
On Coherence for Stoic Conjunction

– a counterfactual look at ancient logic

Peter M. Hines — University of York

Symposium on Compositional Structures

Edinburgh, Dec. 19th 2022

peter.hines@york.ac.uk nihil sub sōle novum www.peterhines.info 1 / 25



A puzzle from antiquity . . .

The Logician/Philosopher vs. the Astronomer/Mathematician :

“Chrysippus says that the number of conjunctionsa [constructible] from
only ten assertibles exceeds one hundred myriads [i.e. 106]. However, Hip-
parchus refuted this, demonstrating that the affirmative encompasses 103049
conjoined assertibles and the negative 310952.”

— Plutarch, Quæstiones Convivales (2nd C. AD)

a‘combinations’ in some documents . . .

This was reported as common knowledge,
“Chrysippus is refuted by all the arithmeticians, among them Hipparchus

himself who proves that his error in calculation is enormous”.
— Plutarch, De Stoicorum Repugnantiis (2nd C. AD)

but the precise meaning was lost.
“Since the exact terms of the problem are not stated, it is difficult to inter-

pret the numerical answers . . . The Greeks took no interest in these matters”.
— N. L. Biggs The Roots of Combinatorics 1979
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Interpretation and Composition

The significance of 103049 was realised in January 1994 by a
graduate student (D. Hough) at George Washington University :

Hipparchus, Plutarch, Schröder and Hough
— R. Stanley, American Mathematical Monthly (1997)

It is simply the 10th little Schröder number, counting (amongst other things1) the
number of distinct Rooted Planar Trees with ten leaves.

A (too easy?) interpretation

It is tempting to interpret :
1 Each branching as a logical operation (conjunction?)
2 Each leaf as a simple assertible (variable?)

Building larger trees from smaller trees : Substituting a tree for a given leaf.

1e.g. the number of facets of the tenth associahedron
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Replacing simple assertibles by non-simple composites

Operadic Composition :
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Provided we

Avoid clashes of free variable names, & identify α-equivalent trees,

Identify up to (planar) topological equivalence,

we arrive at the non-symmetric operad RPT of rooted planar trees.
This is freely generated by one tree of each arity (number of leaves).
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The How and Why of counting Stoic conjunctions

How did Hipparchus (and “all the arithmeticians”) calculate Schröder numbers??
On the Shoulders of Hipparchus:
A Reappraisal of Ancient Greek Combinatorics.

— F. Acerbi (2004)

Why should we be interested?

Chrysippus’ main achievement is the development of a propositional logic
& deductive system¸2. He was innovative in topics central to contemporary
formal and philosophical logic. The many close similarities with Gottlob Frege
are especially striking.

— Stanford Encyclopedia of Philosophy

How & why did Chrysippus & Hipparchus come up with such different values?
Combinatorics for Stoic Conjunction:
Chrysippus Vindicated, Hipparchus Refuted.
Oxford Studies in Ancient Philosophy, S. Bobzien (2011)

2best understood as a substructural backwards-working Gentzen-style natural-deduction
system — S.E.P.
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A misunderstanding of logic?

Bobzien’s claim is that, “Hipparchus, it seems, got his mathematics right. What I
suggest in this paper is that he got his Stoic logic wrong.”

Where it starts going wrong :

“He counts the same sequence of conjuncts but with different bracketing as different
conjunctions . . . He counts

rP ^ Qs ^ R
P ^ Q ^ R

P ^ rQ ^ Rs

as different assertibles. Unlike modern propositional logic, Hipparchus assumes that a
[elementary] conjunction can consist of two or more conjuncts.

In order to get to [the little Schröder number 103049], Hipparchus also had to take the
order of the ten atomic assertibles as fixed.‘” – S. B.
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A synthesis via category theory

Between ‘equal’ and ‘not equal’ lies a compromise :

The Same
equal up to

unique isomorphism
Different

This should be understood at the level of semantic models.

What might we need ?

A family of k -ary elementary conjunctions

p ‹ q , p ‹ ‹ q , p ‹ ‹ ‹ q , . . .

(presumably, functors . . . )

Under substitution / operadic composition these should freely generate an operad
isomorphic to RPT.

A notion of ‘equivalence up to natural isomorphism’ that uniquely relates any two
composites of the same arity.
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An additional concern

We cannot assume idempotency of conjunction

“Non-simple [assertibles] are those that are, as it were, double pδιπλαq – put together
by means of a connecting particle from an assertible that is taken twice pδιζq,

or from two different assertibles.” — S. B.

