Container combinatorics: Monads and more

Tarmo Uustalu, Tallinn University of Technology

SYCO 1, Birmingham, 20-21 September 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Containers?

- Containers (Abbott, Altenkirch, Ghani; cf polynomials, Gambino, Hyland, Kock) are an elegant "syntax" in terms of shapes and positions for a wide class of set functors.
- In particular, they are good for enumerative combinatorics, for enumerating structures of a given type on a functor.
- Prior work: Directed containers (Ahman, Chapman, Uustalu) as containers with additional structure denoting comonads.
- This talk: Further specializations of containers corresponding to monads, lax monoidal functors (aka idioms) and more.

Containers

- A container is given by
 - a set S (of shapes)
 - and a S-indexed family P of sets (of positions in each shape)

- A container (S, P) interprets into a <u>set functor</u>
 [[S, P]]^c = F where
 - $F X = \Sigma s : S \cdot P s \rightarrow X$
 - $F f = \lambda(s, v). (s, f \circ v)$

Lists container

Let

• The container (S, P) represents the list datatype, as

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

•
$$\llbracket S, P \rrbracket^c X = \Sigma s : \mathbb{N}. [0..s) \to X$$

 $\cong \text{List } X.$

Container morphisms

- A container morphism between (S, P) and (S', P') is given by operations
 - $t: S \rightarrow S'$ (the shape map)
 - and $q: \prod_{s:S} P'(ts) \rightarrow Ps$ (the position map)
- A container morphism (t, q) between (S, P) and (S', P') interprets into a <u>natural transformation</u> [[t, q]]^c = τ between [[S, P]]^c and [[S', P']]^c where

•
$$\tau_X : \llbracket S, P \rrbracket^c X \to \llbracket S', P' \rrbracket^c X$$

 $(\Sigma s : S. P s \to X) \to (\Sigma s' : S'. P' s' \to X)$
 $\tau (s, v) = (t s, v \circ q_s)$

Some lists container endomorphisms

- Let $S = \mathbb{N}$, Ps = [0..s) as before.
- We can define a container endomorphism (t, q) on (S, P) for example by
 - *t s* = *s*

•
$$q_s p = s - p$$

This denotes the list reversal function.

But setting

•
$$ts = s + s$$

• $q_s p = p \mod s$

we get a representation of the list self-append function.

The category of containers

- Identity on (S, P) is $(id_S, \lambda_s, id_{Ps})$.
- Composition of $(t, q) : (S, P) \rightarrow (S', P')$ and $(t', q') : (S', P') \rightarrow (S'', P'')$ is $(t' \circ t, \lambda_s, q_s \circ q'_{ts})$.
- Containers form a category **Cont**.
- $[-]^c$ makes a <u>fully-faithful</u> functor from **Cont** to [**Set**, **Set**].

Two monoidal structures

- The identity container is $\mathsf{Id}^c = (1, \lambda *. 1)$.
- Composition of (S, P) and (S', P') is $(S, P) \cdot^{c} (S', P') = (\Sigma s : S. P s \rightarrow S', \lambda(s, v). \Sigma p : P s. P' (v p)).$
- (Cont, Id^c, ·^c) is a <u>monoidal</u> category and [-]^c a <u>monoidal</u> functor to ([Set, Set], Id, ·).
- Day convolution of (S, P) and (S', P') is
 (S, P) ⊕^c (S', P') = (S × S', λ(s, s'). P s × P' s).
- (Cont, Id^c, ⊛^c) is a symmetric monoidal category and [[−]]^c a symmetric monoidal functor to ([Set, Set], Id, ⊛).
- For any (S, P), (S', P'), there is a container morphism from $(S, P) \circledast^{c} (S', P') \rightarrow (S, P) \cdot^{c} (S', P')$.
- This makes Id_{Cont} a <u>lax monoidal</u> functor from (Cont, Id^c, ·^c) to (Cont, Id^c, ⊛^c).

