
The Composition of Combinatorial Flows

Giti Omidvar and Lutz Straßburger
Inria Saclay

Ecole Polytechnique

SYCO 10, Edinburgh, 20 December 2022

1 / 73

Preliminaries: Open Deduction

and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008
Anupam Das, RTA 2013

2 / 73

Preliminaries: Open Deduction

and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008
Anupam Das, RTA 2013

3 / 73

Preliminaries: Open Deduction

and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008
Anupam Das, RTA 2013

4 / 73

Preliminaries: Open Deduction and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008

Anupam Das, RTA 2013

5 / 73

Preliminaries: Open Deduction and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008

Anupam Das, RTA 2013

6 / 73

Preliminaries: Open Deduction and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008
Anupam Das, RTA 2013

7 / 73

Preliminaries: Open Deduction and Atomic Flows

a ∧
ā

ac↑
ā ∧ ā

≡

a ∧ ā
≡

a ∧ [

f
mix

t
ai↓

a ∨ ā

∨ ā]

s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

≡

a ∧
a ∧ ā

ai↑
f

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

a ∨ a
ac↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
ac↑

a ∧ a

f
aw↓

a

f
mix

t

a
aw↑

t

1. We cannot read back a proof from atomic flows

2. yanking is not possible ,

Alessio Guglielmi and Tom Gundersen, LMCS 2008
Anupam Das, RTA 2013

8 / 73

Preliminaries: Combinatorial Proofs

t
ai↓

ā ∧

a
ai↓

(ā ∨ a) ∧ a
s

ā ∨ (a ∧ a)
s

ā ∧ ā
ai↓

ā ∧ (c ∨ c̄) ∧ ā
s

ā ∧ (c ∨ (c̄ ∧ ā))
s

(ā ∧ c) ∨ (c̄ ∧ ā)

∨

a ∧ a
ac↑

a
ai↓

b̄ ∨ b
ai↓

(b̄ ∧ (b̄ ∨ b)) ∨ b
s

(b̄ ∧ b̄) ∨ b̄ ∨ b

∧ a

s
b̄ ∧ b̄

ac↑
b̄

∨
(b ∨ b) ∧ a

aw↓
c ∨ ((b ∨ b) ∧ a)

• • • • • • • • • •

ā ∧ c, (c̄ ∧ ā) ∨ b̄ ∨ c, (b ∨ b) ∧ a

• Total seperation of linear part and resource management of the proof→ size explosion

Dominic Hughes, Annals of Mathematics 2006

9 / 73

From Open Deduction to Preflows

Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ ā
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

→

∧

∨

∨

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

→

(a ∨ a) ∧ a ∧ ā

a ∧ f

Corresponds to B-nets

→

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

B-nets: François Lamarche and Lutz Straßburger, TLCA 2005

10 / 73

From Open Deduction to Preflows

Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ ā
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

→
∧

∨

∨

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

→

(a ∨ a) ∧ a ∧ ā

a ∧ f

Corresponds to B-nets

→

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

B-nets: François Lamarche and Lutz Straßburger, TLCA 2005

11 / 73

From Open Deduction to Preflows

Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ ā
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

→
∧

∨

∨

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

→

(a ∨ a) ∧ a ∧ ā

a ∧ f

Corresponds to B-nets

→

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

B-nets: François Lamarche and Lutz Straßburger, TLCA 2005
12 / 73

From Open Deduction to

Preflows

Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ ā
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

→
∧

∨

∨

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

→

(a ∨ a) ∧ a ∧ ā

a ∧ f

Corresponds to B-nets

→

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

B-nets: François Lamarche and Lutz Straßburger, TLCA 2005

13 / 73

From Open Deduction to

Preflows

Combinatorial Flows

a ∨ a
ac↓

a
aw↓

t
ai↓

ā ∨ a
∧ (a ∨ ā)

s

ā ∨

a ∧ (a ∨ ā)
s

a ∨
a ∧ ā

ai↑
f

∧

a ∧ ā
ai↑

f
aw↓

a

s

a ∨
ā ∧ a

ai↑
f

→
∧

∨

∨

a ∨ a

a

a ∨ āt

(ā ∨ a) ∧ (a ∨ ā)

