Graphical Conjunctive Queries A completeness theorem for Cartesian bicategories

Filippo Bonchi, Jens Seeber, Paweł Sobociński

IMT School for Advanced Studies Lucca

Birmingham - 21st September, 2018

Conjunctive queries

Completeness

String diagrams

• A graphical way of reasoning about monoidal categories

- A graphical way of reasoning about monoidal categories
 - 2-dimensional diagrams manipulated according to algebraic rules hot research topic

SCHOOL FOR ADV STUDIES LUCCA

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

- A graphical way of reasoning about monoidal categories
 - 2-dimensional diagrams manipulated according to algebraic rules hot research topic
 - ZX calculus (Coecke, Duncan)

SCHOOL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A graphical way of reasoning about monoidal categories
 - 2-dimensional diagrams manipulated according to algebraic rules hot research topic
 - ZX calculus (Coecke, Duncan)
 - Signal flow graphs (Bonchi, Sobocinski, Zanasi)

SCHOOL FOR ADV STUDIES LUCCA

うして ふゆ く は く は く む く し く

- A graphical way of reasoning about monoidal categories
 - 2-dimensional diagrams manipulated according to algebraic rules hot research topic
 - ZX calculus (Coecke, Duncan)
 - Signal flow graphs (Bonchi, Sobocinski, Zanasi)
 - Monoidal computer (Pavlovic)

- A graphical way of reasoning about monoidal categories
 - 2-dimensional diagrams manipulated according to algebraic rules hot research topic
 - ZX calculus (Coecke, Duncan)
 - Signal flow graphs (Bonchi, Sobocinski, Zanasi)
 - Monoidal computer (Pavlovic)
 - . . .

The category ${\bf Rel}$ of sets with relations as morphisms

The category ${\bf Rel}$ of sets with relations as morphisms

• forms a symmetric monoidal category:

The category ${\bf Rel}$ of sets with relations as morphisms

• forms a symmetric monoidal category:

 $R_1 \otimes R_2 = \{((a,b), (c,d)) \mid (a,c) \in R_1, (b,d) \in R_2\}$

The category **Rel** of sets with relations as morphisms

• forms a symmetric monoidal category:

 $R_1 \otimes R_2 = \{((a,b), (c,d)) \mid (a,c) \in R_1, (b,d) \in R_2\}$

• Composition:

$$R_1; R_2 = \{(x, z) \mid \exists y : (x, y) \in R_1, (y, z) \in R_2\}$$

• Relations are ordered by inclusion

- Relations are ordered by inclusion
- Every object:

- Relations are ordered by inclusion
- Every object:
 - Copying and discarding —

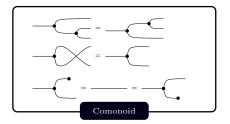
- Relations are ordered by inclusion
- Every object:
 - Copying and discarding -- , -- •

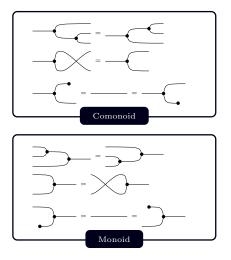
SCHOOL FOR ADV STUDIES LUCCA

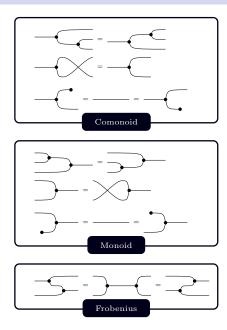
イロト イポト イヨト イヨト 三日

- Relations are ordered by inclusion
- Every object:
 - Copying and discarding -- , -- •
 - Equality and "spawn"

- Relations are ordered by inclusion
- Every object:

