The Legendre-Fenchel transform from a category theoretic perspective

> Simon Willerton University of Sheffield

> > SYCO 1 Birmingham September 2018

Legendre-Fenchel transform

V a real vector space, $V^{\#}$ is its linear dual, $\overline{\mathbb{R}} := [-\infty, +\infty]$. There is a standard pair of transforms between function spaces:

$$\mathbb{L}^* \colon \operatorname{Fun}(V, \overline{\mathbb{R}}) \rightleftharpoons \operatorname{Fun}(V^{\#}, \overline{\mathbb{R}}) \colon \mathbb{L}_*,$$
$$\mathbb{L}^*(f)(k) \coloneqq \sup_{x \in V} \{ \langle k, x \rangle - f(x) \}, \quad \mathbb{L}_*(g)(x) \coloneqq \sup_{k \in V^{\#}} \{ \langle k, x \rangle - g(k) \}.$$

The image is always a (lower semicontinuous) convex function. The composites $\mathbb{L}_* \circ \mathbb{L}^*$ and $\mathbb{L}^* \circ \mathbb{L}_*$ are **convex hull** operators. We get an isomorphism between the sets of convex functions:

$$\mathsf{Cvx}(V,\overline{\mathbb{R}})\cong\mathsf{Cvx}(V^{\#},\overline{\mathbb{R}}).$$

$\overline{\mathbb{R}}$ -metric structure

 $\operatorname{Fun}(V,\overline{\mathbb{R}})$ has an "asymmetric metric with possibly negative distances":

d:
$$\operatorname{Fun}(V, \overline{\mathbb{R}}) \times \operatorname{Fun}(V, \overline{\mathbb{R}}) \to \overline{\mathbb{R}}; \quad d(f_1, f_2) := \sup_{x \in V} \{f_2(x) - f_1(x)\}.$$

The Legendre-Fenchel transform is distance non-increasing:

$$\mathbb{L}^* \colon \mathsf{Fun}(V, \overline{\mathbb{R}}) \rightleftarrows \mathsf{Fun}(V^{\#}, \overline{\mathbb{R}})^{\mathrm{op}} \colon \mathbb{L}_* \, .$$

Theorem (Toland-Singer duality)

The Legendre-Fenchel transform gives an isomorphism of $\overline{\mathbb{R}}$ -metric spaces:

$$\mathsf{Cvx}(V,\overline{\mathbb{R}})\cong\mathsf{Cvx}(V^{\#},\overline{\mathbb{R}})^{\mathrm{op}}.$$

$$\begin{aligned} \mathsf{d}(f_1, f_2) &= 1 = \mathsf{d}(\mathbb{L}^*(f_2), \mathbb{L}^*(f_1)) \\ \mathsf{d}(f_2, f_1) &= 3 = \mathsf{d}(\mathbb{L}^*(f_1), \mathbb{L}^*(f_2)) \end{aligned}$$

Dualities and relations: Galois correspondences

Suppose that G and M are sets and \mathcal{R} is a relation between them. For example:

> G = some set of objects, M = some set of attributes $g \mathcal{R} m$ iff object g has attribute m

This gives rise to maps between the ordered sets of subsets

$$\mathcal{R}^* \colon \mathcal{P}(\mathcal{G}) \leftrightarrows \mathcal{P}(\mathcal{M})^{\mathrm{op}} : \mathcal{R}_*$$

Both composites $\mathcal{R}_* \circ \mathcal{R}^*$ and $\mathcal{R}^* \circ \mathcal{R}_*$ are closure operators. Restricts to an ordered isomorphism on the 'closed' subsets.

$$\mathcal{P}_{\mathrm{cl}}(G) \cong \mathcal{P}_{\mathrm{cl}}(M)^{\mathrm{op}}$$

Many classical dualities in mathematics arise in this way.