We find what we need by :

generalising a model of conjunction from Linear Logic.

(As a bonus!) Everything is based on Euclidean division & elementary arithmetic.
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“Everything is [in the endomorphism monoid of] Numbers”

In J.-Y. Girard’s Geometry of Interaction system (Parts 0 – 2) :

Propositions are modelled by functions on N.

Bijections in the symmetric group SpNq for MLL
Partial injections in the symmetric inverse monoid IpNq for MELL

Conjunction is modelled by the following operation :

pf ‹ gqp2nq “ 2.f pnq

pf ‹ gqp2n ` 1q “ 2.gpnq ` 1

A simple description, based on Hilbert’s Grand Hotel

This “writes two functions as a single function”, by

replicating their behaviour on the even and odd numbers respectively.

This is an injective homomorphism SpNq ˆ SpNq ãÑ SpNq, and indeed a
categorical (semi-monoidal) tensor
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Potential vs. actual infinity

The Greeks feared infinity and tried to avoid it . . . According to tradition,
they were frightened off by the paradoxes of Zeno. . . . Until the late C19th,
mathematicians were reluctant to accept infinity as more than “potential”.

— J. Stillwell, Mathematics and Its History 2012

Not Euclid There exists an infinite number of primes.

Euclid The prime numbers are more numerous
than any proposed multitude of prime numbers.

Actual infinity was eventually forced by the requirements of medieval theology:

Duns Scotus on God (R. Cross, 2005)

John Duns Scotus (1266-1308) [ontological] argument may be summarised as,

“If God is composed of parts, then each part must be finite or infinite. . . . If any given
part is infinite, then it is equal to the whole, which is absurd”

John Duns’ absurdity was was (mostly!) stripped of theological interpretations,
and taken as a definition by G. Cantor & company.
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Not strictly the same . . .

In general : pP ‹ Qq ‹ R ‰ P ‹ pQ ‹ Rq

No faithful tensor on a non-abelian monoid can be strictly associative.
Coherence & Strictification for Self-Similarity
Journal Homotopy & related Structures (P.M.H. 2016)

There is a non-trivial natural isomorphism p ‹ p ‹ qq ñ pp ‹ q ‹ q

αpa ‹ pb ‹ cqq “ ppa ‹ bq ‹ cqα @ a, b, c P SpNq

whose unique component (the associator) αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4,

is a congruential function, satisfying MacLane’s pentagon condition

α2
“ pα ‹ Idq α pId ‹ αq
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A Hipparchus-style generalisation

Girard gave a binary model of conjunction p ‹ q : SpNq ˆ SpNq ãÑ SpNq.

“pa ‹ bq replicates a, b on the modulo classes 2N, 2N ` 1 respectively”.

We draw this as
‚ ‚

‚

There is an obvious ternary analogue, p ‹ ‹ q : SpNq ˆ SpNq ˆ SpNq ãÑ SpNq

pa ‹ b ‹ cqp3n ` iq “

$

&

%

3.apnq i “ 0
3.bpnq ` 1 i “ 1
3.cpnq ` 2 i “ 2

“Replicate a, b, c on the modulo classes 3N , 3N ` 1 , 3N ` 2 respectively”.

We draw this as
‚ ‚ ‚

‚
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The general case :

For any k ě 1, we form the k th elementary conjunction by :

pf0 ‹ . . . fk´1qpkn ` iq “ k .fi pnq ` i where i “ 0, 1, 2, . . . , k ´ 1

Alternatively & equivalently,

pf0 ‹ . . . fk´1qpxq “ k .fi

ˆ

x ´ i
k

˙

` i where x ” i mod k

This gives, for any k ą 0, an injective group homomorphism SpNq
ˆk

ãÑ SpNq that :
“replicates the action of f0 , f1 , . . . , fk´1 on the modulo
classes kN , kN ` 1 , . . . , kN ` pk ´ 1q respectively.

For k “ 1, 2, 3, 4, . . ., we draw these as
"

‚

‚

, ‚ ‚

‚

, ‚ ‚ ‚

‚
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‚
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Composing elementary conjunctions

These ‘compose by substitution’ to give an operad Hipp of generalised
conjunctions. Each k -leaf tree determines an injective hom. SpNq

ˆk
ãÑ SpNq.