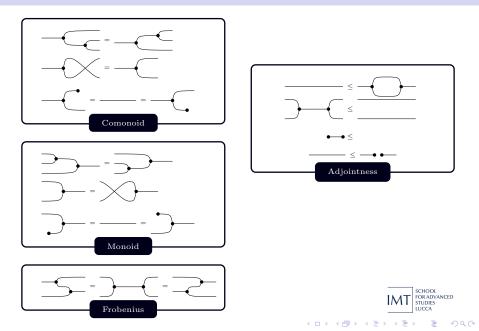


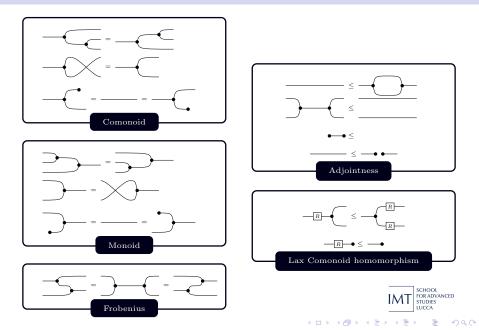




æ

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト





Definition (Carboni & Walters) A Cartesian bicategory

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

• a comonoid

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- $\bullet\,$ a monoid

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor

SCHOOL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the comonoid and the monoid.

Definition (Carboni & Walters)

A Cartesian bicategory is a locally ordered symmetric monoidal category where every object is equipped with

- a comonoid
- a monoid

satisfying coherence and the laws on the last slide.

A morphism is a monoidal functor preserving the ordering, the comonoid and the monoid.

Idea: Do categorical logic with Cartesian bicategories.

Categorical logic with Cartesian bicategories

Definition A model of \mathcal{B} (in **Rel**) is a morphism

 $\mathcal{M}\colon \mathcal{B} \to \mathbf{Rel}$

Categorical logic with Cartesian bicategories

Definition A model of \mathcal{B} (in **Rel**) is a morphism

 $\mathcal{M}\colon \mathcal{B} \to \mathbf{Rel}$

Problem (Completeness)

For morphisms x, y in \mathcal{B} such that $\mathcal{M}(x) \subseteq \mathcal{M}(y)$ for all models \mathcal{M} , is $x \leq y$?

Definition A model of \mathcal{B} (in **Rel**) is a morphism

 $\mathcal{M}\colon \mathcal{B}\to \mathbf{Rel}$

Problem (Completeness)

For morphisms x, y in \mathcal{B} such that $\mathcal{M}(x) \subseteq \mathcal{M}(y)$ for all models \mathcal{M} , is $x \leq y$?

Not to be confused with "functional completeness"!

The syntactic Cartesian bicategory

Signature Σ

The syntactic Cartesian bicategory

Signature Σ , each $R \in \Sigma$ equipped with arity and coarity $R: n \to m$.

The syntactic Cartesian bicategory

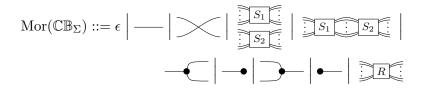
Signature Σ , each $R \in \Sigma$ equipped with arity and coarity $R: n \to m$. Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

Signature Σ , each $R \in \Sigma$ equipped with arity and coarity $R: n \to m$.

Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

Signature Σ , each $R \in \Sigma$ equipped with arity and coarity $R: n \to m$.

Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms

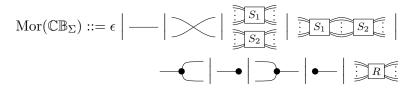


э

イロト 不得下 イヨト イヨト

Signature Σ , each $R \in \Sigma$ equipped with arity and coarity $R: n \to m$.

Freely generated (syntactic) Cartesian bicategory \mathbb{CB}_{Σ} has objects \mathbb{N} and morphisms



modulo the laws of Cartesian bicategories.

Cartesian bicategories and logic

 \mathbb{CB}_{Σ} can emulate regular logic.

Cartesian bicategories and logic

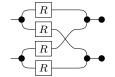
 \mathbb{CB}_{Σ} can emulate regular logic.

