Container combinatorics:
Monads and more

Tarmo Uustalu, Tallinn University of Technology

SYCO 1, Birmingham, 20-21 September 2018

Containers?

e Containers (Abbott, Altenkirch, Ghani; cf polynomials,
Gambino, Hyland, Kock) are an elegant “syntax” in terms
of shapes and positions for a wide class of set functors.

@ In particular, they are good for enumerative
combinatorics, for enumerating structures of a given type
on a functor.

@ Prior work: Directed containers (Ahman, Chapman,
Uustalu) as containers with additional structure denoting
comonads.

@ This talk: Further specializations of containers
corresponding to monads, lax monoidal functors (aka
idioms) and more.

Containers

@ A container is given by
e aset S (of shapes)
e and a S-indexed family P of sets (of positions in each
shape)

@ A container (S, P) interprets into a set functor
[S, P]¢ = F where
o FX=%s:5Ps—=X
o Ff=MAs,v).(s,fov)

Lists container

o Let
e S=N
o Ps=10.s)
@ The container (S, P) represents the list datatype, as
o [S,P]°X =%Xs:N.[0..5) > X
= List X.

Container morphisms

@ A container morphism between (S, P) and (S', P’) is
given by operations
o t:S — S (the shape map)
o and g : MNgs. P’ (ts) — Ps (the position map)

@ A container morphism (t, q) between (S, P) and (S, P')
interprets into a natural transformation [t, g = 7
between [S, P]¢ and [S’, P']® where

o 7x :[S,P]°X =[S, P']° X
(Xs:S.Ps— X)— (X : 5. Ps = X)
T(s,v) = (ts,voqs)

Some lists container endomorphisms

@ Let S=N, Ps=0..s) as before.
@ We can define a container endomorphism (t, g) on (S, P)
for example by
e ts=s
° gsp=s—p
This denotes the list reversal function.
e But setting
@ ts=s5+s
e gsp=pmods
we get a representation of the list self-append function.

The category of containers

e Identity on (S, P) is (ids, As. idps).
e Composition of (t,q) : (S,P) — (S', P’) and
(t,q"): (S, P)—= (8", P")is (t' o t,Xs. gs 0 g}).

@ Containers form a category Cont.

o [—]° makes a fully-faithful functor from Cont to
[Set, Set].

Two monoidal structures

@ The identity container is 1d® = (1, Ax. 1).

e Composition of (S, P) and (S', P") is (S,P) < (§',P') =
(Xs:S5.Ps— S A(s,v).Zp: Ps.P' (vp)).

e (Cont,Id,) is a monoidal category and
[—]° a monoidal functor to ([Set, Set], Id, -).

e Day convolution of (S, P) and (S, P') is
(S,P)®° (S, P)=(S xS A(s,s').Ps x Ps).

e (Cont,|d®, ®°) is a symmetric monoidal category and
[—]¢ a symmetric monoidal functor to ([Set, Set|, Id, ®).

@ For any (S, P), (S, P'), there is a container morphism
from (S,P) ®° (S', P') — (S, P) - (S, P)).

@ This makes ldcont a lax monoidal functor from
(Cont, Id°, -°) to (Cont, Id°, ®°).

Mnd-containers

e Call an mnd-container a container (S, P) with operations
ee:S
oe:Ms:S.(Ps—S5—S
0 go:Ms:S.MNMv:Ps—S.P(sev)—»Ps
0 qgr:MNs:SMNv:Ps—STMp:P(sev).P(v(v\sp))
where we write
@ gosvpasv\spand
o gisvpasp/ys
satisfying
o s=se(\.e)
ecoe(l.s)=s
o (sev)e(Ap".w(vhs p")(p" /v s)) =
se(Ap.vp ewp)
and ...

