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Legendre-Fenchel transform

V a real vector space, V# is its linear dual, R := [—oc0, +00].
There is a standard pair of transforms between function spaces:

IL*: Fun(V,R) = Fun(V# R): L.,

IL*(f) (k) == sup {(k,x) — f(x)}, L.(g)(x):= sup {(k,x)—g(k)}.
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The image is always a (lower semicontinuous) convex function.
The composites IL, oIL* and IL* oL, are convex hull operators.
We get an isomorphism between the sets of convex functions:

Cvx(V,R) = Cvx(V# R).
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R-metric structure
Fun(V,R) has an “asymmetric metric with possibly negative distances”:

d: Fun(V,R) x Fun(V,R) = R; d(f,h):= Sleje{fg(x) —fA(x)}.

The Legendre-Fenchel transform is distance non-increasing:

IL*: Fun(V,R) = Fun(V# R)%: L,.

Theorem (Toland-Singer duality)
The Legendre-Fenchel transform gives an isomorphism of R-metric spaces:

Cvx(V, R) = Cvx(V# R)°P.




Dualities and relations: Galois correspondences

Suppose that G and M are sets and R is a relation between them.

For example:

G = some set of objects, M = some set of attributes

g R m iff object g has attribute m
This gives rise to maps between the ordered sets of subsets
R*: P(G) S P(M)P R,

Both composites R o R* and R* o R, are closure operators.
Restricts to an ordered isomorphism on the ‘closed’ subsets.

PCI(G) = PCI(M)OP

Many classical dualities in mathematics arise in this way.
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Monoidal categories

A monoidal category (V, ®,1) consists of a category }V with a monoidal
product ®: ¥V x V — V and unit 1 € Ob(V), together with appropriate
associativity and unit constraints.

category  objects morphisms ® 1

Set sets functions X {x}

Truth {T.F} a—biffakb & T

R, [0,00] a—biffa>b + 0

R [-o0,00] a—biffa>b + 0
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Enriched categories

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified set

C(a, b)
» for each a, b, c € Ob(C) a function
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) an element

id, € C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched categories

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(Set)
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Enriched categories

A category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(Set)
» for each a, b, c € Ob(C) a morphism in Set
oapbc: C(a, b) xC(b,c) = C(a,c)
» for each a € Ob(C) a morphism in Set

id,: {x} = C(a, a)

satisfying appropriate associativity and identity constraints.
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Enriched categories

A V-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified object

C(a, b) € Ob(V)
» for each a, b, c € Ob(C) a morphism in V
Oapbec: C(a, b) ®C(b,c) = C(a,c)
» for each a € Ob(C) a morphism in V

id,: 1 — C(a,a)

satisfying appropriate associativity and identity constraints.
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Enriched categories

A Truth-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified truth value

C(a, b) € {T,F}
» for each a, b, c € Ob(C) an entailment
C(a,b)&C(b,c)FC(a,c)
» for each a € Ob(C) an entailment

TFC(a,a)

satisfying appropriate associativity and identity constraints.
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» for each a, b € Ob(C) a specified truth value
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A Truth-category is a preorder: write a < b iff C(a,b) = T.
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Enriched categories

A R-category C consists of a set Ob(C) together with
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Enriched categories

A R-category C consists of a set Ob(C) together with
» for each a, b € Ob(C) a specified number

C(a, b) € [—o0, 0]
» for each a, b, c € Ob(C) an inequality
C(a,b)+C(b,c) >C(a,c)
» for each a € Ob(C) an inequality
0>C(a a)

satisfying appropriate associativity and identity constraints.
A Truth-category is a preorder: write a < b iff C(a,b) = T.
[Fails to be a poset as (a < b) & (b< a) ¥ a= b]

An R-category is a R-metric space: write d(a, b) := C(a, b).
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More structure

Suppose V is particularly nice (braided, closed, complete and cocomplete).
We can define a V-category structure [C, V] on the collection of V-functors
C—V.

V V-functor C—V IC,V]

category of copresheaves

Set functor copresheaf ;
and natural transformations

order-preserving  upper closed  poset of upper closed

Truth ) i
function subset subsets ordered by inclusion

distance non-
increasing map

Fun(X,R) with sup-metric
d(f1, f2) 1= supx(f2(x) — fi(x))

=

X — [—o00, 00
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Generalizing the relation-to-duality idea

P> V), suitable category to enrich over,

» C, a V-category,

» D, a V-category,

» P:CP®D — V, a V-functor (i.e. profunctor from C to D).

Get an adjunction of V-categories
P*: [C°P, V]| = [D, V]°P: P,
which restricts to an equivalence of V-categories
[CP, V] 2 [D, V.

This is Pavlovic's profunctor nucleus.
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The examples of interest
> )V = Truth
» C = G a set, i.e. a discrete preorder,

» D = M a set, i.e. a discrete preorder,
» P =T arelation G x M — {T,F}
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The examples of interest

> )V = Truth

» C = G a set, i.e. a discrete preorder,
» D = M a set, i.e. a discrete preorder,
» P =T arelation G x M — {T,F}

We get the Galois correspondence, isomorphism of posets

Pa(G) = Py(M)°P.

» V=R
» C = V a vector space, as a discrete ﬁ—space,
» D = V# a vector space, as a discrete ﬁ—space,
» P the canonical pairing V ® V# - R C R.
We get all of the Legendre-Fenchel transform machinery.
In particular we get Toland-Singer duality, an isomorphism of IR-spaces:

Cvx(V,R) = Cvx(V# R)°P,
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