Composing Solutions of the Algebraic Path Problem and More

Jade Master SYCO10 17/12/22

Joint work with Ben Bumpus and Zoltan Kocsis **Overview: I started out researching structured cospans.**



Which lift to double functors between double categories of structured cospans. At some point I became obsessed with the idea of a "compositional formula". This is my story... **Table of Contents**

Enriched Graphs and their Decompositions
 Dependent and Enriched Free Categories
 The Compositional Theorem

~intermission~

- 4. Computational Results on an Example
- **5. Proof of the Theorem**
- **5.** Conclusion and Further Directions

Section 1: Enriched Graphs and Their Decompositions

Defn: An R-graph is a function G: XxX -> R and a morphism of R-graphs is a diagram X×X FxFJJVZR Y×Y R is a monoidal closed category $(R, +, \otimes) \in e.g.(Set, +, x)$ $([0,\infty],\min,+)$ etc. This defines RGrph

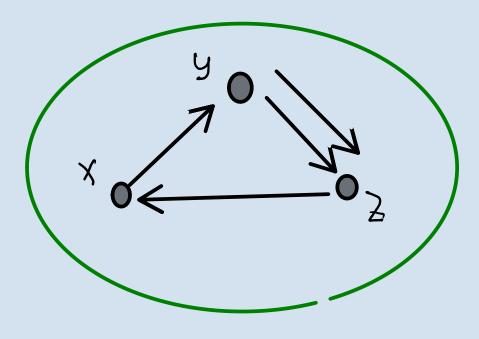
Denote Set-Erph by Grph

Defn: Let Mat(R) be the category

where

· objects are sets

a matrix M: X×Y → R
 is a morphism from X to Y
 Composition is matrix multiplication



0 0 D Z 0.

What is a Graph Decomposition?

Defn: A Set-graph decomposition is just
a morphism of set-graphs
$$Y \xrightarrow{F} X$$
.
Such that each vertex $x \in X$ has
a unique self-edge $r_X: X \xrightarrow{} X$
 $F \xrightarrow{F} X$ is the shape graph
 Y is the total graph
 Y is the total graph at x

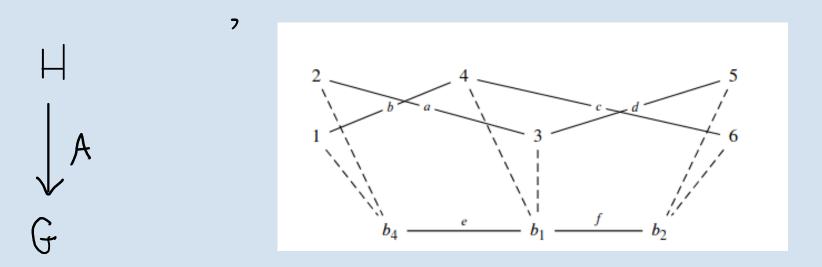
Shift Your Perspective

There is an equivalence Grph ~ Grph/UMat (Set) i.e. for a graph morphism F:Y-X, its Fibers collect into a graph morphism $F': X \longrightarrow U Mat(Set)$ mapping vertices to their fibers and an edge $e: X \rightarrow y \rightarrow F^{-1}(e): F^{-1}(x) \times F^{-1}(y) \longrightarrow Set$ $(a,b) \mapsto Y(a,b)$

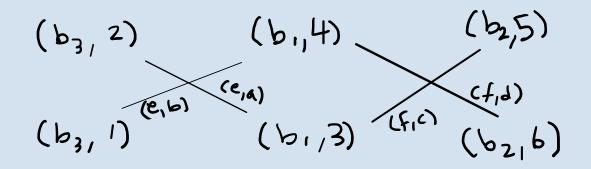
The weak inverse
$$Grph/UMat(Set) \cong Grph$$

is a Grothendieck construction sending
 $A: G \longrightarrow UMat(Set) \mapsto SA \xrightarrow{T} G$ where
 $Grobal instere$ $Grobal instere$ $Grobal instere$
 SA is the graph where $Grobal inste$ $Grobal instere$
 $Vertices$ are pairs $(X \in V(G), a \in A(x))$
 $Vertices$ are pairs $(e \in G(x,y), s \in A(e)(a,b))$
 $From$ (x, a) to (y, b)