ā

ā

a ∧ (a ∨ ā)

a ∧ ā

f

a

a

f

a

a ∧ ā

a ∨ (ā ∧ a)

a f

→

(a ∨ a) ∧ a ∧ ā

a ∧ f

Corresponds to B-nets

→

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

B-nets: François Lamarche and Lutz Straßburger, TLCA 2005

14 / 73

Formulas:

A ,B := t | f | a | a | A ∨ B | A ∧ B

A ∧ B ≡ B ∧ A (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) A ∧ t ≡ A t ∨ t ≡ t
A ∨ B ≡ B ∨ A (A ∨ B) ∨ C ≡ A ∨ (B ∨ C) A ∨ f ≡ A f ∧ f ≡ f

Unit-free Formulas:
A ,B := a | a | A ∨ B | A ∧ B

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

15 / 73

Formulas:

A ,B := t | f | a | a | A ∨ B | A ∧ B

A ∧ B ≡ B ∧ A (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) A ∧ t ≡ A t ∨ t ≡ t
A ∨ B ≡ B ∨ A (A ∨ B) ∨ C ≡ A ∨ (B ∨ C) A ∨ f ≡ A f ∧ f ≡ f

Unit-free Formulas:
A ,B := a | a | A ∨ B | A ∧ B

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

16 / 73

Formulas:

A ,B := t | f | a | a | A ∨ B | A ∧ B

A ∧ B ≡ B ∧ A (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) A ∧ t ≡ A t ∨ t ≡ t
A ∨ B ≡ B ∨ A (A ∨ B) ∨ C ≡ A ∨ (B ∨ C) A ∨ f ≡ A f ∧ f ≡ f

Unit-free Formulas:
A ,B := a | a | A ∨ B | A ∧ B

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

17 / 73

Formulas:

A ,B := t | f | a | a | A ∨ B | A ∧ B

A ∧ B ≡ B ∧ A (A ∧ B) ∧ C ≡ A ∧ (B ∧ C) A ∧ t ≡ A t ∨ t ≡ t
A ∨ B ≡ B ∨ A (A ∨ B) ∨ C ≡ A ∨ (B ∨ C) A ∨ f ≡ A f ∧ f ≡ f

Unit-free Formulas:
A ,B := a | a | A ∨ B | A ∧ B

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

18 / 73

Graph of a formula

• G(t) = G(f): empty graph
• G(a): •a

• G(ā): •ā
• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

19 / 73

Graph of a formula

• G(t) = G(f): empty graph

• G(a): •a

• G(ā): •ā
• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

20 / 73

Graph of a formula

• G(t) = G(f): empty graph
• G(a): •a

• G(ā): •ā
• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

21 / 73

Graph of a formula

• G(t) = G(f): empty graph
• G(a): •a

• G(ā): •ā

• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

22 / 73

Graph of a formula

• G(t) = G(f): empty graph
• G(a): •a

• G(ā): •ā
• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

23 / 73

Graph of a formula

• G(t) = G(f): empty graph
• G(a): •a

• G(ā): •ā
• G(A ∨ B):

G(A) G(B)

• G(A ∧ B):

G(A) G(B)

•

•

•

•

24 / 73

Graph of a formula

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

A cograph is a graph without P4 :

a ā
d̄ a

d ā
c̄ c

u v

z w

Theorem
A graph G is graph of a formula A if and only if G is a cograph.

25 / 73

Graph of a formula

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā)) A cograph is a graph without P4 :

a ā
d̄ a

d ā
c̄ c

u v

z w

Theorem
A graph G is graph of a formula A if and only if G is a cograph.