Monoidal categories

A monoidal category $(\mathcal{V}, \otimes, \mathbb{1})$ consists of a category \mathcal{V} with a monoidal product $\otimes : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$ and unit $\mathbb{1} \in Ob(\mathcal{V})$, together with appropriate associativity and unit constraints.

category	objects	morphisms	\otimes	1
Set	sets	functions	×	{*}
Truth	$\{T,F\}$	$a ightarrow b$ iff $a \vdash b$	&	Т
$\overline{\mathbb{R}_+}$	[0,∞]	$a ightarrow b$ iff $a \ge b$	+	0
$\overline{\mathbb{R}}$	$[-\infty,\infty]$	$a ightarrow b$ iff $a \ge b$	+	0

A category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in Ob(C)$ a specified set

 $\mathcal{C}(a, b)$

▶ for each *a*, *b*, $c \in Ob(C)$ a function

$$\circ_{\mathsf{a},\mathsf{b},\mathsf{c}} \colon \mathcal{C}(\mathsf{a},\mathsf{b}) \times \mathcal{C}(\mathsf{b},\mathsf{c}) \to \mathcal{C}(\mathsf{a},\mathsf{c})$$

▶ for each $a \in Ob(C)$ an element

$$id_{\textit{a}} \in \mathcal{C}(\textit{a},\textit{a})$$

A category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified object

 $\mathcal{C}(a, b) \in \mathsf{Ob}(\mathsf{Set})$

▶ for each *a*, *b*, $c \in Ob(C)$ a function

$$\circ_{\mathsf{a},\mathsf{b},\mathsf{c}} \colon \mathcal{C}(\mathsf{a},\mathsf{b}) \times \mathcal{C}(\mathsf{b},\mathsf{c}) \to \mathcal{C}(\mathsf{a},\mathsf{c})$$

▶ for each $a \in Ob(C)$ an element

$$\mathrm{id}_a \in \mathcal{C}(a, a)$$

A category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified object

 $\mathcal{C}(a, b) \in \mathsf{Ob}(\mathsf{Set})$

▶ for each *a*, *b*, $c \in Ob(C)$ a morphism in Set

$$\circ_{\textit{a,b,c}} \colon \mathcal{C}(\textit{a,b}) \times \mathcal{C}(\textit{b,c}) \rightarrow \mathcal{C}(\textit{a,c})$$

▶ for each $a \in Ob(C)$ an element

$$id_{\textit{a}} \in \mathcal{C}(\textit{a},\textit{a})$$

A category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified object

 $\mathcal{C}(a, b) \in \mathsf{Ob}(\mathsf{Set})$

▶ for each *a*, *b*, $c \in Ob(C)$ a morphism in Set

$$\circ_{\textit{a,b,c}} \colon \mathcal{C}(\textit{a,b}) \times \mathcal{C}(\textit{b,c}) \rightarrow \mathcal{C}(\textit{a,c})$$

▶ for each $a \in Ob(C)$ a morphism in Set

$$\text{id}_{\textit{a}} \colon \{*\} \to \mathcal{C}(\textit{a},\textit{a})$$

A $\mathcal V\text{-}\mathsf{category}\ \mathcal C$ consists of a set $\mathsf{Ob}(\mathcal C)$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified object

 $\mathcal{C}(a, b) \in \mathsf{Ob}(\mathcal{V})$

▶ for each *a*, *b*, $c \in \mathsf{Ob}(\mathcal{C})$ a morphism in \mathcal{V}

$$\circ_{\mathsf{a},\mathsf{b},\mathsf{c}} \colon \mathcal{C}(\mathsf{a},\mathsf{b}) \otimes \mathcal{C}(\mathsf{b},\mathsf{c}) \to \mathcal{C}(\mathsf{a},\mathsf{c})$$

• for each
$$a \in \mathsf{Ob}(\mathcal{C})$$
 a morphism in \mathcal{V}

$$\mathrm{id}_a\colon \mathbb{1}\to \mathcal{C}(a,a)$$

A Truth-category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified truth value