The dependent and the fibrational perspectives are equivalent



 $\{2,1\} \xrightarrow{\begin{bmatrix} \phi & \{a\} \\ \{b\} & \phi \end{bmatrix}} \{4,3\} \xrightarrow{\begin{bmatrix} \phi & \{c\} \\ \{d\} & 0 \end{bmatrix}} \{5,6\}$ $A^*: G \longrightarrow U Mat(set)$



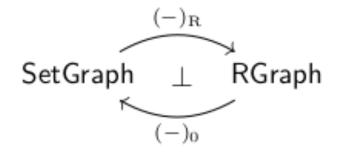
A decomposition $D\colon G\to \mathsf{UMat}(R)$ may be extended to sets of edges $\{f_1,f_2,\ldots,f_n\in G(x,y)\}$ by defining

$$D(\lbrace f_1, f_2, \dots, f_n \rbrace) \colon D(x) \times D(y) \to R \text{ by } (a, b) \mapsto \sum_{j=1}^n D(f_j)(a, b)$$

D(G(x,x)) is the local graph at x

General Graph Decompositions are Defined Dependently

. For a 2-rig R, there is an adjunction



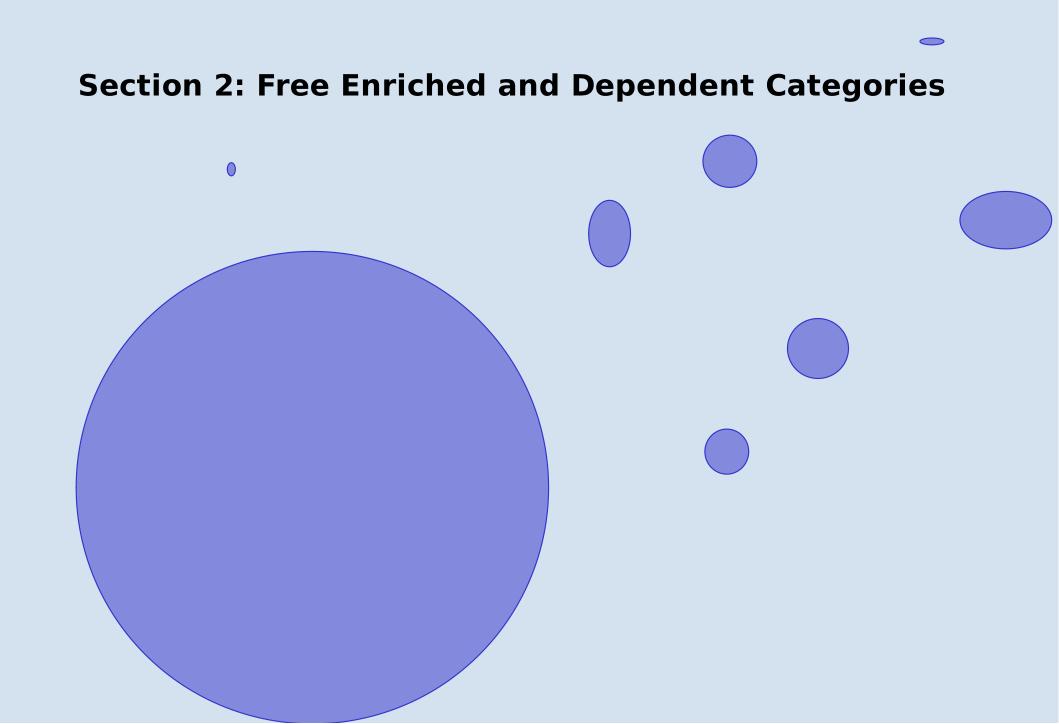
$$G: X \times X \to \mathsf{Set} \mapsto G_R \text{ with } G_R(x, y) = \sum_{f \in G(x, y)} 1_R$$

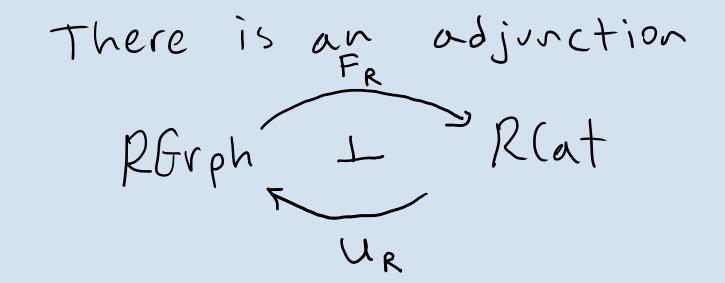
 $H: Y \times Y \to R \mapsto H_0$ with $H_0(x, y) = R(1_R, H(x, y))$