Example

$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1),$$

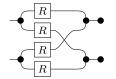
\mathbb{CB}_{Σ} can emulate regular logic. Example

$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1),$$



\mathbb{CB}_{Σ} can emulate regular logic. Example

$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1),$$



One-to-one correspondence between string diagrams and regular logic.

• Cartesian bicategories

Conjunctive queries

Completeness

• Conjunctive queries: logical formulas made of $\exists, \land, \top, =$ and symbols from the signature Σ .

- Conjunctive queries: logical formulas made of $\exists, \land, \top, =$ and symbols from the signature Σ .
- Model: A set of discourse X and interpretation $\llbracket R \rrbracket \subseteq X^n$ for every $R \in \Sigma$.

- Conjunctive queries: logical formulas made of $\exists, \land, \top, =$ and symbols from the signature Σ .
- Model: A set of discourse X and interpretation $\llbracket R \rrbracket \subseteq X^n$ for every $R \in \Sigma$.
- $\bullet\,$ Extends to a semantics function $[\![\bullet]\!]$ in the obvious way.

SCHOOL

うして ふゆ く は く は く む く し く

- Conjunctive queries: logical formulas made of $\exists, \land, \top, =$ and symbols from the signature Σ .
- Model: A set of discourse X and interpretation $\llbracket R \rrbracket \subseteq X^n$ for every $R \in \Sigma$.
- $\bullet\,$ Extends to a semantics function $[\![\bullet]\!]$ in the obvious way.
- Model in this sense is the same thing as a morphism $\mathbb{CB}_{\Sigma} \to \mathbf{Rel}.$

SCHOOL

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Conjunctive queries: logical formulas made of $\exists, \land, \top, =$ and symbols from the signature Σ .
- Model: A set of discourse X and interpretation $\llbracket R \rrbracket \subseteq X^n$ for every $R \in \Sigma$.
- $\bullet\,$ Extends to a semantics function $[\![\bullet]\!]$ in the obvious way.
- Model in this sense is the same thing as a morphism $\mathbb{CB}_{\Sigma} \to \mathbf{Rel}.$
- Query inclusion: $\phi \leq \psi$ iff $\mathcal{M}(\phi) \subseteq \mathcal{M}(\psi)$ in all models \mathcal{M} .

Query inclusion

Example

hasGrandson := $\exists v, c : \operatorname{Parent}(g, v) \land \operatorname{Parent}(v, c) \land \operatorname{Male}(c)$

Query inclusion

Example

hasGrandson := $\exists v, c : \operatorname{Parent}(g, v) \land \operatorname{Parent}(v, c) \land \operatorname{Male}(c)$

hasGrandson \leq grandparent := $\exists v, c : \operatorname{Parent}(g, v) \land \operatorname{Parent}(v, c)$

Query inclusion

Example

hasGrandson := $\exists v, c : \operatorname{Parent}(g, v) \land \operatorname{Parent}(v, c) \land \operatorname{Male}(c)$

 $\mathsf{hasGrandson} \leq \mathsf{grandparent} := \exists v, c : \mathsf{Parent}(g, v) \land \mathsf{Parent}(v, c)$

$$\phi = \exists z_0 \colon (x_0 = x_1) \land R(x_0, z_0)$$
$$\psi = \exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1)$$
$$\phi \le \psi$$

database theory | logic | category theory

database theory	logic	category theory
query	logical formula	morphism S in \mathbb{CB}_{Σ}

database theory	logic	category theory
query	logical formula	morphism S in \mathbb{CB}_{Σ}
database	model	morphism $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$

database theory	logic	category theory
query	logical formula	morphism S in \mathbb{CB}_{Σ}
database	model	morphism $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$
answer to query	semantics	$\mathcal{M}(S)$

Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with interfaces).

Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with interfaces). Query inclusion reduces to the existence of an (interface-preserving) hypergraph homomorphism.

Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with interfaces). Query inclusion reduces to the existence of an (interface-preserving) hypergraph homomorphism.