26 / 73

Graph of a formula

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā)) A cograph is a graph without P4 :

a ā
d̄ a

d ā
c̄ c

u v

z w

Theorem
A graph G is graph of a formula A if and only if G is a cograph.

27 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B

such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

28 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

29 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK

OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

30 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK

OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

31 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK

NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

32 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK

NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

33 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

34 / 73

Multiplicative Flows

A triple ϕ = ⟨A ,B ,Bϕ⟩ is an m-flow if A and B are pure formulas, Bϕ is a perfect matching
on the atom occurences of Ā ∨ B such that the underlying RB-cograph G(ϕ) is æ-acyclic.

t

((d ∨ d̄) ∧ (c̄ ∧ a)) ∨ ((c ∨ ā) ∨ (a ∧ ā))

(d̄ ∧ d) ∨ (c ∨ ā)

(c ∨ ā) ∨ (a ∧ ā)

a ā
d̄ a

d ā
c̄ c

correctness criterion:

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

a ā
d̄ a

d ā
c̄ c

OK OK NOT OK

Christian Retore, Theoretical Computer Science 2003 (Handsome Proof Nets)

35 / 73

Multiplicative Flows

Theorem

Let
A
D {ai↓,ai↑,s,mix}

B
be a derivation. If A and B are pure, then the translation of D is an m-flow.

Theorem

Let ϕ = ⟨A ,B ,Bϕ⟩ be an m-flow. Then there is a derivation
A
D {ai↓,ai↑,s,mix}

B
whose translation is ϕ.

t
ai↓

a ∨ a

(A ∨ B) ∧ C
s

A ∨ (B ∧ C)

a ∧ a
ai↑

f

f
mix

t

36 / 73

[(a ∧ ā) ∨

a ∧ a
ai↑

f
mix

t

] ∧ a

≡

[
a ∧ ā

ai↑
f

∨
t

ai↓
a ∨ a

] ∧ a

s

a ∨
a ∧ ā

ai↑
f

(a ∧ ā) ∨ (a ∧ ā) ∧ a

a ∨ f

→

←

aa ∧ ā

f

a ∧ ā

a

a

t

a ∨ ā

a ∧ ā

f

a ∨ (ā ∧ a)

a f

y
aa ∧ āa ∧ ā

((a ∧ ā) ∨ t) ∧ a

a ∨ f
37 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

38 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that

for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

39 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH,

there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H .

v

z

f(v)

f(z)

w
40 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG

such that the edge
f(z)w does not exist in H .

v z

f(v)

f(z)

w
41 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

42 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

43 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).

• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

44 / 73

Additive Flows

• A triple ϕ = ⟨A ,B , f↓ϕ ⟩ is an a↓-flow if A and B are pure, and A , t, and f↓ϕ is a skew

fibration f↓ϕ : G(A)→ G(B).
• A triple ϕ = ⟨C ,D, f↑ϕ ⟩ is an a↑-flow if C and D are pure, and D , f, and f↑ϕ is a skew

fibration f↑ϕ : G(D)→ G(C).

(a ∧ (b ∨ c)) ∨ (b ∧ c)

(a ∨ b) ∧ (a ∨ b) ∧ (a ∨ c)

a↑-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

b̄ ∨ c ∨ ((b ∨ b) ∧ a)

a↓-flow

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)

(b̄ ∧ c) ∨ ((b ∨ b) ∧ a)

not a skew fibration

A skew fibration is a graph homomorphism f : G → H such that for every v ∈ VG and
w ∈ VH, with f(v)w ∈ EH, there exists z ∈ G with the edge vz ∈ EG such that the edge
f(z)w does not exist in H . v z

f(v) f(z)
w

45 / 73

Additive Flows

Theorem

Let
A
D {aw↓,ac↓,m}

B
be a derivation. If A and B are pure, then translation of D is an a↓-flow. Dually, if

A and B are pure in
A
D {aw↑,ac↑,m}

B
then translation of D is an a↑-flow.