There is an equivalence
of categories
$$\int :Grph/UMat(R) \sim RGrph^{2}$$

 $D:G \rightarrow UMat(R) \rightarrow \int D \rightarrow G_{R}$
where G_{R} is the free R -graph $G_{R}(x,y) = \leq 1$
 $FeG(x,y)$
 $\int D((x,a),(y,b)) = \geq D(e)(a,b)$

W





sending an R-enriched graph to its free R-category $F_R(M) = \sum M^n$ and with VR forgetful. When R=(Set,+,x) this is the usual free category adjunction Grph L > Cat

poset	join	multiplication	solution of path problem
$([0,\infty],\geq)$	inf	+	shortest paths in a weighted graph
$([0,\infty],\leq)$	sup	inf	maximum capacity in the tunnel problem
$([0,1],\leq)$	\sup	×	most likely paths in a Markov process
$\{T,F\}$	OR	AND	transitive closure of a directed graph
$(\mathcal{P}(\Sigma^*),\subseteq)$	U	concatenation	decidable language of a NFA

How do we extend F R to graph decompositions? There is an adjunction Grph/UMat(R)_ L Cat/Mat(R) $D: G \rightarrow UMa^+(R) \mapsto F'D: FG \rightarrow Ma^+(R)$ defined by $F' \quad D(e_1e_2, \dots, e_n) = D(e_1) \circ D(e_2) \cdots D(e_n)$ for a sequence of edges é c Mor FG

 F^iD may be extended to sets of morphisms $\{f_1,f_2,\ldots,f_n\in FG(x,y)\}$ by defining

$$F^i D(\{f_1, f_2, \dots, f_n\}) \colon D(x) \times D(y) \to R \text{ by } (a, b) \mapsto \sum_{j=1}^n F^i(f_j)(a, b)$$

Then

$$F^i D(G(x,x)^*) \cong \sum_{n \ge 0} F^i D(G(x,x)^n) \cong \sum_{n \ge 0} D(G(x,x))^n \cong F(D(G(x,x))).$$

is the local solution at x

Section 3: The Compositional Theorem

General Compositional Formula for the APP

1. For an R-graph decomposition D: G \rightarrow UMat(R) there is an isomorphism $F \int_{Gr} D((x,a),(y,b)) \cong \sum_{(\bar{x},\bar{e})\in FG^{\bullet}(x,y)} (\prod_{i=1}^{n} FD(G(x_i,x_i))D(e_i))FD(G(x_n,x_n))(a,b)$

For example, when
$$R=[0, \varpi]$$
, min, +) any term
larger than this n will contain a loop and can
be made shorter.

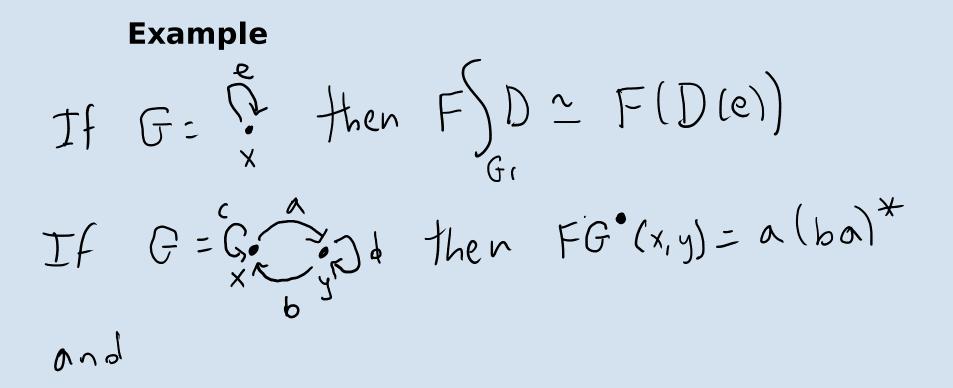
Section 3: Computational Results on an Example

