Dagger linear logic for categorical quantum mechanics

Robin Cockett, Cole Comfort, and Priyaa Srinivasan

University of Calgary

イロト 不得下 イヨト イヨト ヨー ろくや

 $(\square) (\square$

Dagger compact closed categories

This work is available at arXiv:1809.00275

Dagger compact closed categories (†-KCC) provide a categorical framework to represent finite dimensional quantum processes.

What is a framework that supports infinite dimensional processes?

Dagger compact closed categories \Rightarrow Finite-dimensionality on Hilbert Spaces. Because infinite dimensional Hilbert spaces are not compact closed.

One possibility is to drop the compact closure property and to consider † symmetric monoidal categories (†-SMC).

However, one loses the rich structure provided by the dualizing functor, $\ast.$

(...) (...

Dagger linear logic for quantum processes

Is there a way to generalize *†*-KCCs and still retain the goodness of the compact closed structure?

*-autonomous categories or more generally, linearly distributive categories (LDCs) generalize compact closed categories and allow for infinite dimensions.

What is a dagger structure for LDCs?

What are unitary isomorphisms in †-LDCs?

 $\langle \Box \rangle \langle B \rangle \langle E \rangle \langle E \rangle \rangle \rangle = 0 < 0 < 3/30$

Linearly distributive categories

A linearly distributive category (LDC) has two monoidal structures $(\otimes, \top, a_{\otimes}, u_{\otimes}^L, u_{\otimes}^R)$ and $(\oplus, \bot, a_{\oplus}, u_{\oplus}^L, u_{\oplus}^R)$ linked by natural transformations called the linear distributors:

$$\partial_L : A \otimes (B \oplus C) \to (A \otimes B) \oplus C$$

 $\partial_R : (A \oplus B) \otimes C \to A \oplus (B \otimes C)$

LDCs are equipped with a graphical calculus.

LDCs provide a categorical semantics for multiplicative linear logic.

Mix categories

A mix category is a LDC with a mix map $m:\bot\to\top$ in $\mathbb X$ such that

 $(1 \oplus (u_{\oplus}^{L})^{-1})(1 \otimes (\mathsf{m} \oplus 1))\delta^{L}(u_{\otimes}^{R} \oplus 1) = ((u_{\oplus}^{R})^{-1} \oplus 1)((1 \oplus \mathsf{m}) \otimes 1)\delta^{R}(1 \oplus u_{\otimes}^{R})$

mx is called a **mixor**. The mixor is a natural transformation. It is an **isomix** category if m is an isomorphism.

m being an isomorphism does not make the mixor an isomorphism. 4/30

ADA ABA EAEA E OQO 5/30

The Core of mix category

The core of a mix category, $Core(\mathbb{X}) \subseteq \mathbb{X}$, is the full subcategory determined by objects $U \in \mathbb{X}$ for which the natural transformations are isomorphisms:

$$U \otimes (_) \xrightarrow{\mathsf{mx}_{U,(_)}} U \oplus (_)$$
 $(_) \otimes U \xrightarrow{\mathsf{mx}_{(_),U}} (_) \oplus U$

The core of a mix category is closed to \otimes and \oplus .

The core of an isomix category contains the monoidal units \top and $\bot.$

A **compact LDC** is an LDC in which every mixor is an isomorphism i.e., in a compact LDC $\otimes \simeq \oplus$.

Compact LDCs $(X, \otimes, \top, \oplus, \bot)$ are linearly equivalent to underlying monoidal categories (X, \otimes, \top) and (X, \oplus, \bot) .

Examples of mix categories

A monoidal category is trivially an isomix category: $\otimes = \oplus$

- Finiteness spaces/matrices
- Coherent spaces

 $Chu_I(X)$, The Chu construction over closed symmetric monoidal categories and the monoidal unit

Linear duals

Suppose X is a LDC and $A, B \in X$. Then, B is left linear dual $(\eta, \varepsilon) : B \dashv A$, if there exists

$$\eta:\top\to B\oplus A \qquad \varepsilon:A\otimes B\to\bot$$

such that the snake diagrams hold.