Mnd-containers ctd

@ ...and
o p:()\,.e) /\5 P
°op/ise=p

o v s (A" w(v\sp")(P" /v S)) \sev P) =

(Ap'.vp ewp)\sp
o (A" w(v\sp")(P" vs)) \sevp)/vs=

let Up, A Vp,. Wp/ in W(U \s P) ,\v(u’\sp) (P [u 5)
O P /A w(vAep”) (p77v5) (S @ V) =

let up’ < vp'ewp'in(p/us)/wwip) v(u'sp)

Mnd-containers ctd

@ An mnd-container (S, P e, o \, /) interprets into a
monad [S, P,e, o \, /]|™ = (T,n, 1) where
o T=|[S,P]°
o nx X = TX
X—=%¥s:5.Ps— X
nx = (e, A\ x)
o ux: T(TX)—=TX
(Xs:S.Ps—%¥s:5.Ps - X)— (Xs:5.Ps— X)
p(s,v) =
let (vop,vip) < vpin (sevy,Ap.vi(vo\sp)(p /v S))

The category of mnd-containers

@ Mnd-containers form a category MCont, with identities
and composition inherited from Cont.

@ Mnd-container interpretation [—]™° makes a fully-faithful
functor between MCont and Monad(Set).

MCont U .
2 Monoid(Cont, Id°, -¢) Cont (Cont, 1d%, -€)
Monad(Set) _v. [Set, Set] ([Set, Set], Id, -)

=~ Monoid([Set, Set], Id, -)

Exception container

Let S =1 + E for some set E and
P(inlx) =1, P(inr_) =0.
Then T X =

inl* — 1

Zs:l—i—E.(casesof. >—>X%X—|—E.
infr_ — 0

If, in a hypotetical mnd-container structure on (S, P),
e = inr gy for some ¢ : E, then Pe = 0 and therefore
inlx =ee (A_inlx) =ee (A inre) = inre,

which is absurd.

If e = inl*, then necessarily
inlxev=-ee(\kvk)=vsx*and

inreev =inree(_.e)=inre.

This choice of e and e satisfies the conditions of an
mnd-container.

So there is exactly one mnd-container structure on (S, P)
and exactly one monad structure on T.

Lists container

o Let S=N, Ps=[0..s).
@ Then TX =Xs:N.[0..s) - X = List X.

@ The following is an mnd-container structure:
e=1
sev = Ep:[O..s) vp
v \s p = greatest pp : [0..5) st Zp’:[O..po) vp <p
PIvS=P= Lpiovip VP
@ The corresponding monad structure is
nx x = [x], px xss = concat xss.

@ But these are not the only mnd-container structure on
(S, P) and not the only monad structure on T.

Mnd-containers as generalized operads

The (standard) lists mnd-container generalizes for
non-symmetric operads.

Given an operad, i.e., a set O (of operations) and
functions # : O — N (fixing the arities) and id : O (the
identity) and o : Mo : O.(# 0 — O) — O (composition)
satisfying #id = 1 and # (0o v) =3, 4 oy # (v i) and
a number of further equations.

We can take S =0, Po=[0..#0), e=id, sev=sov
and \, / as in the lists mnd-container.

The lists mnd-container corresponds to the operad Assoc
with exactly one operation of every arity.

General mnd-containers are like operads, but arities may
be infinite, identification of the arguments of an operation
is nominal, and the arguments of a composition may be
used non-linearly by the operations involved (as specified

by \, /).

Mnd-containers as lax (1, X)-universes

@ Altenkirch, Pinyo have observed that an mnd-container
defines a “lax" (1, X)-universe.

S is the set of “(codes for) types”,

P s is the “denotation” of s,

e is the type 1,

e is the X-type former,

N\, / are projections from denotations of X-types

@ The laxity is that 1 need not really denote the singleton
set and 2-types need not really denote dependent
products, we only have functions Pe — 1 and
P(sev) —Xp:Ps.P(vp), not isomorphisms.

L mf-containers

e Call an Imf-container a container (S, P) with operations
ee:S
ee:5-5—-5
0 qgo:Ms:S.Ns:S.P(ses’)— Ps
0 q1:Ms:S.Ns:S.P(ses’) » Ps
where we write
o qoss'pass’\spandgiss'’pasp /s s
satisfying
ees=s
s=see
(S.S/) .5// —se (S/ .S//)
e\sp=p
p/se=p
s' \s (5” \ses’ ,D) = (5/ b 5”) \s P
(5” \ses’ P) [ss= s \s (P ['stes' 5)
p /s (5 b 5,) = (P ['stest 5) [s’

L mf-containers ctd

An Imf-container (S, P e, 7\, /) interprets into a
lax monoidal functor [S, P, e, e, X\, /] = (F,m% m) where

