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Markov categories



FinStoch

f

X

A

↔ f (x |a) ∈ [0, 1]

f g

A

X Y

B

↔ f ⊗ g(x , y |a, b) := f (x |a) g(y |b)

f

g

X

B

↔ f ◦ g(x |b) :=
∑
y∈Y

f (x |y) g(y |b)



Kl(DR) (semiring-valued kernels)

f

X

A

↔ f (x |a) ∈ R

f g

A

X Y

B

↔ f ⊗ g(x , y |a, b) := f (x |a) g(y |b)

f

g

X

B

↔ f ◦ g(x |b) :=
∑
y∈Y

f (x |y) g(y |b)



Stoch

f

X

A

↔ f : ΣX × A→ [0, 1]

f g

A

X Y

B

↔ f ⊗ g(S ⊗ T |a, b) := f (S |a) g(T |b)

f

g

X

B

↔ f ◦ g(S |b) :=
∫
Y
f (S |y) g(dy |b)



Others

▷ BorelStoch ↪→ Stoch has N, [0, 1], . . .

▷ Kl(DR): kernels valued in a semiring (R, ·,+)

▷ Kl(D{0,1}): possibilistic
▷ FinStoch ↪→ Kl(DR+)
▷ Kl(DR): negative “probabilities”
▷ R ∼ distributive lattice
▷ R ∼ ideals of a commutative ring
▷ . . .

▷ QBStoch [1]: uncertainty about functions

▷ . . .



Copying

Additional structure:

▷ Every X has a copying morphism:

X

X X

e.g.

copy(x1, x2|x) =
{
1 if x1 = x2 = x

0 otherwise.



Deletion

Additional structure:

▷ Every X has a deletion morphism:

X

such as del(∗|x) = 1.



Definition

A Markov category C is a SMC with copy and del, which are
compatible with ⊗, satisfy

==

= =

and for any f also

=f



Determinism

Definition

f : X → Y is deterministic if

f f
=

f

▷ Intuition: Applying f to copies of input = copying output.

▷ Deterministic morphisms form a subcategory Cdet.

▷ In BorelStoch they are measurable maps; in Kl(DR)
‘functions’.
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Dilations

Definition

π : A→ X ⊗ E is a dilation of p : A→ X if

π = p

X

A

X

A

▷ Intuition: Information “leaks” to the environment, e.g.

X = A = {0, 1} and π =
1

2
idX ⊗ δe +

1

2
flipX ⊗ δe′
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Information Flow Axioms



Conditionals

Definition

C has conditionals if for every f there is f|X with

=f

X Y

A

f

f|X

YX

A

▷ Intuition: The outputs of f can be generated one at a time.

▷ Used for de Finetti’s Thm [5], d-separation [6], BSS Thm [4].
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Causality

Definition

C is causal if, for every dilation π of p:

=

Y

π

h1

E

A

=⇒=

Y

h1

X

p

h2

Y X

A

p

A

Y

π

h2

E

A

▷ Intuition: Equality almost surely is “local”.

▷ Used for Hewitt–Savage 0-1 laws [3].

conditionals =⇒ causality [2]
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Causality

Proposition

Kl(DR) is causal iff R satisfies

s(v + w) = t(v + w) =⇒ sv = tv and sw = tw

for all s, t and v + w with complements.

Satisfied

▷ for every distributive lattice;

▷ when R is zero-sum-free and has inverses.



Positivity

Definition

C is positive if whenever g ◦ f is deterministic, then

g

f

g

=

f

f

▷ Intuition: Intermediate result of a deterministic process can
be produced independently.

▷ Used for characterizing sufficient statistics [2].

conditionals =⇒ positivity [2]



Positivity

Definition

C is positive if whenever g ◦ f is deterministic, then

g

f

g

=

f

f

▷ Intuition: Intermediate result of a deterministic process can
be produced independently.

▷ Used for characterizing sufficient statistics [2].

conditionals =⇒ positivity [2]



Positivity

Definition

C is positive if whenever g ◦ f is deterministic, then

g

f

g

=

f

f

▷ Intuition: Intermediate result of a deterministic process can
be produced independently.

▷ Used for characterizing sufficient statistics [2].

conditionals =⇒ positivity [2]



Deterministic marginal independence (DMI)

Proposition

Alternatively, C is positive if every dilation π of a deterministic
p : A→ X satisfies

π π
=

X E X E

AA

π

▷ Intuition: Deterministic outcomes are independent.



Positivity

Proposition

Kl(DR) is representable iff R is entire. That is, R ̸= 0 and

rs = 0 =⇒ r = 0 or s = 0.

Proposition

A representable Kl(DR) is positive iff R is zero-sum-free. That is,

r + s = 0 =⇒ r = s = 0.

▷ Violated by negative probabilities in Kl(DR).

▷ Causality condition for s = 1 and t = 0 is:

1 ·(v+w) = 0 ·(v+w) =⇒ 1 ·v = 0 ·v and 1 ·w = 0 ·w
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Causality =⇒ positivity
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Causality =⇒ positivity
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Kl(DR) causal only if s(v + w) = t(v + w) =⇒ sv = tv .

R := Z[2i ] = Z⊕ 2iZ and (m, 2ki) := mZ⊕ 2kiZ ⊆ R

s(v + w) = s2 + st = st + t2 = t(v + w)

sv = s2 = (8, 4i) ̸= (4, 8i) = st = tv
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existence of
conditionals

causality
(Defn. 2.15)

param. equal.
strengthening
(Defn. 2.16)

=p-a.s. coincides
with =p-dil.

relative
positivity

(Section 2.5)

positivity
(Defn. 2.1)

DMI
(Defn. 2.4)Cdet = Cgd

blooms of
p ∈ Cdet

are initial

copy maps
are initial and
Cdet = Cnc

isomorphisms
are det.