A *-autonomous category is a category in which every object has a chosen left and right linear dual. 7/30

Forging the †

The definition of $\dagger : \mathbb{X}^{op} \to \mathbb{X}$ cannot be directly imported to LDCs because the dagger has to flip the tensor products:

 $(A\otimes B)^{\dagger}=A^{\dagger}\oplus B^{\dagger}$

Why? If the dagger is identity-on-objects, then the linear distributor degenerates to an associator:

$$\frac{\delta_R: (A \oplus B) \otimes C \to A \oplus (B \otimes C)}{(\delta^R)^{\dagger}: A \oplus (B \otimes C) \to (A \oplus B) \otimes C}$$

A = > (= > (= >) (= >) (>) (>)
 A = > (= >) (>) (>) (>)
 A = > (= >) (= >) (>

A $\dagger\text{-}\textbf{LDC}$ is an LDC $\mathbb X$ with a dagger functor $\dagger:\mathbb X^{op}\to\mathbb X$ and the natural isomorphisms:

tensor laxors:
$$\lambda_{\oplus} : A^{\dagger} \oplus B^{\dagger} \rightarrow (A \otimes B)^{\dagger}$$

 $\lambda_{\otimes} : A^{\dagger} \otimes B^{\dagger} \rightarrow (A \oplus B)^{\dagger}$
unit laxors: $\lambda_{\top} : \top \rightarrow \bot^{\dagger}$
 $\lambda_{\perp} : \bot \rightarrow \top^{\dagger}$
involutor: $\iota : A \rightarrow A^{\dagger\dagger}$

such that certain coherence conditions hold.

= D + B + E + E + E + E + Q = 10/30

Coherences for *†*-LDCs

Coherences for the interaction between the tensor laxors and the basic natural isomorphisms (6 coherences):

$$\begin{array}{c|c} A^{\dagger} \otimes (B^{\dagger} \otimes C^{\dagger}) \xrightarrow{a_{\otimes}} (A^{\dagger} \otimes B^{\dagger}) \otimes C^{\dagger} \\ 1 \otimes \lambda_{\otimes} & & & \downarrow \lambda_{\otimes} \otimes 1 \\ (A^{\dagger} \otimes (B \oplus C)^{\dagger}) & (A \oplus B)^{\dagger} \otimes C^{\dagger} \\ \lambda_{\otimes} & & & \downarrow \lambda_{\otimes} \\ (A \oplus (B \oplus C))^{\dagger} \xrightarrow[(a_{\oplus}^{-1})^{\dagger}]^{\dagger} ((A \oplus B) \oplus C)^{\dagger} \end{array}$$

Coherences for *†*-LDCs (cont.)

Interaction between the unit laxors and the unitors (4 coherences):

Interaction between the involutor and the laxors (4 coherences):

†-mix categories

A †-mix category is a †-LDC with $m : \bot \to \top$ such that:

If m is an isomorphism, then \mathbb{X} is a \dagger -isomix category.

Lemma 1: The following diagram commutes in a mix +LDC:

$$\begin{array}{cccc} A^{\dagger} \otimes B^{\dagger} & \xrightarrow{\mathrm{mx}} & A^{\dagger} \oplus B^{\dagger} \\ \lambda_{\otimes} & & & & & & \\ \lambda_{\otimes} & & & & & & \\ (A \oplus B)^{\dagger} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

†-mix categories

Lemma 2: Suppose X is a \dagger -mix category and $A \in Core(X)$ then $A^{\dagger} \in Core(X)$.

Proof: The natural transformation $A^{\dagger} \otimes X \xrightarrow{m_X} A^{\dagger} \oplus X$ is an isomorphism:

$$\begin{array}{c|c} A^{\dagger} \otimes X \xrightarrow{1 \otimes \iota} A^{\dagger} \otimes X^{\dagger \dagger} \xrightarrow{\lambda_{\otimes}} (A \oplus X^{\dagger})^{\dagger} \\ m_{X} & | & | & | \\ m_{X} & | & | \\ n_{at. m_{X}} & m_{X} & | \\ A^{\dagger} \oplus X \xrightarrow{1 \oplus \iota} A^{\dagger} \oplus A^{\dagger \dagger} \xrightarrow{\lambda_{\oplus}} (A \otimes X^{\dagger})^{\dagger} \end{array}$$

commutes.

Example of a *†*-isomix category

Category of finite-dimensional framed vector spaces, $FFVec_K$

- Objects: The objects are pairs (V, V) where V is a finite dimensional K-vector space and $V = \{v_1, ..., v_n\}$ is a basis;
 - Maps: These are vector space homomorphisms which ignore the basis information;

Tensor product:

 $(V, \mathcal{V}) \otimes (W, \mathcal{W}) = (V \otimes W, \{v \otimes w | v \in \mathcal{V}, w \in \mathcal{W}\})$

(14/30)

Tensor unit: $(K, \{e\})$ where *e* is the unit of the field *K*.

Example (cont.)

To define the "dagger" we assume that the field has an involution $\overline{(_)}: K \to K$, that is a field homomorphism with $k = \overline{(\overline{k})}$.