Example

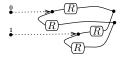
$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1) \quad \exists z_0 \colon (x_0 = x_1) \land R(x_0, z_0)$$

Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with interfaces). Query inclusion reduces to the existence of an (interface-preserving) hypergraph homomorphism.

Example

$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1) \quad \exists z_0 \colon (x_0 = x_1) \land R(x_0, z_0)$$

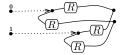


Theorem (Chandra, Merlin (1977))

Conjunctive queries can be translated into hypergraphs (with interfaces). Query inclusion reduces to the existence of an (interface-preserving) hypergraph homomorphism.

Example

$$\exists z_0, z_1 \colon R(x_0, z_0) \land R(x_1, z_0) \land R(x_0, z_1) \land R(x_1, z_1) \quad \exists z_0 \colon (x_0 = x_1) \land R(x_0, z_0)$$



イロト 不得下 イヨト イヨト

3

• Morphisms cospans $X \longrightarrow G \longleftarrow Y$

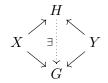
- Morphisms cospans $X \longrightarrow G \longleftarrow Y$
- Chandra & Merlin ordering:

- Morphisms cospans $X \longrightarrow G \longleftarrow Y$
- Chandra & Merlin ordering:

$$X \longrightarrow G \longleftarrow Y \leq X \longrightarrow H \longleftarrow Y$$

- Morphisms cospans $X \longrightarrow G \longleftarrow Y$
- Chandra & Merlin ordering:

$$X \longrightarrow G \longleftarrow Y \leq X \longrightarrow H \longleftarrow Y \qquad \text{iff} \qquad$$



・ロト ・四ト ・ヨト ・ヨト

- 2

- Morphisms cospans $X \longrightarrow G \longleftarrow Y$
- Chandra & Merlin ordering:

$$X \to G \leftarrow Y \le X \to H \leftarrow Y \quad \text{iff} \quad X \stackrel{H}{\searrow} \stackrel{V}{\searrow} \stackrel{Y}{\swarrow} \stackrel{V}{\swarrow} \stackrel{Y}{\swarrow}$$

Dually define $\mathsf{Span}^{\sim}\mathcal{C}$ with all arrows reversed.

• Cartesian bicategories

2 Conjunctive queries

Graphical theorem

Theorem (Graphical theorem)

 $\mathbb{CB}_{\Sigma} \cong \mathsf{DiscCospan}^{\sim} \mathbf{Hyp}_{\Sigma} \subseteq \mathsf{Cospan}^{\sim} \mathbf{Hyp}_{\Sigma}$

Graphical theorem

Theorem (Graphical theorem)

$$\mathbb{CB}_{\Sigma} \cong \mathsf{DiscCospan}^{\sim} \mathbf{Hyp}_{\Sigma} \subseteq \mathsf{Cospan}^{\sim} \mathbf{Hyp}_{\Sigma}$$

Lemma

 $\mathbf{Rel}\cong\mathsf{Span}^{\sim}\operatorname{\mathbf{Set}}$

Theorem (Graphical theorem)

$$\mathbb{CB}_{\Sigma}\cong\mathsf{DiscCospan}^{\sim}\mathbf{Hyp}_{\Sigma}\subseteq\mathsf{Cospan}^{\sim}\mathbf{Hyp}_{\Sigma}$$

Lemma

 $\mathbf{Rel}\cong\mathsf{Span}^{\sim}\,\mathbf{Set}$

Theorem (Completeness for \mathbb{CB}_{Σ})

 ϕ, ψ morphisms in \mathbb{CB}_{Σ} such that $\mathcal{M}(\phi) \subseteq \mathcal{M}(\psi)$ for all morphisms $\mathcal{M} \colon \mathbb{CB}_{\Sigma} \to \mathbf{Rel}$. Then $\phi \leq \psi$.