An Algorithm

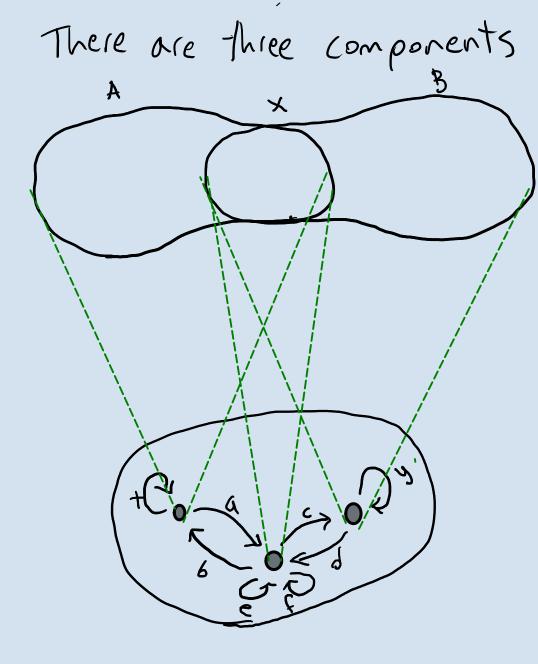
$$F \int_{Grah} D((x_{1}a)(y_{1}b)) \sim \underset{(\bar{x},\bar{e}) \in i=1}{\overset{n-1}{f}} F D(G(x_{1},x_{1})^{*}) D(e_{1}) F D(G(x_{n},x_{n})^{*})(a_{1}b_{1})$$

$$F \int_{G(x_{1}y_{1})} These terms these terms are local these terms are local these terms are connecting ebges
$$F \int_{Graph} D((x_{1}a)_{1}(y_{1}b))$$

$$1. \ Find the set P_{G}(x_{1}y_{1}), \ this may be precompiled and truncated to the local solutions F D(G(x_{1}x_{1})^{*}) \ For each connected vertex
$$3. \ Plug y_{our} \ results \ into \ this \ formula$$$$$$



 $F \int_{G_r} D \sim \sum_{n \ge 0} F D(c) \cdot D(a) (F D(d)) (b)$



The paths are found by taking powers of

\$ Zd3 \$ ie. the free

The local solutions
$$F'D(G(x,x)^*)$$
 may be
found. and for each path $x_1 \xrightarrow{e_1} x_2 \xrightarrow{e_{n-1}} x_n$
in $FG^{\circ}(x_1y)$ we obtain a matrix
 $\left(\prod_{i=1}^{n-1} F^iD(G(x_{i,1}x_i)^*)D(e_i)\right)F^iD(G(x_{n,x_n})^*)$
Adding these matrices at a point (a,b)
gives the solution of the APP From (x_1a) to (y_1b)

I coded this example up

https://github.com/Jademaster/pathcomposer

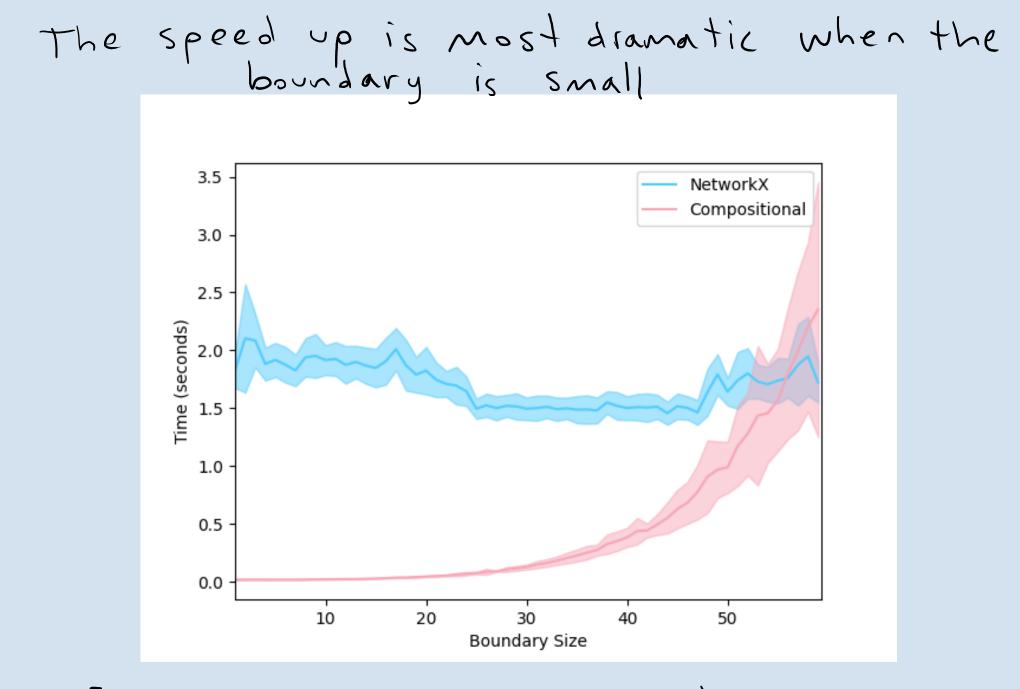
31	#change this to arbitrary structured decompositions
32	class Compositionproblem():
33	
34	<pre>definit(self,g1,g2,intersection,matsemi):</pre>
35	self.lgraph=g1
36	self.rgraph=g2
37	self.intersection=intersection
38	self.symbols=None
39	self.matsemi=matsemi
40	self.values=None
41	self.joined=None
42	self.pushforwards=None
43	self.lengths=None
44	
45	<pre>def precompilesymbols(self):</pre>
46	<pre>maxboundary=len(self.intersection)</pre>
47	<pre>self.symbols=symbols.paths(maxboundary)[-1]</pre>
48	
49	<pre>def precompilematrices(self):</pre>
50	<pre>Fxmat=nx.floyd_warshall_numpy(nx.from_numpy_matrix(self.lgraph.getmatrix()))</pre>
51	<pre>Fymat=nx.floyd_warshall_numpy(nx.from_numpy_matrix(self.rgraph.getmatrix()))</pre>
52	<pre>self.lgraph=graphfrommatrix(Fxmat,self.lgraph.verts)</pre>
53	<pre>self.rgraph=graphfrommatrix(Fymat,self.rgraph.verts)</pre>
54	