(Remark 2.3)
[6]
/

2.24
/

2.27 2.3
/

[6], 2.17

4.2

2.8

2.9

4.11

4.15

Figure 1: Implications between various information flow axioms considered in this paper, with
pointers to theorem numbers on the arrows.

as deterministic marginal independence (DMI) in Definition 2.4 and Theorem 2.8, we
derive a characterization of positivity for representable Markov categories in Proposition 2.14.
We then turn to the causality axiom and state its equivalence with parametrized equality
strengthening in Definition 2.16 and Proposition 2.17. Theorem 2.24 shows that causality
implies positivity; an intricate counterexample for the converse is given by a Markov cate-
gory with semiring-valued Markov kernels as morphisms for a carefully crafted semiring in
Proposition 2.25.

• Section 3 recalls the main features of quasi-Borel spaces before presenting the privacy equation
as Theorem 3.2. Proposition 3.3 then uses our earlier reformulation of positivity to show that
the Markov category of quasi-Borel spaces violates positivity. Proposition 3.5 generalizes this
to arbitrary categorical models of name generation by first observing that every such model
defines a Markov category.

• Section 4 treats aspects of categorical probability, and in particular the positivity theme, in
purely semicartesian categories. To this end, Definition 4.1 introduces dilational equality.
It coincides with almost sure equality in Markov categories if and only if the said Markov
category satisfies causality (Proposition 4.2). In Definition 4.3, we associate a category of
dilations to every morphism. Its initial objects are dubbed initial dilations (Definition 4.6).
This provides yet further characterizations of positivity for Markov categories as Proposi-
tion 4.11 and Corollary 4.15. Finally, Theorem 4.16 characterizes positive Markov categories
in terms of their structure as semicartesian categories alone.

Figure 1 summarizes various information flow axioms considered in this paper together with
their relations.
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Bonus slides



Kleisli categories are Markov categories

Proposition

Let

▷ D be a category with finite products,

▷ P a commutative monad on D with P(1) ∼= 1.

Then the Kleisli category Kl(P) is a Markov category.

Examples:

▷ Kleisli category of the Giry monad: Stoch.

▷ Kleisli category of the non-empty power set monad: Rel.

▷ Kleisli category of the distribution monad: Kl(DR).



Proposition

Kl(DR) is representable iff R is entire. That is, R ̸= 0 and

rs = 0 =⇒ r = 0 or s = 0.

Proposition

A representable Kl(DR) is positive iff R is zerosumfree. That is,

r + s = 0 =⇒ r = s = 0.

Proposition

Kl(DR) is causal iff R satisfies

s(v + w) = t(v + w) =⇒ sv = tv and sw = tw

for all s, t and v + w with complements.



Almost sure equality

Definition

f and g are equal p-almost surely, f =p-a.s. g , if

p

f

=
p

g

▷ Intuition: f and g are the same on all inputs in p’s support.

▷ Other concepts (e.g. positivity) relativize w.r.t. =p-a.s..



Relative positivity

Definition

C is relatively positive if whenever g ◦ f is -a.s.p deterministic,
then

g

f

g

=p-a.s.

f

f



Abstract de Finetti’s theorem

Theorem

Let C be an a.s.-compatibly representable Markov category with
conditionals and countable Kolmogorov products.

For every exchangeable p : A→ XN, there is µ : A→ PX such that

sampsamp · · ·

µ

=

· · ·

p

▷ BorelStoch satisfies these assumptions.



The classical Hewitt–Savage zero-one law

Theorem

Let (xn)n∈N be independent and identically distributed random
variables, and S any event depending only on the xn and invariant
under finite permutations.

Then P(S) ∈ {0, 1}.



The synthetic Hewitt–Savage zero-one law

Theorem

Let J be an infinite set and C a causal Markov category. Suppose
that:

▷ The Kolmogorov power X⊗J := limF⊆J finite X
⊗F exists.

▷ p : A→ X⊗J displays the conditional independence
⊥i∈J Xi ∥A.

▷ s : X J → T is deterministic.

▷ For every finite permutation σ : J → J, permuting the factors
σ̃ : X⊗J → X⊗J satisfies

σ̃p = p, sσ̃ = s.

Then sp is deterministic.

Proof is by string diagrams, but far from trivial!



Diagram categories and ergodic theory

Proposition

Let D be any category and C a Markov category. The category in
which

▷ Objects are functors D→ Cdet,

▷ Morphisms are natural transformations with components in C.

With the poset D = Z, we get a category of discrete-time
stochastic processes.

This generalizes an observation going back to (Lawvere, 1962).

We can also take D = BG for a group G , resulting in categories of
dynamical systems with deterministic dynamics but stochastic
morphisms.



Dilations

A dilation t : PΘ→ PΘ preserves barycenters.

PΘ PΘ

Θ

t

Θ

sampsamp

If it commutes µ-a.s., then t is a µ-dilation.



Synthetic BSS Theorem

If a Markov category

▷ is representable, and

▷ has Bayesian inverses,

then for any m : I → Θ

Âm

PΘ

m

t
=

PΘ

V̂m

m

⇐⇒
A

Y

∃ an (Âm)-dilation t : PΘ→ PΘ

Θ

∃ a morphism f : X → Y

V
=m-a.s.

f

Y

Θ
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