
Container combinatorics:

Monads and more

Tarmo Uustalu, Tallinn University of Technology

SYCO 1, Birmingham, 20–21 September 2018



Containers?

Containers (Abbott, Altenkirch, Ghani; cf polynomials,
Gambino, Hyland, Kock) are an elegant “syntax” in terms
of shapes and positions for a wide class of set functors.

In particular, they are good for enumerative
combinatorics, for enumerating structures of a given type
on a functor.

Prior work: Directed containers (Ahman, Chapman,
Uustalu) as containers with additional structure denoting
comonads.

This talk: Further specializations of containers
corresponding to monads, lax monoidal functors (aka
idioms) and more.



Containers

A container is given by

a set S (of shapes)
and a S-indexed family P of sets (of positions in each
shape)

A container (S ,P) interprets into a set functor
JS ,PKc = F where

F X = Σs : S .P s → X
F f = λ(s, v). (s, f ◦ v)



Lists container

Let

S = N
P s = [0..s)

The container (S ,P) represents the list datatype, as

JS ,PKc X = Σs : N. [0..s)→ X
∼= ListX .



Container morphisms

A container morphism between (S ,P) and (S ′,P ′) is
given by operations

t : S → S ′ (the shape map)
and q : Πs:S .P

′ (t s)→ P s (the position map)

A container morphism (t, q) between (S ,P) and (S ′,P ′)
interprets into a natural transformation Jt, qKc = τ
between JS ,PKc and JS ′,P ′Kc where

τX : JS ,PKc X → JS ′,P ′Kc X
(Σs : S .P s → X )→ (Σs ′ : S ′.P ′ s ′ → X )

τ (s, v) = (t s, v ◦ qs)



Some lists container endomorphisms

Let S = N, P s = [0..s) as before.

We can define a container endomorphism (t, q) on (S ,P)
for example by

t s = s
qs p = s − p

This denotes the list reversal function.

But setting

t s = s + s
qs p = p mod s

we get a representation of the list self-append function.



The category of containers

Identity on (S ,P) is (idS , λs . idP s).

Composition of (t, q) : (S ,P)→ (S ′,P ′) and
(t ′, q′) : (S ′,P ′)→ (S ′′,P ′′) is (t ′ ◦ t, λs . qs ◦ q′t s).

Containers form a category Cont.

J−Kc makes a fully-faithful functor from Cont to
[Set,Set].



Two monoidal structures

The identity container is Idc = (1, λ∗. 1).

Composition of (S ,P) and (S ′,P ′) is (S ,P) ·c (S ′,P ′) =
(Σs : S .P s → S ′, λ(s, v).Σp : P s.P ′ (v p)).

(Cont, Idc, ·c) is a monoidal category and
J−Kc a monoidal functor to ([Set,Set], Id, ·).

Day convolution of (S ,P) and (S ′,P ′) is
(S ,P) �c (S ′,P ′) = (S × S ′, λ(s, s ′).P s × P ′ s).

(Cont, Idc,�c) is a symmetric monoidal category and
J−Kc a symmetric monoidal functor to ([Set,Set], Id,�).

For any (S ,P), (S ′,P ′), there is a container morphism
from (S ,P) �c (S ′,P ′)→ (S ,P) ·c (S ′,P ′).

This makes IdCont a lax monoidal functor from
(Cont, Idc, ·c) to (Cont, Idc,�c).



Mnd-containers

Call an mnd-container a container (S ,P) with operations

e : S
• : Πs : S . (P s → S)→ S
q0 : Πs : S .Πv : P s → S .P (s • v)→ P s
q1 : Πs : S .Πv : P s → S .Πp : P (s • v).P (v (v 0s p))

where we write

q0 s v p as v 0s p and
q1 s v p as p 1v s

satisfying

s = s • (λ . e)
e • (λ . s) = s
(s • v) • (λp′′.w (v 0s p′′) (p′′ 1v s)) =
s • (λp′. v p′ • w p′)

and . . .



Mnd-containers ctd

. . . and

p = (λ . e) 0s p
p 1λ . s e = p
v 0s ((λp′′.w (v 0s p

′′) (p′′ 1v s)) 0s•v p) =
(λp′. v p′ • w p′) 0s p

((λp′′.w (v 0s p
′′) (p′′ 1v s)) 0s•v p) 1v s =

let u p′ ← v p′ • w p′ in w (u 0s p) 0v (u0sp) (p 1u s)
p 1λp′′.w (v0sp′′) (p′′1v s) (s • v) =

let u p′ ← v p′ • w p′ in (p 1u s) 1w (u0sp) v (u 0s p)



Mnd-containers ctd

An mnd-container (S ,P , e, •,0,1) interprets into a
monad JS ,P , e, •,0,1Kmc = (T , η, µ) where

T = JS ,PKc

ηX : X → T X
X → Σs : S .P s → X

η x = (e, λ . x)
µX : T (T X )→ T X

(Σs : S .P s → Σs ′ : S .P s ′ → X )→ (Σs : S .P s → X )
µ (s, v) =
let (v0 p, v1 p)← v p in (s • v0, λp. v1 (v0 0s p) (p 1v0 s))



The category of mnd-containers

Mnd-containers form a category MCont, with identities
and composition inherited from Cont.