This involution then can be extended to a (covariant) functor:

$$\overline{(_)}: \mathsf{FFVec}_{\mathcal{K}} \to \mathsf{FFVec}_{\mathcal{K}}; \begin{array}{c} (\mathcal{V}, \mathcal{V}) & \overline{(\mathcal{V}, \mathcal{V})} \\ & \downarrow^{\mathcal{F}} & \mapsto & \downarrow^{\overline{\mathcal{F}}} \\ (\mathcal{W}, \mathcal{W}) & \overline{(\mathcal{W}, \mathcal{W})} \end{array}$$

where (V, V) is the vector space with the same basis but the conjugate action $c \cdot v = \overline{c} \cdot v$. \overline{f} is the same underlying map.

Example (cont.)

 $\mathsf{FFVec}_{\mathcal{K}} \text{ is also a compact closed category with} \\ (V, \mathcal{B})^* = (V^*, \{\widetilde{b_i} | b_i \in \mathcal{B}\}) \text{ where}$

$$V^* = V \multimap K$$
 and $\widetilde{b_i} : V \to K; \left(\sum_j eta_j \cdot b_j\right) \mapsto eta_i$

Hence, we have a contravariant functor $(_)^* : \mathsf{FFVec}_{\mathcal{K}}^{\mathrm{op}} \to \mathsf{FFVec}_{\mathcal{K}}$.

$$(V,\mathcal{B})^{\dagger}=\overline{(V,\mathcal{B})^{*}}$$

$$\iota: (V, \mathcal{V}) \to ((V, \mathcal{V})^{\dagger})^{\dagger}; v \mapsto \lambda f.f(v)$$

 $\mathsf{FFVec}_{\mathcal{K}}$ is a compact LDC: \otimes and \oplus coincides.

Diagrammatic calculus for †-LDC

Extends the diagrammatic calculus of LDCs

The action of dagger is represented diagrammatically using dagger boxes:

Next step: Unitary structure

Define †-LDC Define unitary isomorphisms

The usual definition of unitary maps $(f^{\dagger}: B^{\dagger} \rightarrow A^{\dagger} = f^{-1}: B \rightarrow A)$ is applicable only when the \dagger functor is stationary on objects.

Unitary structure

A †-isomix category has **unitary structure** in case there is an essentially small class of objects called **unitary objects** such that:

- Every unitary object, $A \in \mathcal{U}$, is in the core;
- Each unitary object A ∈ U comes equipped with an isomorphism, called the unitary strucure of A, ^A_{Aⁱ}: A → A[†] such that

Unitary structure (cont.)

• \top, \bot are unitary objects with:

$$arphi_{\perp} = \mathsf{m}\lambda_{ op} \qquad arphi_{ op} = \mathsf{m}^{-1}\lambda_{\perp}$$

 If A and B are unitary objects then A ⊗ B and A ⊕ B are unitary objects such that:

$$A \otimes B \xrightarrow{\varphi_{A \otimes B}} (A \otimes B)^{\dagger} \xrightarrow{\lambda_{\oplus}^{-1}} A^{\dagger} \oplus B^{\dagger} \xrightarrow{\varphi_{A}^{-1} \oplus \varphi_{B}^{-1}} A \oplus B = \mathsf{mx}$$

$$A \otimes B \xrightarrow{\varphi_A \otimes \varphi_B} (A^{\dagger} \otimes B^{\dagger} \xrightarrow{\lambda_{\otimes}} (A \oplus B)^{\dagger} \xrightarrow{\varphi_{(A \oplus B)}^{-1}} A \oplus B = \mathsf{mx}$$

A B > A B > A B > B OQ
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

21/30

Unitary isomorphisms

Suppose A and B are unitary objects. An isomorphism $A \xrightarrow{t} B$ is said to be a **unitary isomorphism** if the following diagram commutes:

Lemma: In a †-isomix category with unitary structure,

- f^{\dagger} is a unitary map iff f is;
- $f \otimes g$ and $f \oplus g$ are unitary maps whenever f and g are.
- $a_{\otimes}, a_{\oplus}, c_{\otimes}, c_{\oplus}, \delta^{L}$, m, and mx are unitary isomorphisms.
- $\lambda_{\otimes}, \lambda_{\oplus}, \lambda_{\top}, \lambda_{\perp}$, and ι are unitary isomorphisms.
- φ_A is a unitary isomorphisms for for all unitary objects A_{α}

Unitary structure of FFVec_K

Unitary structure for $\mathsf{FFVec}_{\mathcal{K}}$ is $\varphi_{(\mathcal{V},\mathcal{V})} : (\mathcal{V},\mathcal{V}) \to (\mathcal{V},\mathcal{V})^{\dagger}; v_i \mapsto \widetilde{v_i}$

Define a functor $U : \mathsf{FFVec}_{\mathcal{K}} \to \mathsf{Mat}(\mathcal{K})$

- for each object in $\mathsf{FFVec}_{\mathcal{K}}$ we choose a total order on the elements of the basis

- any map is given by a matrix acting on the bases

Lemma: An isomorphism $u : (A, A) \rightarrow (B, B)$ in FFVec_K is unitary if and only if U(f) is unitary in Mat(K).