¨ ¨ ¨

¨ ¨

¨ ¨

¨

: SpNq
ˆ5

ãÑ SpNq

pf0, f1, f2, f3, f4q ÞÑ ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q

More formally :

We have one operation of each arity ą 0 in the (non-symmetric) endomorphism
operad of SpNq within the category pGrp,ˆq of groups / homomorphisms with
Cartesian product.

These generate the sub-operad Hipp.
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An operad for Hipparchus

Claim :

The operad Hipp of generalised conjunctions extends Girard’s operation
from the Geometry of Interaction, to provide a semantic model for

Hipparchus’ (mis-)understanding of Chrysippus’ Stoic Logic.

More concisely(!)

Hipp – RPT, so each tree determines a distinct homomorphism SpNq
ˆk

ãÑ SpNq.

Proof?

Proving this requires a concept the Greeks (notoriously) did not have3:
The greatest calamity in the history of science was the failure of

Archimedes to invent positional notation. – C. F. Gauss

3. . . but may (occasionally) have borrowed from their neighbours

peter.hines@york.ac.uk nihil sub sōle novum www.peterhines.info 15 / 25



Let me see you counting like they do in Babylon

¨ ¨ ¨

¨ ¨

¨ ¨

¨

defines a homomorphism : SpNq
ˆ5

ãÑ SpNq

In the operadic composite pf0, f1, f2, f3, f4q ÞÑ ppf0 ‹ pf1 ‹ f2 ‹ f3qq ‹ f4q, the action of each
fj is mapped :

from The whole of the natural numbers N

to Some modulo class AjN ` Bj .

For example : f3 is translated onto 12N ` 10.

Question:

How do we derive these coefficients from the tree?
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A root and branch approach

Deriving 12N ` 10, from the leaf-to-root path :

f1 f2 f3

f0 ¨ Branch number 2 of 3

¨ f4 Branch number 1 of 2

¨ Branch number 0 of 2

Multiplicative coefficient : 12 “ 3 ˆ 2 ˆ 2

Additive coefficient : (Decimal) Base 3 Base 2 Base 2
10 “ 2 1 0

Positional mixed-radix number systems

First formal study by G. Cantor, Über einfache Zahlensysteme (1869)
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Covering the Numbers with Trees

Rooted Planar Trees are uniquely determined by the addresses of their leaves

leaf1 leaf2 leaf3

leaf0 ¨

¨ leaf4

¨

leaf0 p0, 2q p0, 2q 4N
leaf1 p0, 3q p1, 2q p0, 2q 12N ` 2
leaf2 p1, 3q p1, 2q p0, 2q 12N ` 6
leaf3 p2, 3q p1, 2q p0, 2q 12N ` 10
leaf4 p1, 2q 2N ` 1

which uniquely determine ordered exact covering systems, such as

4N , 12N ` 2 , 12N ` 6 , 12N ` 10 , 2N ` 1

Heavily studied by P. Erdös (1950s)

Ordered sets of pairwise-disjoint modulo classes, whose union is the whole of N

— also (finite) open covers of pN,`q w.r.t. the profinite topology.

(Corol: Distinct trees determine distinct homomorphisms).
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Mappings between between gen. conjunctions

Given generalised conjunctions T ,U : SpNq
ˆk

ãÑ SpNq, can we find a (well-behaved)

natural isomorphism between them?

SpNq
ˆk

T

))

U

55 SpNq??
��

Convention : As generalised conjunctions are group homomorphisms,
natural transformations have a single component.

We identify nat. iso.s with their unique component in SpNq.
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Congruential functions as natural isomorphisms

Consider the generalised conjunctions4 T ,U : SpNq
ˆ6

ãÑ SpNq

T “

¨ ¨ ¨

¨ ¨

¨ ¨

¨

U “

¨ ¨ ¨ ¨

¨ ¨ ¨

¨

We build a natural isomorphism ηT ,U : T ñ U by monotonically mapping between their
respective ordered covering systems :

leaf 0 4N ÞÑ 6N
leaf 1 12N ` 2 ÞÑ 6N ` 3
leaf 2 12N ` 6 ÞÑ 3N ` 1
leaf 3 12N ` 10 ÞÑ 6N ` 2
leaf 4 2N ` 1 ÞÑ 6N ` 4

This gives, as desired,

ηT ,U .ppa ‹ pb ‹ c ‹ dqq ‹ eq “ ppa ‹ bq ‹ c ‹ pd ‹ eqq.ηT ,U

4edges of the fifth associahedron K5
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A category for Chrysippus

Observe that :

ηT ,T “ Id P SpNq

ηT ,UηS,T “ ηS,U

η´1
T ,U “ ηU,T

We have a posetal groupoid5 Chrys of functors / natural iso.s, given by :

Objects Generalised conjunctions (operations of Hipp)

Arrows ChryspT ,Uq “

$

&

%

tηT ,Uu T ,U have the same arity,

H otherwise.