Theorem

Let ϕ = ⟨A ,B , f↓ϕ ⟩ be an a↓-flow. Then there is a derivation
A
D {aw↓,ac↓,m}

B
whose translation is ϕ. For

every a↑-flow ψ we have
A
D {aw↑,ac↑,m}

B
whose translation is ψ.

a ∨ a
ac↓

a

f
aw↓

a

(A ∧ C) ∨ (B ∧ D)
m

(A ∨ B) ∧ (C ∨ D)

a
aw↑

t

a
ac↑

a ∧ a

46 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā) pure(a ∨ a) ∧ f not pure(a ∨ ā) ∧ (a ∧ ā) pure(a ∨ ā) ∧ f not pure(a ∨ ā) ∧ a purea ∨ f pure

47 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ aa ∨ a a ∧ āa ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā) pure

(a ∨ a) ∧ f not pure(a ∨ ā) ∧ (a ∧ ā) pure(a ∨ ā) ∧ f not pure(a ∨ ā) ∧ a purea ∨ f pure

48 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ aa ∨ a a ∧ ā

a ∨ ā
ff

(a ∨ ā) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā) pure

(a ∨ a) ∧ f not pure

(a ∨ ā) ∧ (a ∧ ā) pure(a ∨ ā) ∧ f not pure(a ∨ ā) ∧ a purea ∨ f pure

49 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ a a ∧ āa ∧ ā

a ∨ āa ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā) pure(a ∨ a) ∧ f not pure

(a ∨ ā) ∧ (a ∧ ā) pure

(a ∨ ā) ∧ f not pure(a ∨ ā) ∧ a purea ∨ f pure

50 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ a a ∧ ā

a ∨ āa ∨ ā
ff

(a ∨ ā) ∧ a

a ∨ f

(a ∨ a) ∧ (a ∧ ā) pure(a ∨ a) ∧ f not pure(a ∨ ā) ∧ (a ∧ ā) pure

(a ∨ ā) ∧ f not pure

(a ∨ ā) ∧ a purea ∨ f pure

51 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

(a ∨ ā) ∧ a

(a ∨ a) ∧ (a ∧ ā) pure(a ∨ a) ∧ f not pure(a ∨ ā) ∧ (a ∧ ā) pure(a ∨ ā) ∧ f not pure

(a ∨ ā) ∧ a pure

a ∨ f pure

52 / 73

Purification

Pure Formulas: A ≡ t or A ≡ f or A is equivalent to a unit-free formula.

Slice of a Combinatorial flow:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ fa ∨ f

(a ∨ a) ∧ (a ∧ ā) pure(a ∨ a) ∧ f not pure(a ∨ ā) ∧ (a ∧ ā) pure(a ∨ ā) ∧ f not pure(a ∨ ā) ∧ a pure

a ∨ f pure

53 / 73

purification

Purification of a formula:

A ∧ t⇝ A t ∧ A ⇝ A A ∨ t⇝ t t ∨ A ⇝ t
A ∨ f⇝ A f ∨ A ⇝ A A ∧ f⇝ f f ∧ A ⇝ f

Purification of combinatorial flows:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

⇝∗

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(a ∨ ā) ∧ a

a ∨ f

f

C

φ ∧

B

D

ψ ⇝

f

C ∧ D

A

C

φ ∧

B

f

ψ ⇝

A ∧ B

B

f

ψ

54 / 73

purification

Purification of a formula:

A ∧ t⇝ A t ∧ A ⇝ A A ∨ t⇝ t t ∨ A ⇝ t
A ∨ f⇝ A f ∨ A ⇝ A A ∧ f⇝ f f ∧ A ⇝ f

Purification of combinatorial flows:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

⇝∗

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(a ∨ ā) ∧ a

a ∨ f

f

C

φ ∧

B

D

ψ ⇝

f

C ∧ D

A

C

φ ∧

B

f

ψ ⇝

A ∧ B

B

f

ψ

55 / 73

purification

Purification of a formula:

