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Preliminaries: Open Deduction and Atomic Flows
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Preliminaries: Open Deduction and Atomic Flows
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Anupam Das, RTA 2013

Alessio Guglielmi and Tom Gundersen, LMCS 2008 7173
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Preliminaries: Combinatorial Proofs
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From Open Deduction to Preflows
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From Open Deduction to Preflows
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From Open Deduction to Preflows

W)

<

I\

I\
(>
|

<

e C av
™ Gva) (/ /)
t _ ana ava)A(av
- ail|A(ava) ait
a/e SA —aw| _/ \ \ \_ f
an(ava) a - a an(ava)
S
av|, e N
f Vo a ~ana
T — Y
avi——ai a a f a
a v (ana)
/ /
a f

B-nets: Frangois Lamarche and Lutz StraBburger, TLCA 2005

(ava)nana
-/

anf

Corresponds to B-nets

12/73



From Open Deduction to Combinatorial Flows
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From Open Deduction to Combinatorial Flows
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Formulas:

A.B:=t|flalalAVB|AAB
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Formulas:

A.B:=t|flalalAVB|AAB
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Formulas:

A.B:=t|flalalAVB|AAB

AAB=BAA (AAB)AC=AA(BAC) Ant=A tvi=t
AvB=BVA (AvB)vC=Av(BvC) Avi=A fAaf=f

Unit-free Formulas:
A,B:= alalAVvB|AAB

Pure Formulas: A=t or A=f or Aisequivalentto a unit-free formula.
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Graph of a formula
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Graph of a formula

* g(t) = g(f): empty graph
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* G(a): *a
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Graph of a formula

* G(t) = G(f): empty graph
* G(a): *a
* G(a): °3
* G(AVB):
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Graph of a formula
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Graph of a formula
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Graph of a formula

A graph G is graph of a formula A if and only if G is a cograph.
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Multiplicative Flows

Atriple ¢ = (A, B,By) is an m-flow if A and B are pure formulas, B is a perfect matching
on the atom occurences of A v B

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)
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correctness criterion:
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Multiplicative Flows

Atriple ¢ = (A, B,By) is an m-flow if A and B are pure formulas, B, is a perfect matching
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Multiplicative Flows

Atriple ¢ = (A, B,By) is an m-flow if A and B are pure formulas, B, is a perfect matching
on the atom occurences of A v B such that the underlying RB-cograph G(¢) is ae-acyclic.

correctness criterion:
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Multiplicative Flows

Atriple ¢ = (A, B,By) is an m-flow if A and B are pure formulas, B, is a perfect matching
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Multiplicative Flows

A
Let o || ail.ait,s.mix) be a derivation. If A and B are pure, then the translation of D is an m-flow.
B

A
Let ¢ = (A, B,B,) be an m-flow. Then there is a derivation o || (aiL.air.smix} Whose translation is ¢.
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Additive Flows

® Atriple ¢ = (A, B, fdf) is an a'-flow if A and B are pure, and A # t, and fof is a skew
fibration fdf: G(A) - G(B).
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A skew fibration is a graph homomorphism f: G — H such that
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Additive Flows

® Atriple ¢ = (A, B, fi) is an a'-flow if A and B are pure, and A # t, and f(i is a skew
fibration fdf: G(A) - G(B).

A skew fibration is a graph homomorphism f: G — H such that for every v € Vg and
w € Vy, with f(v)w € &y, there exists z € G with the edge vz € Eg such that the edge
f(z)w does not exist in H.

v 2
f(Vv)\ (2)
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Additive Flows

® Atriple ¢ = (A, B, fi) is an a'-flow if A and B are pure, and A # t, and f(i is a skew
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Additive Flows

® Atriple ¢ = (A, B, fdf) is an a'-flow if A and B are pure, and A # t, and fof is a skew
fibration fdf: G(A) - G(B).
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A
bvecv((bvb)Aa) (bAac)V((bVvb)Aa)
al-flow not a skew fibration