186	<pre>def randomcompproblem(graphsize, boundarysize, matsemi):</pre>
187	<pre>x=np.random.randint(1,10,(graphsize,graphsize))</pre>
188	y=np.random.randint(1,10,(graphsize,graphsize))
189	gx=graphfrommatrix(x,[i for i in range(graphsize)])
190	gy=graphfrommatrix(y,[i+graphsize for i in range(graphsize)])
191	<pre>i=dict(zip([i for i in range(graphsize-boundarysize,graphsize)],[j for j in range(graphsize,graphsize+boundarysize)]))</pre>
192	return Compositionproblem(gx,gy,i,matsemi)
102	

def shortestpath(self,s,t): lengthg,lengthk,lengthh,total=self.lengths gstar, hstar = self.pushforwards values=self.values #find compositional shortest path #find s and t i=list(self.joined.outedges).index(s) j=list(self.joined.outedges).index(t) valueg=np.array([gstar[i,j]]) valueh=np.array([hstar[i,j]]) #add start and end vectors to value list newvalues={ #start symbols symbols.GGs:gstar[i,0:lengthg][None,:], symbols.GKs:gstar[i,lengthg:lengthg+lengthk][None,:], symbols.KGs:gstar[i,0:lengthg][None,:], symbols.gKKs:gstar[i,lengthg:lengthg+lengthk][None,:], symbols.hKKs:hstar[i,lengthg:lengthg+lengthk][None,:], symbols.KHs:hstar[i,total-lengthh:total][None,:], symbols.HKs:hstar[i,lengthg:lengthg+lengthk][None,:], symbols.HHs:hstar[i,total-lengthh:total][None,:], #final symbols symbols.GGt:gstar[0:lengthg,j][:,None], symbols.GKt:gstar[0:lengthg,j][:,None], symbols.KGt:gstar[lengthg:lengthg+lengthk,j][:,None], symbols.gKKt:gstar[lengthg:lengthg+lengthk,j][:,None],

Dr 11000

Djikstra: 39.7804 ± 3.3561



Size 500 graphs, 50 runs at each boundary

Section 5: Proof of Theorem

$$\int_{Cat} RCat/Mat(R) \xrightarrow{\sim} RCat^{\rightarrow}$$

"The R-enriched displayed category construction"

The equivalence

$$\begin{aligned} & \int_{at} RCat/Mat(R) \xrightarrow{\sim} RCat^{\rightarrow} \\ & \text{is similar to the Grothendieck construction} \\ & From before \end{aligned}$$