A ∧ t⇝ A t ∧ A ⇝ A A ∨ t⇝ t t ∨ A ⇝ t
A ∨ f⇝ A f ∨ A ⇝ A A ∧ f⇝ f f ∧ A ⇝ f

Purification of combinatorial flows:

∧

a ∨ a a ∧ ā

a ∨ ā
f

(a ∨ ā) ∧ a

a ∨ f

⇝∗

(a ∨ a) ∧ (a ∧ ā)

a ∧ ā

f

(a ∨ ā) ∧ a

a ∨ f

f

C

φ ∧

B

D

ψ ⇝

f

C ∧ D

A

C

φ ∧

B

f

ψ ⇝

A ∧ B

B

f

ψ

56 / 73

Purification Example

∧

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

t

a ∨ ā

f

ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

f

(a ∨ ā) ∧ ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

f

(a ∨ (ā ∧ ā)) ∧ (a ∧ a)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

a

57 / 73

Purification Example

∧

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

t

a ∨ ā

f

ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

f

(a ∨ ā) ∧ ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

f

(a ∨ (ā ∧ ā)) ∧ (a ∧ a)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

a

58 / 73

Purification Example

∧

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

t

a ∨ ā

f

ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

f

(a ∨ ā) ∧ ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

f

(a ∨ (ā ∧ ā)) ∧ (a ∧ a)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

a

59 / 73

Purification Example

∧

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

t

a ∨ ā

f

ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

∧

a ∧ ā

a ∧ ā a ∧ ā

f

f

f

(a ∨ ā) ∧ ā

a ∧ aa ∨ (ā ∧ ā)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

f

(a ∨ (ā ∧ ā)) ∧ (a ∧ a)

a

⇝

a ∧ ā

(a ∧ ā) ∨ (a ∧ ā)

f

a

60 / 73

Normalization (Work in Progress)

Ξ ΘD

A

Γ , B ∧ C , ∆

Σ

⇝∧

Ξ ΘD

D D

A A∧

Γ , B , C , ∆

Σ

Γ

∆ , A

A ∧ · · · ∧ AΘ

⇝c↑

Γ

Γ, . . . , Γ

∆, . . . ,∆ , A ∧ · · · ∧ A

∆

Θ A ∧ · · · ∧ A

Ξ Θ

∆ , Π

Γ , A∧B , Σ

C

⇝w↑

∆ , Π

∆

Γ , A

Γ , C , Σ

Ξ ΘC

Ξ ΘD

A

Σ

Γ , B∨C , ∆

⇝∨

Ξ ΘD

D D

A A∨

Σ

Γ , B , C , ∆

∆ , A

Γ

A ∨ · · · ∨ AΘ

⇝c↓

Γ

∆, . . . ,∆ , A ∨ · · · ∨ A

Γ, . . . , Γ

∆

Θ A ∨ · · · ∨ A

Ξ Θ

Γ , A∨B , Σ

∆ , Π

C

⇝w↓

∆ , Π

Γ , A

∆

Γ , C , Σ

Ξ ΘC

61 / 73

Normalization Example

b ∧ c

(b ∧ ā) ∨ (a ∧ c)

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

⇝∨ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

c

c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

b

b

c

c

b ∨ c

⇝w↑

b ∧ c

b ∨ c

62 / 73

Normalization Example

b ∧ c

(b ∧ ā) ∨ (a ∧ c)

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

⇝∨ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

c

c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

b

b

c

c

b ∨ c

⇝w↑

b ∧ c

b ∨ c

63 / 73

Normalization Example

b ∧ c

(b ∧ ā) ∨ (a ∧ c)

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

⇝∨ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

c

c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

b

b

c

c

b ∨ c

⇝w↑

b ∧ c

b ∨ c

64 / 73

Normalization Example

b ∧ c

(b ∧ ā) ∨ (a ∧ c)