Mnd-containers

- Call an *mnd-container* a container (S, P) with operations
 - e: *S*
 - •: $\Pi s : S. (P \ s \rightarrow S) \rightarrow S$
 - $q_0: \Pi s: S. \Pi v: P s \rightarrow S. P(s \bullet v) \rightarrow P s$
 - $q_1: \Pi s: S. \Pi v: P s \rightarrow S. \Pi p: P(s \bullet v). P(v(v \land p))$

where we write

- $q_0 s v p$ as $v \uparrow_s p$ and
- $q_1 s v p$ as $p \not\uparrow_v s$

satisfying

•
$$s = s \bullet (\lambda_{-}, e)$$

• $e \bullet (\lambda_{-}, s) = s$
• $(s \bullet v) \bullet (\lambda p'', w (v \land s p'') (p'' \land v s)) = s \bullet (\lambda p', v p' \bullet w p')$

and . . .

Mnd-containers ctd

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Mnd-containers ctd

• An mnd-container $(S, P, e, \bullet, \uparrow, \uparrow)$ interprets into a monad $[S, P, e, \bullet, \uparrow, \land]^{mc} = (T, \eta, \mu)$ where • $T = [S, P]^{c}$ • $\eta_X : X \to T X$ $X \to \Sigma s \cdot S P s \to X$ $\eta x = (e, \lambda_{-}, x)$ • $\mu_X : T(TX) \to TX$ $(\Sigma s : S. P s \rightarrow \Sigma s' : S. P s' \rightarrow X) \rightarrow (\Sigma s : S. P s \rightarrow X)$ $\mu(s,v) =$ let $(v_0 p, v_1 p) \leftarrow v p$ in $(s \bullet v_0, \lambda p, v_1 (v_0 \uparrow_s p) (p \nearrow_{v_0} s))$

The category of mnd-containers

- Mnd-containers form a category MCont, with identities and composition inherited from Cont.
- Mnd-container interpretation $[-]^{mc}$ makes a <u>fully-faithful</u> functor between **MCont** and **Monad(Set)**.

Exception container

• Let S = 1 + E for some set E and $P(\operatorname{inl} *) = 1$, $P(\operatorname{inr}_{-}) = 0$. • Then TX = $\Sigma s : 1 + E$. $\left(\operatorname{case} s \text{ of } \inf_{\operatorname{inr}_{-}}^{\operatorname{inl} *} \mapsto_{-} 1 \right) \to X \cong X + E$. • If, in a hypotetical mnd-container structure on (S, P), $e = \operatorname{inr} e_0$ for some $e_0 : E$, then P = 0 and therefore $\operatorname{inl} * = e \bullet (\lambda_{-}, \operatorname{inl} *) = e \bullet (\lambda_{-}, \operatorname{inr} e_0) = \operatorname{inr} e_0$,

which is absurd.

• If
$$e = inl *$$
, then necessarily
inl $* \bullet v = e \bullet (\lambda *. v *) = v *$ and
inr $e \bullet v = inr e \bullet (\lambda_{-}. e) = inr e$.

- This choice of e and satisfies the conditions of an mnd-container.
- So there is exactly one mnd-container structure on (S, P) and exactly one monad structure on T.

Lists container

• Let
$$S = \mathbb{N}$$
, $P s = [0..s)$.

- Then $TX = \Sigma s : \mathbb{N} \cdot [0..s) \to X \cong \text{List } X$.
- The following is an mnd-container structure:

•
$$e = 1$$

• $s \bullet v = \sum_{p:[0..s)} v p$
• $v \searrow_s p = \text{greatest } p_0 : [0..s) \text{ st } \sum_{p':[0..p_0)} v p' \le p$
• $p \nearrow_v s = p - \sum_{p':[0..v \searrow_s p)} v p'$

- The corresponding monad structure is $\eta_X x = [x], \ \mu_X xss = \text{concat } xss.$
- But these are not the only mnd-container structure on (S, P) and not the only monad structure on T.