Mixed Unitary Categories

Unitary construction 00000

Unitary duals

A linear dual (η, ε) : $A \dashv_u B$ is a **unitary linear dual** if A and B are unitary objects satisfying in addition:

Unitary categories

A **unitary category** is a compact *†*-LDC in which every object is unitary.

Unitary categories are '†- linearly equivalent' to dagger monoidal categories.

A unitary category is **closed** if every object has a unitary dual.

Closed unitary categories are '†- linearly equivalent' to dagger compact closed categories

Mixed Unitary Categories

A Mixed Unitary Category is a

†-isomix functor: Unitary category \rightarrow †-isomix category

The functor factors through the Core of the *†*-isomix category.

Examples: Finiteness matrices, Coherent spaces, Chu Spaces over involutive closed monoidal categories and the monoidal unit

10, 10, 10, 12, 12, 12, 12, 000 26/30

Unitary construction

In a \dagger -mix category a **pre-unitary object** is an object U, which in the core, together with an isomorphism:

$$lpha:U
ightarrow U^{\dagger}$$
 such that $lpha(lpha^{-1})^{\dagger}=\iota$

Suppose \mathbb{X} is a \dagger -isomix category, then define Unitary(\mathbb{X}): Objects: Pre-unitary objects (U, α) Maps: $(U, \alpha) \xrightarrow{f} (V, \beta)$ where $U \xrightarrow{f} V$ is in \mathbb{X}

Unitary construction (cont.)

 $\otimes \text{ on objects: } (A, \alpha) \otimes (B, \beta) :=$ $(A \otimes B, A \otimes B \xrightarrow{\mathsf{mx}} A \oplus B \xrightarrow{\alpha \oplus \beta} A^{\dagger} \oplus B^{\dagger} \xrightarrow{\lambda_{\oplus}} (A \otimes B)^{\dagger})$ $\text{Unit of } \otimes : (\top, \mathsf{m}^{-1}\lambda_{\perp} : \top \to \top^{\dagger})$ $\oplus \text{ on objects: } (A, \alpha) \oplus (B, \beta) :=$ $(A \oplus B, A \oplus B \xrightarrow{\mathsf{mx}^{-1}} A \otimes B \xrightarrow{\alpha \otimes \beta} A^{\dagger} \otimes B^{\dagger} \xrightarrow{\lambda_{\otimes}} (A \oplus B)^{\dagger}$ $\text{Unit of } \oplus : (\bot, \mathsf{m}\lambda_{\top} : \bot \to \bot^{\dagger})$

<ロト 4 @ ト 4 E ト 4 E ト E の 4 @ 27/30

Unitary construction (cont.)

Lemma: Unitary(\mathbb{X}) is a unitary category. **Proof:**

$$(U,\alpha)^{\dagger} := (U^{\dagger}, (\alpha^{-1})^{\dagger})$$

 $(U, \alpha)^{\dagger} \in \mathsf{Unitary}(X)$:

$$(\alpha^{-1})^{\dagger}(((\alpha^{-1})^{\dagger})^{-1})^{\dagger} = (\alpha^{-1})^{\dagger}(\alpha^{\dagger})^{\dagger} = (\alpha^{\dagger}\alpha^{-1})^{\dagger} = (\iota^{-1})^{\dagger} = \iota$$

Every object (U, α) has an obvious unitary structure:

$$(U, \alpha) \xrightarrow{\alpha} (U^{\dagger}, (\alpha^{-1})^{\dagger})$$

Proposition: If X is any †-isomix category, then Unitary(X) is a unitary category with a full and faithful underlying †-isomix functor to U: Unitary(X) \rightarrow X.

A Mixed Unitary Category (a MUC) is:

†-isomix functor: Unitary category \rightarrow †-isomix category

Unitary categories are compact \dagger -LDCs in which every object is unitary.

Unitary categories are '†-linearly equivalent' to † monoidal categories.

The dagger functor is non-stationary on objects in *†*-isomix categories.

Bibliography

LDC: Robin Cockett, and Robert Seely. Weakly distributive categories. Journal of Pure and Applied Algebra 114.2 (1997): 133-173. The core of a mix category: Richard Blute, Robin Cockett, and Robert Seely. Feedback for linearly distributive categories: traces and fixpoints. Journal of Pure and Applied Algebra 154.1-3 (2000): 27-69. Graphical calculus for LDCs: Richard Blute, Robin Cockett, Robert Seely, and Tood Trimble. Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra

113.3 (1996): 229-296.

Linear logic: Girard, Jean-Yves. Linear logic. Theoretical computer science 50.1 (1987): 1-101.