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

⇝∨ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

c

c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

b

b

c

c

b ∨ c

⇝w↑

b ∧ c

b ∨ c

65 / 73

Normalization Example

b ∧ c

(b ∧ ā) ∨ (a ∧ c)

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

⇝∨ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

(b ∨ a) ∧ (ā ∨ c)

b ∨ c

c

c

b ∨ c

⇝w↓ ∨

b ∧ c

a ∧ cb ∧ ā

b

b

c

c

b ∨ c

⇝w↑

b ∧ c

b ∨ c

66 / 73

Normalization (Work in Progress)

Ξ ΘD

A

Γ , B ∧ C , ∆

Σ

⇝∧

Ξ ΘD

D D

A A∧

Γ , B , C , ∆

Σ

Γ

∆ , A

A ∧ · · · ∧ AΘ

⇝c↑

Γ

Γ, . . . , Γ

∆, . . . ,∆ , A ∧ · · · ∧ A

∆

Θ A ∧ · · · ∧ A

Ξ Θ

∆ , Π

Γ , A∧B , Σ

C

⇝w↑

∆ , Π

∆

Γ , A

Γ , C , Σ

Ξ ΘC

Ξ ΘD

A

Σ

Γ , B∨C , ∆

⇝∨

Ξ ΘD

D D

A A∨

Σ

Γ , B , C , ∆

∆ , A

Γ

A ∨ · · · ∨ AΘ

⇝c↓

Γ

∆, . . . ,∆ , A ∨ · · · ∨ A

Γ, . . . , Γ

∆

Θ A ∨ · · · ∨ A

Ξ Θ

Γ , A∨B , Σ

∆ , Π

C

⇝w↓

∆ , Π

Γ , A

∆

Γ , C , Σ

Ξ ΘC

NOT confluent and NOT terminating

67 / 73

Normalization (Work in Progress)

Ξ ΘD

A

Γ , B ∧ C , ∆

Σ

⇝∧

Ξ ΘD

D D

A A∧

Γ , B , C , ∆

Σ

Γ

∆ , A

A ∧ · · · ∧ AΘ

⇝c↑

Γ

Γ, . . . , Γ

∆, . . . ,∆ , A ∧ · · · ∧ A

∆

Θ A ∧ · · · ∧ A

Ξ Θ

∆ , Π

Γ , A∧B , Σ

C

⇝w↑

∆ , Π

∆

Γ , A

Γ , C , Σ

Ξ ΘC

Ξ ΘD

A

Σ

Γ , B∨C , ∆

⇝∨

Ξ ΘD

D D

A A∨

Σ

Γ , B , C , ∆

∆ , A

Γ

A ∨ · · · ∨ AΘ

⇝c↓

Γ

∆, . . . ,∆ , A ∨ · · · ∨ A

Γ, . . . , Γ

∆

Θ A ∨ · · · ∨ A

Ξ Θ

Γ , A∨B , Σ

∆ , Π

C

⇝w↓

∆ , Π

Γ , A

∆

Γ , C , Σ

Ξ ΘC

NOT confluent

and NOT terminating

68 / 73

Normalization (Work in Progress)

Ξ ΘD

A

Γ , B ∧ C , ∆

Σ

⇝∧

Ξ ΘD

D D

A A∧

Γ , B , C , ∆

Σ

Γ

∆ , A

A ∧ · · · ∧ AΘ

⇝c↑

Γ

Γ, . . . , Γ

∆, . . . ,∆ , A ∧ · · · ∧ A

∆

Θ A ∧ · · · ∧ A

Ξ Θ

∆ , Π

Γ , A∧B , Σ

C

⇝w↑

∆ , Π

∆

Γ , A

Γ , C , Σ

Ξ ΘC

Ξ ΘD

A

Σ

Γ , B∨C , ∆

⇝∨

Ξ ΘD

D D

A A∨

Σ

Γ , B , C , ∆

∆ , A

Γ

A ∨ · · · ∨ AΘ

⇝c↓

Γ

∆, . . . ,∆ , A ∨ · · · ∨ A

Γ, . . . , Γ

∆

Θ A ∨ · · · ∨ A

Ξ Θ

Γ , A∨B , Σ

∆ , Π

C

⇝w↓

∆ , Π

Γ , A

∆

Γ , C , Σ

Ξ ΘC

NOT confluent and NOT terminating

69 / 73

What to remember from this talk?