Mnd-containers as generalized operads

- The (standard) lists mnd-container generalizes for non-symmetric operads.
- Given an operad, i.e., a set O (of operations) and functions #: O → N (fixing the arities) and id : O (the identity) and o: Πo: O. (# o → O) → O (composition) satisfying # id = 1 and # (o ∘ v) = ∑_{i:[0,#o)} # (v i) and a number of further equations.
- We can take S = O, P o = [0.. # o), e = id, s v = s ∘ v and ∧, ∧ as in the lists mnd-container.
- The lists mnd-container corresponds to the operad Assoc with exactly one operation of every arity.
- General mnd-containers are like operads, but arities may be infinite, identification of the arguments of an operation is nominal, and the arguments of a composition may be used non-linearly by the operations involved (as specified by √, /).

Mnd-containers as lax $(1, \Sigma)$ -universes

- Altenkirch, Pinyo have observed that an mnd-container defines a "lax" (1, Σ)-universe.
 - S is the set of "(codes for) types",
 - *P s* is the "denotation" of *s*,
 - e is the type 1,
 - is the Σ-type former,
 - $\fi),\fi)$ are projections from denotations of $\Sigma\text{-types}$
- The laxity is that 1 need not really denote the singleton set and Σ-types need not really denote dependent products, we only have functions P e → 1 and P(s v) → Σp : P s. P(v p), not isomorphisms.

Lmf-containers

• Call an *Imf-container* a container (S, P) with operations

- e : *S*
- • : $S \rightarrow S \rightarrow S$
- $q_0: \Pi s: S. \Pi s': S. P(s \bullet s') \to P s$
- $q_1: \Pi s: S. \Pi s': S. P(s \bullet s') \to P s'$

where we write

• $q_0 s s' p$ as $s' \uparrow_s p$ and $q_1 s s' p$ as $p
earrow_{s'} s$ satisfying

•
$$e \bullet s = s$$

• $s = s \bullet e$
• $(s \bullet s') \bullet s'' = s \bullet (s' \bullet s'')$
• $e \wedge_s p = p$
• $p \uparrow_s e = p$
• $s' \wedge_s (s'' \wedge_{s \bullet s'} p) = (s' \bullet s'') \wedge_s p$
• $(s'' \wedge_{s \bullet s'} p) \uparrow_{s'} s = s'' \wedge_{s'} (p \uparrow_{s' \bullet s''} s)$
• $p \uparrow_{s''} (s \bullet s') = (p \uparrow_{s' \bullet s''} s) \uparrow_{s''} s'$

Lmf-containers ctd

An Imf-container $(S, P, e, \bullet, \uparrow, \uparrow)$ interprets into a lax monoidal functor $[S, P, e, \bullet, \uparrow, \uparrow]^{lc} = (F, m^0, m)$ where

•
$$F = \llbracket S, P \rrbracket^c$$

• $\mathfrak{m}^0 : 1 \to T 1$
 $1 \to (\Sigma s : S. P s \to 1)$
 $\mathfrak{m}^0 * = (e, \lambda_- . *)$
• $\mathfrak{m}_{X,Y} : T X \times T Y \to T (X \times Y)$
 $(\Sigma s : S. P s \to X) \times (\Sigma s : S. P s \to Y) \to (\Sigma s : S. P s \to X \times Y)$
• $\mathfrak{m}_{X,Y} ((s, v), (s', v')) = (s \bullet s', \lambda p. (v (s' \land s p), v' (p \uparrow s' s)))$

The category of Imf-containers

- Lmf-containers form a category **LCont**, with identities and composition inherited from **Cont**.
- $[-]^{lc}$ is a fully-faithful functor between LCont and LMF(Set).