 $\mathcal{C}(\textit{a},\textit{b}) \in \{T,F\}$

▶ for each *a*, *b*, $c \in \mathsf{Ob}(\mathcal{C})$ an entailment

$$\mathcal{C}(\mathsf{a},\mathsf{b})$$
 & $\mathcal{C}(\mathsf{b},\mathsf{c}) \vdash \mathcal{C}(\mathsf{a},\mathsf{c})$

▶ for each $a \in Ob(C)$ an entailment

 $\mathbf{T}\vdash \mathcal{C}(\mathbf{a},\mathbf{a})$

A Truth-category ${\mathcal C}$ consists of a set $\mathsf{Ob}({\mathcal C})$ together with

▶ for each $a, b \in \mathsf{Ob}(\mathcal{C})$ a specified truth value

 $\mathcal{C}(\textit{a},\textit{b}) \in \{T,F\}$

▶ for each *a*, *b*, $c \in \mathsf{Ob}(\mathcal{C})$ an entailment

$$\mathcal{C}(\mathsf{a},\mathsf{b})$$
 & $\mathcal{C}(\mathsf{b},\mathsf{c}) \vdash \mathcal{C}(\mathsf{a},\mathsf{c})$

▶ for each $a \in Ob(C)$ an entailment

 $\mathbf{T}\vdash\mathcal{C}(\mathbf{a},\mathbf{a})$

satisfying appropriate associativity and identity constraints.

A Truth-category is a preorder: write $a \le b$ iff C(a, b) = T. [Fails to be a poset as $(a \le b) \& (b \le a) \not\vdash a = b$.]

A $\overline{\mathbb{R}}\text{-}\mathsf{category}\ \mathcal{C}$ consists of a set $\mathsf{Ob}(\mathcal{C})$ together with

▶ for each $a, b \in Ob(C)$ a specified number

 $\mathcal{C}(a,b)\in [-\infty,\infty]$

▶ for each *a*, *b*, $c \in Ob(C)$ an inequality

$$\mathcal{C}(\mathsf{a},\mathsf{b}) + \mathcal{C}(\mathsf{b},\mathsf{c}) \geq \mathcal{C}(\mathsf{a},\mathsf{c})$$

▶ for each $a \in Ob(C)$ an inequality

 $0 \geq \mathcal{C}(a, a)$

satisfying appropriate associativity and identity constraints.

A Truth-category is a preorder: write $a \le b$ iff C(a, b) = T. [Fails to be a poset as $(a \le b) \& (b \le a) \not\vdash a = b$.]

A $\overline{\mathbb{R}}\text{-}\mathsf{category}\ \mathcal{C}$ consists of a set $\mathsf{Ob}(\mathcal{C})$ together with

▶ for each $a, b \in Ob(C)$ a specified number

 $\mathcal{C}(a,b)\in [-\infty,\infty]$

▶ for each *a*, *b*, $c \in Ob(C)$ an inequality

$$\mathcal{C}(a, b) + \mathcal{C}(b, c) \geq \mathcal{C}(a, c)$$

▶ for each $a \in Ob(C)$ an inequality

 $0 \geq \mathcal{C}(a, a)$

satisfying appropriate associativity and identity constraints.

A Truth-category is a preorder: write $a \le b$ iff C(a, b) = T. [Fails to be a poset as $(a \le b) \& (b \le a) \not\vdash a = b$.]

An $\overline{\mathbb{R}}$ -category is a $\overline{\mathbb{R}}$ -metric space: write $d(a, b) := \mathcal{C}(a, b)$.

More structure

Suppose \mathcal{V} is particularly nice (braided, closed, complete and cocomplete). We can define a \mathcal{V} -category structure $[\mathcal{C}, \mathcal{V}]$ on the collection of \mathcal{V} -functors $\mathcal{C} \to \mathcal{V}$.