, vs. =

70 / 73

What to remember from this talk?

, vs. =

71 / 73

Future Work

• Normalization Termination
• Proof identity
• Other Logics (Forexample: Modal Logic and Intuitionistic Logic)

72 / 73

What to remember from this talk?

, vs. =

73 / 73

Normalization is not Confluent and not Terminating

t

a ∨ ā ∨ a ∨ ā

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

f

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

⇝

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)(a ∨ ā) ∧ (a ∨ ā)

a ∨ āa ∨ ā

a ∨ ā

74 / 73

Normalization is not Confluent and not Terminating

t

a ∨ ā ∨ a ∨ ā

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

f

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

⇝

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)(a ∨ ā) ∧ (a ∨ ā)

a ∨ āa ∨ ā

a ∨ ā

75 / 73

Normalization is not Confluent and not Terminating

t

a ∨ ā ∨ a ∨ ā

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

f

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)

a ∨ ā

⇝

t

a ∨ ā ∨ a ∨ ā

(a ∨ ā) ∧ (a ∨ ā)(a ∨ ā) ∧ (a ∨ ā)

a ∨ āa ∨ ā

a ∨ ā

76 / 73

Yanking example5

b̄ ∨ a

(b̄ ∨ (b̄ ∧ b̄)) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄ (b̄ ∧ b̄) ∨ ((b ∨ b) ∧ a)

b̄ ∧ b̄

b a

ā ∨ b

ā ∨ b

ā ∨ b

ā ∧ b̄

77 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

78 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

79 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

80 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

81 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

82 / 73

Combinatorial Flows vs. Combinatorial Proofs with cuts

A combinatorial proof with cuts for the sequent Γ is a combinatorial proof for the sequent
Γ,C1 ∧ C̄1, . . . ,Cn ∧ C̄n where C1, . . .Cn are cut formulas. (Everything is unit-free)

Translating a combinatorial proof with cuts of Ā ,B to a combinatorial flow from A to B:

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

ψ↓
A
∨ ψ↓BC

→

A

ψ↑A

HA

ϕ′

HB

ψ↓BC

B ∨ (C1 ∧ C̄1) ∨ · · · ∨ (Cn ∧ C̄n)

B

Translating a combinatorial flow with premise A and conclusion B to a combinatorial proof
with cuts for Ā ,B:

A

B

→ Ā ∨ B

Ā ∨ B

t

A

B

→ Ā ∨ A

Ā ∨ B

t

A

t

→ z̄0 ∨ z0

z̄0 ∨ z0 ∨ Ā

t

B

D

ψ

A

ϕ

→

t

ϕ

HA ∨ HB

Ā ∨ B ∨ (C1 ∧ C̄1) ∨ . . .

ϕ↓
A
∨ ϕ↓BC

t

ψ

HB ∨ HD

B̄ ∨ D ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ψ↓
B
∨ ψ↓DC′

→

t

ϕ ∧ ψ

HA ∨ (HB ∧ HB) ∨ HD

Ā ∨ (B ∧ B̄) ∨ D ∨ (C1 ∧ C̄1) ∨ (C ′1 ∧ C̄ ′1) ∨ . . .

ϕ↓
A
∨ (ϕ↓BC ∧ ψ

↓

B
) ∨ ψ↓DC′

83 / 73

	Atomic Flows
	Preliminaries: Combinatorial Proofs
	Combinatorial Flows
	multiplicative flows
	Additive Flows
	Purification
	Appendix
	Combinatorial Proofs