Mnd-containers vs Imf-containers

- Any mnd-container (S, P, e, ●, ∖, /) defines an Imf-container (S, P, e, ●', ∖', /') by s ●' s' = s ● (λ₋. s').
- Any mnd-container morphism is an Imf-container morphism.
- This gives a faithful functor from **MCont** to **LCont**. This is the functor induced by the lax monoidal functor $Id_{Cont} : (Cont, Id^c, \cdot^c) \rightarrow (Cont, Id^c, \circledast^c).$

Exception container

- Let S = 1 + E for some set E and P(inl *) = 1, $P(\text{inr}_{-}) = 0$.
- Then $T X \cong X + E$.
- If, in an Imf-container structure on (S, P), we had
 e = inr e₀ for some e₀ : E, then inr e₀ inl * = inl *.
 But then q₀ (inr e₀) (inl *) : 1 → 0, which cannot be.
- If e = inl *, then inl * s = s, inr e inl * = inr e, inr e • inr e' = e ⊗ e' where ⊗ must be some semigroup structure on E.
- The unique mnd-container structure on (S, P) corresponds to the particular case of the <u>left zero</u> semigroup, i.e., the semigroup where e ⊗ e' = e.

Lists container

• Let
$$S = \mathbb{N}$$
, $Ps = [0..s)$. Then $TX \cong \text{List } X$.

- The standard mnd-container structure on (*S*, *P*) gives this lmf-container structure:
 - e = 1• $s \bullet s' = s * s'$ • $s' \uparrow_s p = p \operatorname{div} s', p \uparrow_{s'} s = p \operatorname{mod} s'$
- The corresponding lax monoidal functor structure on T is m⁰ * = [*], m_{X,Y} (xs, ys) = [(x, y) | x ← xs, y ← ys].
- But we also have, eg, this Imf-container structure:

•
$$e = 1$$

• $s \bullet s' = s \min s'$
• $s' \uparrow s = p \cdot p \uparrow s = r$

•
$$s' \uparrow_s p = p, p \uparrow_{s'} s = p$$

 The corresponding lax monoidal functor structure is m⁰ * = [*], m_{X,Y} (xs, ys) = zip (xs, ys).

Lmf-containers as operads with restricted composition

- Similarly to the mnd-containers case, the list container example can be generalized.
- The appropriate generalization is a relaxation of non-symmetric operads where parallel composition is only defined when the given *n* operations composed with the given *n*-ary operation are all the same, ie, we have
 ○ : O → O → O and # (o ∘ o') = # o * # o'.

Lmf-containers as lax $(1, \times)$ -universes

 While an mnd-container defines a lax (1, Σ)-universe, an Imf-container defines a lax (1, ×)-universe.

• • is the ×-type former.

Containers \cap commutative monads

• The monad interpreting an mnd-container is commutative (which reduces to the corresponding lax monoidal functor being symmetric) iff

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Containers \cap Cartesian monads

- The monad interpreting an mnd-container is Cartesian (in the sense that all naturality squares of η, μ are pullbacks) iff
 - the function $\lambda_{-} : * : P \operatorname{e} \to 1$ is an isomorphism,
 - for any $s: S, v: P s \to S$, the function $\lambda p. (v \uparrow_s p, p \uparrow_v s) : P(s \bullet v) \to \Sigma p : P s. P(v p)$ is an isomorphism.
- Such mnd-containers are proper $(1, \Sigma)$ -universes.
- With Veltri, we also analyzed a number of other specializations of monads—copy monads, equational lifting monads etc.

Takeaway

- Containers whose interpretation carries a monad or a lax monoidal functor structure admit insightful explicit characterizations as mnd-containers and Imf-containers.
- These explain why set monads and lax monoidal endofunctors have very similar properties (the former also being a special case of the latter).
- Mnd-containers generalize operads, Imf-containers operads with restricted composition.
- Mnd-containers are lax (1, Σ) universes, Imf-containers are lax (1, ×) universes.