\mathcal{V}	\mathcal{V} -functor	$\mathcal{C} ightarrow \mathcal{V}$	$[\mathcal{C},\mathcal{V}]$
Set	functor	copresheaf	category of copresheaves and natural transformations
Truth	order-preserving function	upper closed subset	poset of upper closed subsets ordered by inclusion
$\overline{\mathbb{R}}$	distance non- increasing map	$X o [-\infty,\infty]$	Fun $(X, \overline{\mathbb{R}})$ with sup-metric d $(f_1, f_2) := \sup_x (f_2(x) - f_1(x))$

Generalizing the relation-to-duality idea

- \blacktriangleright \mathcal{V} , suitable category to enrich over,
- \blacktriangleright C, a V-category,
- \blacktriangleright \mathcal{D} , a \mathcal{V} -category,
- ▶ $P: C^{\mathrm{op}} \otimes \mathcal{D} \to \mathcal{V}$, a \mathcal{V} -functor (i.e. profunctor from C to \mathcal{D}).

Get an adjunction of $\mathcal V\text{-}\mathsf{categories}$

$$P^* \colon [\mathcal{C}^{\mathrm{op}}, \mathcal{V}] \leftrightarrows [\mathcal{D}, \mathcal{V}]^{\mathrm{op}} \colon P_*$$

which restricts to an equivalence of $\ensuremath{\mathcal{V}}\xspace$ -categories

$$[\mathcal{C}^{\mathrm{op}}, \mathcal{V}]_{\mathrm{cl}} \cong [\mathcal{D}, \mathcal{V}]_{\mathrm{cl}}^{\mathrm{op}}.$$

This is Pavlovic's profunctor nucleus.

- $\triangleright \mathcal{V} = \text{Truth}$
- C = G a set, i.e. a discrete preorder,
- $\mathcal{D} = M$ a set, i.e. a discrete preorder,
- ▶ $P = \mathcal{R}$ a relation $G \times M \rightarrow \{T, F\}$

- $\triangleright \mathcal{V} = \text{Truth}$
- C = G a set, i.e. a discrete preorder,
- $\mathcal{D} = M$ a set, i.e. a discrete preorder,
- ▶ $P = \mathcal{R}$ a relation $G \times M \rightarrow \{T, F\}$

We get the Galois correspondence, isomorphism of posets

 $\mathcal{P}_{cl}(G) \cong \mathcal{P}_{cl}(M)^{op}.$

- $\triangleright \mathcal{V} = \text{Truth}$
- C = G a set, i.e. a discrete preorder,
- $\mathcal{D} = M$ a set, i.e. a discrete preorder,
- ▶ $P = \mathcal{R}$ a relation $G \times M \rightarrow \{T, F\}$

We get the Galois correspondence, isomorphism of posets

$$\mathcal{P}_{\rm cl}(G) \cong \mathcal{P}_{\rm cl}(M)^{\rm op}.$$

- $\triangleright \mathcal{V} = \text{Truth}$
- C = G a set, i.e. a discrete preorder,
- $\mathcal{D} = M$ a set, i.e. a discrete preorder,
- ▶ $P = \mathcal{R}$ a relation $G \times M \rightarrow \{T, F\}$

We get the Galois correspondence, isomorphism of posets

$$\mathcal{P}_{\mathrm{cl}}(G) \cong \mathcal{P}_{\mathrm{cl}}(M)^{\mathrm{op}}.$$

V = R
C = V a vector space, as a discrete R-space,
D = V[#] a vector space, as a discrete R-space,
P the canonical pairing V ⊗ V[#] → R ⊂ R.
We get all of the Legendre-Fenchel transform machinery.
In particular we get Toland-Singer duality, an isomorphism of R-spaces:

$$\operatorname{Cvx}(V,\overline{\mathbb{R}})\cong\operatorname{Cvx}(V^{\#},\overline{\mathbb{R}})^{\operatorname{op}}.$$