Mnd-container interpretation J−Kmc makes a fully-faithful
functor between MCont and Monad(Set).

MCont
∼= Monoid(Cont, Idc, ·c)

U //

f.f. J−Kmc

��

Cont

��

(Cont, Idc, ·c)

J−Kc f.f.

��Monad(Set)
∼= Monoid([Set,Set], Id, ·)

U // [Set,Set] ([Set,Set], Id, ·)



Exception container

Let S = 1 + E for some set E and
P (inl ∗) = 1, P (inr ) = 0.
Then T X =

Σs : 1 + E .

(
case s of

inl ∗ 7→ 1
inr 7→ 0

)
→ X ∼= X + E .

If, in a hypotetical mnd-container structure on (S ,P),
e = inr e0 for some e0 : E , then P e = 0 and therefore
inl ∗ = e • (λ . inl ∗) = e • (λ . inr e0) = inr e0,
which is absurd.
If e = inl ∗, then necessarily
inl ∗ • v = e • (λ∗. v ∗) = v ∗ and
inr e • v = inr e • (λ . e) = inr e.
This choice of e and • satisfies the conditions of an
mnd-container.
So there is exactly one mnd-container structure on (S ,P)
and exactly one monad structure on T .



Lists container

Let S = N, P s = [0..s).

Then T X = Σs : N. [0..s)→ X ∼= ListX .

The following is an mnd-container structure:

e = 1
s • v =

∑
p:[0..s) v p

v 0s p = greatest p0 : [0..s) st
∑

p′:[0..p0)
v p′ ≤ p

p 1v s = p −
∑

p′:[0..v0sp)
v p′

The corresponding monad structure is
ηX x = [x ], µX xss = concat xss.

But these are not the only mnd-container structure on
(S ,P) and not the only monad structure on T .



Mnd-containers as generalized operads

The (standard) lists mnd-container generalizes for
non-symmetric operads.
Given an operad, i.e., a set O (of operations) and
functions # : O → N (fixing the arities) and id : O (the
identity) and ◦ : Πo : O. (# o → O)→ O (composition)
satisfying # id = 1 and # (o ◦ v) =

∑
i :[0,# o) # (v i) and

a number of further equations.
We can take S = O, P o = [0..# o), e = id, s • v = s ◦ v
and 0, 1 as in the lists mnd-container.
The lists mnd-container corresponds to the operad Assoc
with exactly one operation of every arity.
General mnd-containers are like operads, but arities may
be infinite, identification of the arguments of an operation
is nominal, and the arguments of a composition may be
used non-linearly by the operations involved (as specified
by 0, 1).



Mnd-containers as lax (1,Σ)-universes

Altenkirch, Pinyo have observed that an mnd-container
defines a “lax” (1,Σ)-universe.

S is the set of “(codes for) types”,
P s is the “denotation” of s,
e is the type 1,
• is the Σ-type former,
0, 1 are projections from denotations of Σ-types

The laxity is that 1 need not really denote the singleton
set and Σ-types need not really denote dependent
products, we only have functions P e → 1 and
P (s • v)→ Σp : P s.P (v p), not isomorphisms.



Lmf-containers

Call an lmf-container a container (S ,P) with operations
e : S
• : S → S → S
q0 : Πs : S .Πs ′ : S .P (s • s ′)→ P s
q1 : Πs : S .Πs ′ : S .P (s • s ′)→ P s ′

where we write
q0 s s

′ p as s ′ 0s p and q1 s s
′ p as p 1s′ s

satisfying
e • s = s
s = s • e
(s • s ′) • s ′′ = s • (s ′ • s ′′)
e 0s p = p
p 1s e = p
s ′ 0s (s ′′ 0s•s′ p) = (s ′ • s ′′) 0s p
(s ′′ 0s•s′ p) 1s′ s = s ′′ 0s′ (p 1s′•s′′ s)
p 1s′′ (s • s ′) = (p 1s′•s′′ s) 1s′′ s

′



Lmf-containers ctd

An lmf-container (S ,P , e, •,0,1) interprets into a
lax monoidal functor JS ,P , e, •,0,1Klc = (F ,m0,m) where

F = JS ,PKc

m0 : 1→ T 1
1→ (Σs : S .P s → 1)

m0 ∗ = (e, λ . ∗)
mX ,Y : T X × T Y → T (X × Y )

(Σs : S .P s → X )× (Σs : S .P s → Y )→ (Σs : S .P s → X × Y )

mX ,Y ((s, v), (s ′, v ′)) = (s • s ′, λp. (v (s ′ 0s p), v ′ (p 1s′ s)))



The category of lmf-containers

Lmf-containers form a category LCont, with identities
and composition inherited from Cont.

