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Cubical Type Theory
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Rules and interval

1 Standard Martin-Löf dependent type theory
2 An object I which is the free de Morgan algebra on a fixed infinite set of names i , j , k, . . .
3 Grammar of I is

r , s ::= 0 | 1 | i | ¬r | r ∧ s | r ∨ s
4 Custom λ-abstraction for i : I:

〈i〉.t

Γ,∆ ::= () | Γ, x : A | Γ, i : I Contexts
t, u,A,B ::= x | λx : A.t | t u | (x : A)→ B Π-types

| (t, u) | t.1 | t.2 | (x : A)× B Σ-types
| Path A t u | 〈i〉 t | t r Path types
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Interval

Insight on I
1 I is a synthetic equivalent for [0, 1].
2 ∨ represents max
3 ∧ represents min
4 ¬ represents 1− ·
5 We write (i0) and (i1) for (i/0) and (i/1).

Jugdmental equalities for I

¬0 = 1 ¬1 = 0 ¬(r ∨ s) = ¬r ∧ ¬s ¬(r ∧ s) = ¬r ∨ ¬s
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Path types

Rules

Γ ` A Γ ` a : A Γ ` b : A
Γ ` Path A a b

Γ ` A Γ, i : I ` a : A
Γ ` 〈i〉 a : Path A a(i0) a(i1)

Γ ` p : Path A a b Γ ` r : I
Γ ` p r : A

Γ ` A Γ, i : I ` a : A Γ ` r : I
Γ ` (〈i〉 a) r = a(i/r) : A

Γ, i : I ` p i = q i : A
Γ ` p = q : Path A p0 p1

Γ ` p : Path A p0 p1
Γ ` p 0 = p0 : A

Γ ` p : Path A p0 p1
Γ ` p 1 = p1 : A

Consequences
1 Reflexivity: For a : A, 1a = 〈i〉 a : Path A a a
2 Function extensionality, from Γ ` p : (x : A)→ Path B (f x) (g x) we have

Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g
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Geometric intuition

In dimension n
n variables of dimension i1, . . . , in : I in the context, correspond to an n-dimensional cube.

In dimension two

i : I, j : I ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A(j0)

A(i0) A(i1)
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Face lattice

Definition (Face lattice)
We define F to be the distributive lattice generated by the symbols (i = 0) and (i = 1) (for all
dimension name i) with relation (i = 0) ∧ (i = 1) = 0F. The grammar is

φ, ψ ::= 0F | 1F | (i = 0) | (i = 1) | φ ∧ ψ | φ ∨ ψ

We have the rule

Γ ` φ : F
Γ, φ `
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Contractible types and equivalences

Definition (Contractible types)
A type A is contractible if

isContr A ∆= (x : A)× ((y : A)→ Path A x y)

is inhabited.

Definition (Equivalence)
Given two types T ,A and f : T → A, we define

isEquiv T A f ∆= (y : A)→ isContr ((x : T )× Path A y (f x))

We define the type
Equiv T A ∆= (f : T → A)× isEquiv T A f
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Glueing

Definition (Glueing)
The glueing operation allows us to transport types along an equivalence. The formation rule is:

Γ ` A Γ, φ ` T Γ, φ ` f : Equiv T A
Γ ` Glue [φ 7→ (T , f )] A

Intuition for glueing
If

1 Γ ` A
2 Γ, φ ` T
3 A and T are equivalent on the region φ

then we have the equality Γ, φ ` Glue [φ 7→ (T , f )] A = T .
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Glueing and univalence

Theorem (Univalence in Cubical Type Theory)
For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence.
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Logic and type theory of a (presheaf) topos
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Kripke-Joyal semantics

Link between toposes and logic
Each topos has its own internal logic.
We can interpret the syntax thanks to the Kripke-Joyal semantics.
We rely on the Heyting structure of the subobjects.