We can take generalised conjunctions of arrows

What about objects – are generalised conjunctions functors ??

5within which, ‘all diagrams commute’
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Generalised conjunctions within a posetal category

We define generalised conjunctions of objects of Chrys in the obvious manner :

Given T0, . . . ,Tx P ObpChrysq, define

pT0 ‹ . . . ‹ Tx q
def .
“

T0 T1

...

Tx

¨

Rather neatly (but entirely expectedly) :

The unique arrow T0 ‹ . . . ‹ Tx ñ U0 ‹ . . . ‹ Ux is given by

ηpT0‹...‹Tx q,pU0‹...Ux q “ pηT0,U0 ‹ . . . ‹ ηTx ,Ux q

Generalised conjunction defines N`-indexed family of functors on a posetal groupoid :
#

p ‹ . . . ‹ q :
ź

k

Chrys Ñ Chrys

+

kPN`

Very special case: Chrys contains a copy of (a unitless version of) MacLane’s posetal monoidal groupoid pW, l q.

peter.hines@york.ac.uk nihil sub sōle novum www.peterhines.info 22 / 25



Concrete formulæ for arrows of Chrys

Given two ordered exact covering systems, determined by k -ary generalised
conjunctions T ,U

leaf 0 A0N ` B0 ÞÑ C0N ` D0

leaf 1 A1N ` B1 ÞÑ C1N ` D1

...
...

...

leaf k ´ 1 Ak´1N ` Bk´1 ÞÑ Ck´1N ` Dk´1

The natural isomorphism ηT ,U is the bijection

ηT ,Upxq “
1
Aj

ˆ

Cjx `

ˇ

ˇ

ˇ

ˇ

Aj Bj

Cj Dj

ˇ

ˇ

ˇ

ˇ

˙

where x ” Bj mod Aj

We arrive at John Conway’s congruential functions

“Unpredictable Iterations” — J. Conway (1972)

as used to demonstrate undecidability in elementary arithmetic.
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Bobzien’s ‘three simple assertibles’ example

pp ‹ q ‹ q p ‹ p ‹ qq
αks

p ‹ ‹ qγL

ai

γR

6>

γLpnq “

$

’

&

’

%

4n
3 n ” 0 mod 3,

4n`2
3 n ” 1 mod 3,

2n´1
3 n ” 2 mod 3.

γRpnq “

$

’

&

’

%

2n
3 n ” 0 mod 3,

4n´1
3 n ” 1 mod 3,

4n`1
3 n ” 2 mod 3.

αpnq “

$

’

&

’

%

2n n ” 0 mod 2,
n ` 1 n ” 1 mod 4,
n´1

2 n ” 3 mod 4,

These are familiar from other areas :

α : the canonical associativity isomorphism for Girard’s conjunction.

γR : the core arithmetic operator from the Original Collatz conjecture.

γL : a ‘slightly shifted’ version of γR , given by 1 ` γLpnq “ γRpn ` 1q.
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From the third to the fourth associahedron

‹ p ‹ p ‹ qq

p ‹ ‹ p ‹ qq

p‹ q ‹ p ‹ q

pp ‹ q ‹ ‹ q

pp ‹ q ‹ q ‹

pp ‹ ‹ q ‹ q

p ‹ p ‹ qq ‹ p ‹ p ‹ q ‹ q

p ‹ pp ‹ q ‹ q

p ‹ p ‹ ‹ qq

α

α

Id ‹ αα

α ‹ Id

γ´1
R

γL

γ´1
RγL

Id ‹ γ´1
R

Id
‹
γ L

γ´1
R

γL

γ
´

1
R

‹
Id

γ
L

‹
Id

γ ´1R γ
L

pγ
´

1
L

‹
IdqγL

pγ
´

1R
‹

Id
qγ

L

γ´1
R pId ‹ γLq

γ
´

1
R

pI
d

‹
γ R

q
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