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String diagrams

• A graphical way of reasoning about monoidal categories

• 2-dimensional diagrams manipulated according to algebraic
rules – hot research topic

• ZX calculus (Coecke, Duncan)
• Signal flow graphs (Bonchi, Sobocinski, Zanasi)
• Monoidal computer (Pavlovic)
• . . .
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Relations with string diagrams

The category Rel of sets with relations as morphisms

• forms a symmetric monoidal category:

R1 ⊗R2 = {((a, b), (c, d)) | (a, c) ∈ R1, (b, d) ∈ R2}

R1
a c

R2
b d

• Composition:

R1 ;R2 = {(x, z) | ∃y : (x, y) ∈ R1, (y, z) ∈ R2}

R1 R2
x y z
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Relations with string diagrams

• Relations are ordered by inclusion

• Every object:
• Copying and discarding ,

• Equality and “spawn” ,
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Cartesian bicategories

Definition (Carboni & Walters)

A Cartesian bicategory

is a locally ordered symmetric monoidal
category where every object is equipped with

• a comonoid

• a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the
comonoid and the monoid.

Idea: Do categorical logic with Cartesian bicategories.
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Categorical logic with Cartesian bicategories

Definition
A model of B (in Rel) is a morphism

M : B → Rel

Problem (Completeness)

For morphisms x, y in B such thatM(x) ⊆M(y) for all models
M, is x ≤ y?
Not to be confused with “functional completeness”!
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The syntactic Cartesian bicategory

Signature Σ

, each R ∈ Σ equipped with arity and coarity
R : n→ m.
Freely generated (syntactic) Cartesian bicategory CBΣ has
objects N and morphisms

Mor(CBΣ) ::= ε
∣∣∣ ∣∣∣ ∣∣∣ ...

...S2

...
...S1
∣∣∣ ...

...S1
...S2

∣∣∣∣∣∣ ∣∣∣ ∣∣∣ ∣∣∣ ...
...R

modulo the laws of Cartesian bicategories.
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Cartesian bicategories and logic

CBΣ can emulate regular logic.

Example

∃z0, z1 : R(x0, z0) ∧R(x1, z0) ∧R(x0, z1) ∧R(x1, z1),

R

R

R

R

One-to-one correspondence between string diagrams and regular
logic.
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Conjunctive queries

• Conjunctive queries: logical formulas made of ∃, ∧, >, =
and symbols from the signature Σ.

• Model: A set of discourse X and interpretation JRK ⊆ Xn

for every R ∈ Σ.

• Extends to a semantics function J•K in the obvious way.

• Model in this sense is the same thing as a morphism
CBΣ → Rel.

• Query inclusion: φ ≤ ψ iff M(φ) ⊆M(ψ) in all models M.
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Query inclusion

Example

hasGrandson := ∃v, c : Parent(g, v) ∧ Parent(v, c) ∧Male(c)

hasGrandson ≤ grandparent := ∃v, c : Parent(g, v) ∧ Parent(v, c)

φ = ∃z0 : (x0 = x1) ∧R(x0, z0)

ψ = ∃z0, z1 : R(x0, z0) ∧R(x1, z0) ∧R(x0, z1) ∧R(x1, z1)

φ ≤ ψ
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database theory logic category theory

query logical formula morphism S in CBΣ

database model morphism M : CBΣ → Rel

answer to query semantics M(S)
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Using the dictionary

Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with
interfaces).

Query inclusion reduces to the existence of an
(interface-preserving) hypergraph homomorphism.

Example

∃z0,z1 : R(x0,z0)∧R(x1,z0)∧R(x0,z1)∧R(x1,z1) ∃z0 : (x0=x1)∧R(x0,z0)
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Cospans

Cartesian bicategory Cospan∼C:

• Morphisms cospans X G Y

• Chandra & Merlin ordering:

X G Y ≤ X H Y iff

H

X Y

G

∃

Dually define Span∼C with all arrows reversed.
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Corollary from Completeness

Corollary

The laws of Cartesian bicategories are sound and complete for
query inclusion.

CBΣ is an algebra for conjunctive queries.
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Summary
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Next step

Theorem (hopefully coming soon)

Given morphisms x, y in B such thatM(x) ⊆M(y) for all
M : B → Rel. Then

x ≤ y
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