J−Klc is a fully-faithful functor between LCont and
LMF(Set).

LCont
∼= Monoid(Cont, Idc,�c)

U //

f.f. J−Klc

��

Cont

��

(Cont, Idc,�c)

J−Kc f.f.

��LMF(Set)
∼= Monoid([Set,Set], Id,�)

U // [Set,Set] ([Set,Set], Id,�)



Mnd-containers vs lmf-containers

Any mnd-container (S ,P , e, •,0,1) defines an
lmf-container (S ,P , e, •′,0′,1′) by s •′ s ′ = s • (λ . s ′).

Any mnd-container morphism is an lmf-container
morphism.

This gives a faithful functor from MCont to LCont.
This is the functor induced by the lax monoidal functor
IdCont : (Cont, Idc, ·c)→ (Cont, Idc,�c).



Exception container

Let S = 1 + E for some set E and
P (inl ∗) = 1, P (inr ) = 0.

Then T X ∼= X + E .

If, in an lmf-container structure on (S ,P), we had
e = inr e0 for some e0 : E , then inr e0 • inl ∗ = inl ∗.
But then q0 (inr e0) (inl ∗) : 1→ 0, which cannot be.

If e = inl ∗, then inl ∗ • s = s, inr e • inl ∗ = inr e,
inr e • inr e ′ = e ⊗ e ′ where ⊗ must be some semigroup
structure on E .

The unique mnd-container structure on (S ,P)
corresponds to the particular case of the left zero
semigroup, i.e., the semigroup where e ⊗ e ′ = e.



Lists container

Let S = N, P s = [0..s). Then T X ∼= ListX .

The standard mnd-container structure on (S ,P) gives
this lmf-container structure:

e = 1
s • s ′ = s ∗ s ′
s ′ 0s p = p div s ′, p 1s′ s = p mod s ′

The corresponding lax monoidal functor structure on T is
m0 ∗ = [∗], mX ,Y (xs, ys) = [(x , y) | x ← xs, y ← ys].

But we also have, eg, this lmf-container structure:
e = 1
s • s ′ = s min s ′

s ′ 0s p = p, p 1s′ s = p

The corresponding lax monoidal functor structure is
m0 ∗ = [∗], mX ,Y (xs, ys) = zip (xs, ys).



Lmf-containers as operads with restricted

composition

Similarly to the mnd-containers case, the list container
example can be generalized.

The appropriate generalization is a relaxation of
non-symmetric operads where parallel composition is only
defined when the given n operations composed with the
given n-ary operation are all the same, ie, we have
◦ : O → O → O and # (o ◦ o ′) = # o ∗# o ′.



Lmf-containers as lax (1,×)-universes

While an mnd-container defines a lax (1,Σ)-universe, an
lmf-container defines a lax (1,×)-universe.

• is the ×-type former.



Containers ∩ commutative monads

The monad interpreting an mnd-container is commutative
(which reduces to the corresponding lax monoidal functor
being symmetric) iff

s • (λ . s ′) = s ′ • (λ . s)
(λ . s ′) 0s p = p 1λ . s s ′



Containers ∩ Cartesian monads

The monad interpreting an mnd-container is Cartesian (in
the sense that all naturality squares of η, µ are pullbacks)
iff

the function λ . ∗ : P e→ 1 is an isomorphism,
for any s : S , v : P s → S , the function
λp. (v 0s p, p 1v s) : P (s • v)→ Σp : P s.P (v p)
is an isomorphism.

Such mnd-containers are proper (1,Σ)-universes.

With Veltri, we also analyzed a number of other
specializations of monads—copy monads, equational
lifting monads etc.



Takeaway

Containers whose interpretation carries a monad or a lax
monoidal functor structure admit insightful explicit
characterizations as mnd-containers and lmf-containers.

These explain why set monads and lax monoidal
endofunctors have very similar properties (the former also
being a special case of the latter).

Mnd-containers generalize operads, lmf-containers
operads with restricted composition.

Mnd-containers are lax (1,Σ) universes, lmf-containers
are lax (1,×) universes.


