ = • a→ • b→ •. Γ is a pasting context. Then:

f · g := coh (Γ : x → z)[a 7→ f ,

b 7→ g ]

(f · g) · h := coh (Γ : x → z)[a 7→ f · g ,
b 7→ h]

11 / 16



Example composition

Suppose we have:

• f→ • g→ • h→ •

Let Γ = • a→ • b→ •. Γ is a pasting context. Then:

f · g := coh (Γ : x → z)[a 7→ f ,

b 7→ g ]

(f · g) · h := coh (Γ : x → z)[a 7→ f · g ,
b 7→ h]

11 / 16



Type theories for semistrict languages

CaTT as we have presented it has no non-trivial equality and no computation.

The idea is to implement a reduction relation that unifies the operations we want
to strictify.

By doing this we obtain a type theory for which the models are semistrict
categories.
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Insertion

CaTTsa has a definitional equality based on an operation we call insertion.

1-associator

x y z x ′ y ′ z ′f g f ′ g ′

is sent to:

x x ′ y ′ z ′f ′ g ′
f
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Components of insertion

∆ = x y zkg

f

h

β

α
Θ = x ′ y ′g ′

f ′

h′

β′

α′

∆ ≪α Θ = x ′ y ′ zkh′

f ′

h

g ′

β

α′

β′

ι : Θ → ∆ ≪α Θ

κ : ∆ → ∆ ≪α Θ

Given σ : ∆ → Γ and τ : Θ → Γ we get:

σ ≪α τ : ∆ ≪α Θ → Γ

14 / 16
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Universal Property of Insertion

Insertion also satisfies a universal property. Suppose we have coh (∆ : A)[σ] where
σ(α) = coh (Θ : B)[τ ].

∆

Θ

Γ

σ

τ
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Properties of Insertion

Insertion generates a reduction relation for Cattsa:

coh (∆ : A)[σ]⇝ coh (∆ ≪α Θ : AJκK)[σ ≪α τ ]

where σ(α) = coh (∆ : B)[τ ].

This reduction has been proven to have the following properties:

Subject reduction

Termination

Confluence
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