Then, we use the notion of Kripke-Joyal forcing to recursively unwind formulas,
Thus transforming a formula into a a lot of little pieces.
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Topos Theory

A presheaf category is a topos
We now work in E = [Cop, Sets], a presheaf category. It has a topos structure by letting Ωc to
be set of sub-functors of yc.

We interpret σ : X → Ω as a formula in context X , and the following is a pullback:

{x : X | σ} 1

X Ω

s true

σ
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Validity of a formula

Definition (Validity)
Let σ : X → Ω. We say that σ is valid whenever σ factors through true : 1→ Ω.

1

X Ω

true!

σ

In that case, we write X ` σ. If σ is a closed formula, then we write ` σ and this amounts to
say that σ = true.
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Kripke-Joyal forcing

Definition (Forcing)
Let σ : X → Ω be a formula and x : yc → X . We say that c forces σ(x), written c  σ(x), if
the following dotted arrow exists, making the left triangle commute.

{x : X | σ} 1

yc X Ω

s true

x σ

Theorem
Let σ : X → Ω. X ` σ if and only if c  σ(x) for all x : yc → X.
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The main theorem

Theorem (Conditions for forcing)
Let σ, τ : X → Ω, θ : Y × X → Ω and x : yc → X, then

c  ⊥ never
c  > always
c  σ(x) ∧ τ(x) if and only if c  σ(x) and c  τ(x)
c  σ(x) ∨ τ(x) if and only if c  σ(x) or c  τ(x)
c  σ(x)⇒ τ(x) if and only if for all f : d → c, d  σ(xf ) implies d  τ(xf )
c  ¬σ(x) if and only if for all f : d → c, we do not have d  σ(xf )
c  ∃y : Y , θ(y , x) if and only if c  θ(y , x) for some y : yc → Y
c  ∀y : Y , θ(y , x) if and only if d  θ(y , xf ) for all f : d → c and y : yd → Y

We can recursively unwind the connectives in c  σ(x)
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Update to Type Theory
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Overview

General setting
We will follow [AGH21] to define small maps, and the small map classifier π given by a
Hofmann-Streicher lifting of a Grothendieck universe.

We fix κ a (strongly) inaccessible cardinal.
A set small if it has cardinality less than κ.
We write Setsκ for the full subcategory of Sets consisting of small sets (which is a
Grothendieck universe).
We fix a small (in the above sense) category C.
We call E the associated presheaf topos.
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Hofmann-Streicher lifting

Definition (Small maps)

1 We say that a presheaf A ∈ E is small if A(c) is a small set, for all c ∈ C
2 We say that p : A→ X in E is a small map if, for every x : yc → X , the presheaf Ax

obtained by the pullback
Ax A

yc X

p

x

is small.

Class of small maps
We call S the class of small maps in E . In the same way that we can classify the monos
S � X with the map true : 1→ Ω, we define π : E → U that classifies the maps of S.
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Classification

Given a small map p : A→ X , there exists a pullback diagram

A E

X U

p π

cp

We say that p is classified by cp. Conversely, we introduce a canonical pullback pA for each
A : X → U:

X .A E

X U

pA π

A

The map pA is called the display map of A.
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Category with families

Lemma (Category with families)
The presheaf category E determines a category with families, as follows:

The contexts are the objects X ∈ E
A type A in context X is a map A : X → U
A term a : A in context X is a map a : X → E such that the following diagram commutes.

X E

X U

a

π

A

Definitional equality on terms or types is defined via equality of maps in the topos. For
instance, we have X ` A = B if and only if A : X → U and B : X → U are the same
maps in E . For terms, we write X ` a = b : A.
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Extending the forcing

Definition
Let A : X → U be a type in context X , and x : yc → X . For a : yc → E , We say c forces
a : A(x) written c  a : A(x) if the following diagram commutes.

yc E

X U

x

a

π

A

Like in the standard forcing, c  a : A(x) is to say yc ` a : A(x):

yc E

yc X U

a

π

x A
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Theorem for the forcing

Alternative point of view
Let A : X → U be a type in context X , and x : yc → X . An element a : yc → E is the same
thing as the dotted arrow in the following diagram:

