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GOAL:
PROVIDE A CATEGORICAL FRAMEWORK

FOR DEEP LEARNING



SUPERVISED LEARNING WITH NEURAL NETWORKS
N ONE SLIDE:
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WE ALREADY HAVE A fRAMEWORK:

Categorical Foundations of Gradient-Based Learning

G.S.H. CRUTTWELL, Mount Allison University, Canada
BRUNO GAVRANOVIC and NEIL GHANI, University of Strathclyde, UK
PAUL WILSON and FABIO ZANASI, University College London, UK

We propose a categorical semantics of gradient-based machine learning algorithms in terms of lenses,
parametrised maps, and reverse derivative categories. This foundation provides a powerful explanatory
and unifying framework: it encompasses a variety of gradient descent algorithms such as ADAM, AdaGrad,
and Nesterov momentum, as well as a variety of loss functions such as as MSE and Softmax cross-entropy,
shedding new light on their similarities and differences. Our approach to gradient-based learning has examples
generalising beyond the familiar continuous domains (modelled in categories of smooth maps) and can be
realized in the discrete setting of boolean circuits. Finally, we demonstrate the practical significance of our
framework with an implementation in Python.
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BASIC NN LAYER
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EACH LAJER HAS ITS OWN WEIGHT MATRIX




FIX A MONOIDAL CATEGORY €.e.I)
o (€) IS A BICATEGORY WHERE

Rrw(€)AB) = Zf( Poh. B)
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COMPOSITION  TENSORS THE PARAMETERS
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- FRAMEWORK OF PARAMETRIC LENSES IS
INCREDIBLY FLEXIBLE
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T DOESN'T MAKE ANY ASSUMPTIONS ABoUT THE
ARCHITECTURE, THUS MODELLING. ..



RECURRENT NEURAL NETWORKS




AUTOREGRESSIVE  NEURAL NETWORKS
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GENERATIVE ADVERSARIAL  NETWORKS
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-CONVOLUTIONAL NEURAL NETWORKS
- RECURSIVE NEURAL NETWORKS
-GRAPH NEURAL NETWORKS

ALL OF THESE ARE JUST PARAMETRIC LENSES



HOW CAN WE MAKE THIS STRUCTURE
VISIBLE IN CATEGORY THEORY?



CONVOLUTIONAL NEURAL NETWORKS
-COMMONLY APPLIED TO PROCESSING IMAGE DATA
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GRAPH CONVOLUTIONAL NEURAL NETWORKS

2 IN-ONE SLIDE:
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‘IDEA: THINK ABOUT EACH NODE AS RECEIVING
MESSAGES FROM TS NEIGHBOURS!
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PROCESS MANY KINDS OF DATAPOINTS AT ONCE'
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WE NEED SOMETHING LIKE PRara?



THE COREADER COMONAD
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(K2 (Ax-)
CATEGORY WITH THE SAME OBIECTS AS €
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CAN WE USE GKo(Ax-) AS THE
BASE CATEGORY FOR LEARNING?
: Pa-ra ((o%(pm‘l)) ?
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YES!
- Cokl(Ax-) IS A E-ACTEGORY
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FUTURE WORK

- GENERAL THEORY OF ARCHITECTURES ¢

USE (OALGEBRAS TO DESCRIBE THEIR OFTEN
STRUCTURALLY RECURSIE NATURE?