F =[S, P]°
ml:1-T1
1+ (¥s:5.Ps—1)
mOx = (e, _. *)
mxy: TXxTY = T(XxY)
(Xs:S.Ps—> X)x(Es:S.Ps—=Y)—=>(Xs:5.Ps— X xY)

o mx.y ((s,v),(s",v)) = (s s’ Ap. (v(s' \s p), V' (P /s 5)))

The category of Imf-containers

@ Lmf-containers form a category LCont, with identities
and composition inherited from Cont.

o [—]™ is a fully-faithful functor between LCont and

LMF(Set).
LCont U oo
= Monoid(Cont, Id°, ®°) Cont (Cont, Id°, ®°)
f.f. [[_]]lcj [[7]]6 r
AN — [Set, Set] ([Set, Set], d, ®)

=~ Monoid([Set, Set], Id, ®)

Mnd-containers vs Imf-containers

@ Any mnd-container (S, P,e,e,\,/) defines an
Imf-container (S, P,e, o' \', /') by se’s' =se(\.5s).

@ Any mnd-container morphism is an Imf-container
morphism.

@ This gives a faithful functor from MCont to LCont.
This is the functor induced by the lax monoidal functor
ldcont : (Cont, 1d, -°) — (Cont, Id°, ®°).

Exception container

Let S =1 + E for some set E and
P(inlx) =1, P(inr_) =0.
Then TX = X+ E.

If, in an Imf-container structure on (S, P), we had

e = inr gy for some ¢ : E, then inrey @ inl * = inl *.

But then qo (inr) (inl %) : 1 — 0, which cannot be.
If e=inl%, theninlxes =35, inreeinl*x =inre,
infeeinre’ = e ® e’ where ® must be some semigroup
structure on E.

The unique mnd-container structure on (S, P)
corresponds to the particular case of the left zero
semigroup, i.e., the semigroup where e ® € = e.

Lists container
o Let S=N, Ps=10..s). Then T X = List X.

@ The standard mnd-container structure on (S, P) gives
this Imf-container structure:
ee=1
o ses =sxs
o s'\sp=pdivs, p/ss=pmods
@ The corresponding lax monoidal functor structure on T is
mox =[], mx y (xs,ys) = [(x,y) | x ¢ x5,y « ys].

@ But we also have, eg, this Imf-container structure:
ee—=1
o ses’ =smins’
o s'\sp=p.p/lss=p
@ The corresponding lax monoidal functor structure is
m®x = [], mx y (xs,ys) = zip (xs, ys).

Lmf-containers as operads with restricted
composition

@ Similarly to the mnd-containers case, the list container
example can be generalized.

@ The appropriate generalization is a relaxation of
non-symmetric operads where parallel composition is only
defined when the given n operations composed with the
given n-ary operation are all the same, ie, we have
0:0—=0—0and #(o00)=H#ox#0.

Lmf-containers as lax (1, X)-universes

@ While an mnd-container defines a lax (1, X)-universe, an
Imf-container defines a lax (1, x)-universe.

@ e is the x-type former.

Containers N commutative monads

@ The monad interpreting an mnd-container is commutative
(which reduces to the corresponding lax monoidal functor
being symmetric) iff

o se(A.s)=5s"e(\.5)
o (\.5) e p=p/rss

Containers N Cartesian monads

@ The monad interpreting an mnd-container is Cartesian (in
the sense that all naturality squares of 1, u are pullbacks)
iff

e the function A_.x : Pe — 1 is an isomorphism,

e foranys:S, v:Ps— S, the function
Ap.(vAN\sp,p/vs):P(sev) = Xp:Ps.P(vp)
is an isomorphism.

@ Such mnd-containers are proper (1, X)-universes.

@ With Veltri, we also analyzed a number of other
specializations of monads—copy monads, equational
lifting monads etc.

Takeaway

@ Containers whose interpretation carries a monad or a lax
monoidal functor structure admit insightful explicit
characterizations as mnd-containers and Imf-containers.

@ These explain why set monads and lax monoidal
endofunctors have very similar properties (the former also
being a special case of the latter).

@ Mnd-containers generalize operads, Imf-containers
operads with restricted composition.

@ Mnd-containers are lax (1, X) universes, Imf-containers
are lax (1, x) universes.