X .A E

yc X U

qA

pA π

x

u

A

Theorem
The data of a : X → E such that X ` a : A is the same as families of elements ax : yc → E
such that c  ax : A(x), and are uniform in the sense that c  ax = a(x) : A(x).
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Main theorem

Theorem (Conditions for forcing)
1 c  a : 0 never
2 c  a : 1 for a unique a = ? : yc → E
3 c  t : (A + B)(x) if and only if c  a : A(x) with t = inl(a) or c  b : B(x) with

t = inr(a)
4 c  (a, b) : ΣAB(x) if and only if c  a : A and c  b : B(a)
5 c  t : ΠAB(x) if and only if . . .

Theorem (Relation to the old forcing)
Let σ : X → Ω be a proposition and x : yc → X. Then the following are equivalent.

(i) c old σ(x)
(ii) c  s : {σ(x)} for a (necessarily unique) s : yc → E
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Cubical Type Theory of a topos
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Cubical presheaves

We introduce the category � (from [CCHM15]). It will be the base category of a presheaf
topos whose internal type theory will model cubical type theory.
Then, we introduce the notion of cofibration, whose behavior is important to internalize
glueing [OP16].
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The box category
For n ≥ 0, we denote by In the free de Morgan algebra on n generators.

Definition (�)
We call � the category having as objects cardinal numbers [n] ≥ 0 and as morphisms in
�([n], [m]) the de Morgan homomorphisms f : Im → In.

The interval
We take I ∆= y[1], it has a de Morgan structure defined pointwise.

Theorem
� has finite products.

Theorem
For all [n] ∈ �, In has decidable equality.
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Cofibrations

Idea
Cofibrations are useful for glueing, and are the way to semantically specify regions of the
n-dimensional cube. We assume a map cof : Ω→ Ω and we consider the associated subobject

Cof = {φ : Ω | cof φ}

Definition (Cofibration)
A cofibration is a monomorphism whose classifying arrow factors trough Cof � Ω.

Theorem
Let φ : X → Ω be a proposition. For every x : yc → X, the following are equivalent.

1 c  cof φ(x)
2 φ ◦ x : yc → Ω is a cofibration
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Axioms to model CTT

Theorem ([OP16])
The category with families of a presheaf topos is a model of cubical type theory if it has two
objects I and Cof such that its internal logic satisfies the nine following axioms.

ax1 ∀φ : I→ Ω, (∀i : I, φ i ∨ ¬φ i)⇒ (∀i : I, φ i) ∨ (∀i : I, ¬φ i)
ax2 ¬(0 = 1)
ax3 ∀i : I, 0 u i = 0 = i u 0 ∧ 1 u i = i = i u 1
ax4 ∀i : I, 0 t i = i = i t 0 ∧ 1 t i = 1 = i t 1
ax5 ∀i : I, cof(i = 0) ∧ cof(i = 1)
ax6 ∀φ ψ : Ω, cof φ⇒ cof ψ ⇒ cof(φ ∨ ψ)
ax7 ∀φ ψ : Ω, cof φ⇒ (φ⇒ cof ψ)⇒ cof(φ ∧ ψ)
ax8 ∀φ : I→ Ω, (∀i : I, cof φ i)⇒ cof(∀i : I, φ i)
ax9 (φ : Cof)(A : [φ]→ U)(B : U)(s : (u : [φ])→ (A u ' B))→ (B′ : U)× {s ′ : B′ ' B |
∀u : [φ], A u = B′ ∧ s u = s ′}
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The axioms, detailed

ax1 ∀φ : I→ Ω, (∀i : I, φ i ∨ ¬φ i)⇒ (∀i : I, φ i) ∨ (∀i : I, ¬φ i)
ax2 ¬(0 = 1)
ax3 ∀i : I, 0 u i = 0 = i u 0 ∧ 1 u i = i = i u 1
ax4 ∀i : I, 0 t i = i = i t 0 ∧ 1 t i = 1 = i t 1
ax5 ∀i : I, cof(i = 0) ∧ cof(i = 1)
ax6 ∀φ ψ : Ω, cof φ⇒ cof ψ ⇒ cof(φ ∨ ψ)
ax7 ∀φ ψ : Ω, cof φ⇒ (φ⇒ cof ψ)⇒ cof(φ ∧ ψ)
ax8 ∀φ : I→ Ω, (∀i : I, cof φ i)⇒ cof(∀i : I, φ i)
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Kripke-Joyal forcing to prove the axioms