A skew fibration is a graph homomorphism f: G — H such that for every v € Vg and
w € Vy, with f(v)w € &y, there exists z € G with the edge vz € Eg such that the edge
f(z)w does not exist in H.
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Additive Flows

® Atriple ¢ = (A, B, fdf) is an a'-flow if A and B are pure, and A # t, and fof is a skew
fibration fdf: G(A) - G(B).

e Atriple ¢ = (C,D,f])is an a'-flow if C and D are pure, and D # f, and f} is a skew
fibration 7} : G(D) — G(C).

(;f/\(bvc))v(tz/\f) bvbv(baa)v(bna) bvbv(bra)v(bna)

(évb)/\(évb)/\(évo) ti)VCV((BVB)A;) (%/\C)V((EVE)/\;)
a'-flow al-flow not a skew fibration
A skew fibration is a graph homomorphism f: G — H such that for every v € Vg and

w € Vy, with f(v)w € &y, there exists z € G with the edge vz € Eg such that the edge

f(z)w does not exist in H. v >
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Additive Flows

Theorem

|

Let o||{awl.acl.m} be a derivation. If A and B are pure, then translation of D is an al-flow. Dually, if
B A
A and B are pure in 9| (awt.act,m} then translation of D is an a'-flow.
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s}
>

Letgp = (A, B, fdf) be an al-flow. Then there is a derivation || (awi.acL.m} whose translation is ¢. For
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Purification

Pure Formulas: A=t or A=f or
Slice of a Combinatorial flow:
ava —~ana
: —/
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A is equivalent to a unit-free formula.
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Purification

Pure Formulas: A=t or A=f or Aisequivalentto a unit-free formula.

Slice of a Combinatorial flow:
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Purification
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Purification

Pure Formulas: A=t or A=f or
Slice of a Combinatorial flow:
ava ana
; —
avE-
\ \ R
(avé)/\;

A is equivalent to a unit-free formula.

avf

53/73



purification

Purification of a formula:
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Purification of combinatorial flows:
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purification

Purification of a formula:
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purification

Purification of a formula:
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Purification of combinatorial flows:
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Purification Example
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Purification Example
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Normalization (Work in Progress)
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Normalization Example
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Normalization Example
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Normalization Example
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Normalization (Work in Progress)
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Normalization (Work in Progress)

= D e r
= D Ee i
HE D.D r [
i | | A AR
~op ASA AL A ot A D o AA-AA
r.BAC A : /// i
r:B,;c.A AN AA

NOT confluent

68/73



Normalization (Work in Progress)
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What to remember from this talk?
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Future Work

* Normalization Termination
® Proof identity
e Other Logics (Forexample: Modal Logic and Intuitionistic Logic)
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Normalization is not Confluent and not Terminating
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Normalization is not Confluent and not Terminating
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Normalization is not Confluent and not Terminating
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Yanking example5
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Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent I' is a combinatorial proof for the sequent
ILCi A C1, ...,Ch A Cn where Cq,... C, are cut formulas. (Everything is unit-free)
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Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent I' is a combinatorial proof for the sequent
ILCi A C1, ...,Ch A Cn where Cq,... C, are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of A, B to a combinatorial flow from A to B:
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Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent I' is a combinatorial proof for the sequent
ILCi A C1, ...,Ch A Cn where Cq,... C, are cut formulas. (Everything is unit-free)

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for A, B:
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with cuts for A, B:
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A combinatorial proof with cuts for the sequent I' is a combinatorial proof for the sequent
ILCi A C1, ...,Ch A Cn where Cq,... C, are cut formulas. (Everything is unit-free)

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
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Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent I' is a combinatorial proof for the sequent
ILCi A C1, ...,Ch A Cn where Cq,... C, are cut formulas. (Everything is unit-free)

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for A, B:
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