,

$$\int_{Cat} (A: (\longrightarrow Mat R) < \underset{Morphisms:}{\text{Morphisms:}} (x \in C, a \in A(k))$$

$$\int_{Cat} ((x_1 a), (y_1 b)) = \underset{F \in C(x, y)}{\text{Solution}} A(f)(a_1 b)$$

$$\begin{array}{l} \mathsf{RGraph}^{\rightarrow}\cong\mathsf{Graph}/U\mathsf{Mat}(R)\\ f:H\rightarrow G\mapsto f^{-1}:G_0\rightarrow U\mathsf{Mat}(R)\\ D:G\rightarrow U\mathsf{Mat}(R)\mapsto p\colon \int_{Gr}D\rightarrow G_R\end{array}$$

$$\int_{Gr} D(x, y) = \sum_{e \in G(x, y)} D(e)$$

commuting up to natural isomorphism

Jent

Explicitly, For a graph decomposition
D:
$$G \rightarrow U$$
 Mot (R) there is an isomorphism
 $F \stackrel{>}{\rightarrow} \int_{Grph} D((x_1a)_1(y_1b)) \simeq \int_{Cat} F^{ind}(D)((x_1a)_1(y_1b))$
 $\stackrel{\sim}{\rightarrow} \sum_{F \in FG(x_1,y)} F^{ind}D(F)(a_1b)$

So with some eye squinting
we have that "F preserves sums"

$$F^{*} \underset{e \in G(x,y)}{\longrightarrow} D(e) \underset{F \in FG(x,y)}{\longrightarrow} F^{ind} D(F)$$

The left hand side is solution to the
APP on the total graph.

This is already a compositional formula but there's no precompilation yet.

$$FG(x_{i,y}) \sim \underbrace{\left(\prod_{i=1}^{n-1} F' D(G(x_{i,x_{i}})^{*}) D(e_{i})\right)}_{FG^{\circ}(x_{i,y})} F' D(G(x_{n,x_{n}})^{*})$$

Idea: Consecutive morphisms on the same vertex may be factored out

Proof of Theorem

$$F \int_{Gr} D((x, a), (y, b)) \cong \int_{Cat} F^i D((x, a), (y, b))$$
 (Linearity)

$$\cong \sum_{f \in FG(x,y)} F^i D(f)(a,b) \qquad \textbf{(Definition)}$$

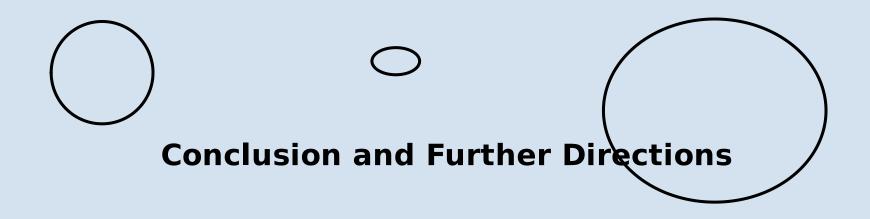
$$\cong \sum_{(\bar{x},\bar{e})\in FG^{\bullet}(x,y)} F^{i}D((\prod_{i=1}^{n} G(x_{i},x_{i})^{*}\{e_{x_{i}}\})G(x_{n},x_{n})^{*})(a,b)$$
(Factorization)

$$\cong \sum_{(\bar{x},\bar{e})\in FG^{\bullet}(x,y)} (\prod_{i=1}^{n} F^{i}D(G(x_{i},x_{i})^{*})D(e_{i}))F^{i}D(G(x_{n},x_{n})^{*})(a,b)$$

$$(Functoriality)$$

$$\approx \sum_{i=1}^{n} (\prod_{i=1}^{n} FD(G(x_{i},x_{i}))D(e_{i}))FD(G(x_{i},x_{i}))(e_{i},b)$$

$$\cong \sum_{(\bar{x},\bar{e})\in FG^{\bullet}(x,y)} (\prod_{i=1} FD(G(x_i,x_i))D(e_i))FD(G(x_n,x_n))(a,b)$$



Structured Decompositions

Definition 3.6 (Structured Decomposition). Fix a base category *K* with pullbacks and a graph *G*. A *K*-valued structured decomposition of shape *G* is a dagger functor $D : \mathbf{F}_{\dagger}(G) \to \mathbf{Span}(\mathbf{K})$ from the free dagger category on *G* to **Span**(**K**). Given any vertex *v* in *G*, we call the object Dv in **K** the bag of *D* indexed by *v*. Given any edge e = xy of *G*, we call the span $De := x \leftarrow a_e \to y$ the adhesion indexed by *e*.

Make the software better! Complexity? Other Algorithms! Model Checking?