To prove each of these axioms, we can use Kripke-Joyal forcing and unravel each formula.
Moreover,

Theorem (Forcing with a terminal object)
If C has a terminal object t ∈ C, then a closed formula σ : 1→ Ω is valid if and only if t  σ.

Forcing in �

Since � has a terminal object [0], it suffices to prove that each axiom is forced at stage [0].
That is, for k = 1, . . . , 9, we have

` axk ⇐⇒ [0]  axk

Clémence Chanavat Cubical Type Theory Inside a Presheaf Topos December 19, 2022 33 / 41



Kripke-Joyal forcing to prove the axioms

To prove each of these axioms, we can use Kripke-Joyal forcing and unravel each formula.
Moreover,

Theorem (Forcing with a terminal object)
If C has a terminal object t ∈ C, then a closed formula σ : 1→ Ω is valid if and only if t  σ.

Forcing in �

Since � has a terminal object [0], it suffices to prove that each axiom is forced at stage [0].
That is, for k = 1, . . . , 9, we have

` axk ⇐⇒ [0]  axk

Clémence Chanavat Cubical Type Theory Inside a Presheaf Topos December 19, 2022 33 / 41



The interval is connected

Lemma
Let φ, ψ : I→ Ω be two formulas. Then the following are equivalent.

(i) I ` ψ ∨ φ
(ii) I ` ψ or I ` φ

Proof.
Recall that I = y[1].

y[1] ` ψ ∨ φ ⇐⇒ [1]  ψ ∨ φ ⇐⇒ [1]  ψ or [1]  φ ⇐⇒ y[1] ` ψ or y[1] ` φ

Thus, ax1 : ` ∀φ : I→ Ω, (∀i : I, φ i ∨ ¬φ i)⇒ (∀i : I, φ i) ∨ (∀i : I, ¬φ i).
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Axioms for the interval

Theorem (ax2)
[0]  ¬(0 = 1)

It suffices to show that for all [n], we do not have [n]  0 = 1. Assume [n]  0 = 1, then we
would have 0 = 1 : y[n]→ I, which is false as 0n 6= 1n.

Theorem ((Part of) ax3)
[0]  (∀i : I), 0 u i = 0 ∧ i u 0 = 0

By ∀-forcing, it is equivalent to show that [n]  0 u i = 0 ∧ i u 0 = 0 for all f : [n]→ [0] and
i : y[n]→ I. Such a map f is unique, thus we need to show that [n]  0 u i = 0 ∧ i u 0 = 0,
for all i : y[n]→ I. Using ∧-forcing, it suffices to prove each equality independently. For
instance, let i : y[n]→ I, [n]  0 u i = 0, amounts to say that 0 u i = 0, and this is true.
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Main theorem

Theorem (Model of HoTT)
If E = [�op,Sets] with I = y[1] and Cof = Ωdec, then ` axk for k = 1, . . . , 9, thus its internal
type theory is a model of cubical type theory with univalence.
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Summary and future work
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Summary and future work

Context
Lack of computational content in e.g. simplicial models.
In cubical settings, we can compute the univalence axiom, but the syntax of the cubical
type theory tends to be technical, and from the semantic point of view, there is not one
good category of cubes [Mö21].

This work
KJ forcing to prove that [�op, Sets] � axk.
This provides a more systematic approach that could be generalized to various presheaf
toposes.

Future directions
Improve the forcing theorem with more of CTT (W-types, higher inductive types, etc.).
Generalize to a larger class of toposes.
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