Theorem (Graphical theorem)

$$\mathbb{CB}_{\Sigma} \cong \mathsf{DiscCospan}^{\sim} \mathbf{Hyp}_{\Sigma} \subseteq \mathsf{Cospan}^{\sim} \mathbf{Hyp}_{\Sigma}$$

Lemma

 $\mathbf{Rel}\cong\mathsf{Span}^{\sim}\,\mathbf{Set}$

Theorem (Completeness for Cospan[~]C) ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~]C \rightarrow Span[~] Set. Then $\phi \leq \psi$.

Theorem (Completeness for Cospan[~]C) ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~] $C \rightarrow$ Span[~] Set. Then $\phi \leq \psi$.

Theorem (Completeness for $\mathsf{Cospan}^{\sim}\mathcal{C}$) ϕ, ψ morphisms in $\mathsf{Cospan}^{\sim}\mathcal{C}$ such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all

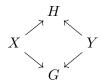
morphisms \mathcal{M} : Cospan[~] $\mathcal{C} \to$ Span[~] Set. *Then* $\phi \leq \psi$.

Proof.

Theorem (Completeness for $\mathsf{Cospan}^{\sim}\mathcal{C}$)

 ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~]C \rightarrow Span[~] Set. Then $\phi \leq \psi$.

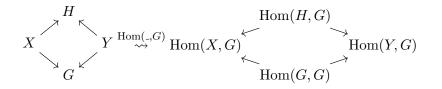
Proof.



Theorem (Completeness for $\mathsf{Cospan}^{\sim}\mathcal{C}$)

 ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~]C \rightarrow Span[~] Set. Then $\phi \leq \psi$.

Proof.

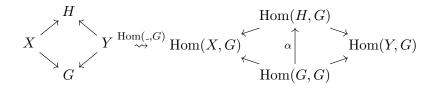


(日)

Theorem (Completeness for $\mathsf{Cospan}^{\sim}\mathcal{C}$)

 ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~]C \rightarrow Span[~] Set. Then $\phi \leq \psi$.

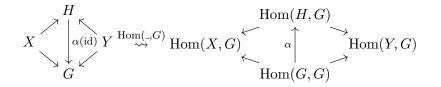
Proof.



Theorem (Completeness for $\mathsf{Cospan}^{\sim}\mathcal{C}$)

 ϕ, ψ morphisms in Cospan[~]C such that $\mathcal{M}(\phi) \leq \mathcal{M}(\psi)$ for all morphisms \mathcal{M} : Cospan[~]C \rightarrow Span[~] Set. Then $\phi \leq \psi$.

Proof.



Corollary

The laws of Cartesian bicategories are sound and complete for query inclusion.

Corollary

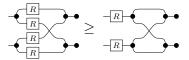
The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.

Corollary

The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.

Corollary

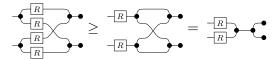
The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.



< ロト < 同ト < 三ト

Corollary

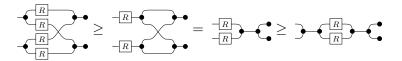
The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.



(日)、

Corollary

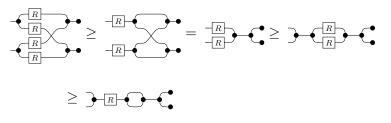
The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.



< ロト < 同ト < 三ト

Corollary

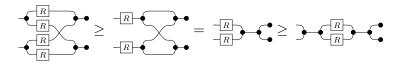
The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.

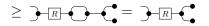


Corollary

The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.

Example



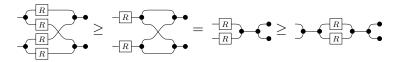


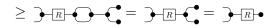
・ロト ・ 同ト ・ ヨト ・ ヨ

Corollary

The laws of Cartesian bicategories are sound and complete for query inclusion. \mathbb{CB}_{Σ} is an algebra for conjunctive queries.

Example



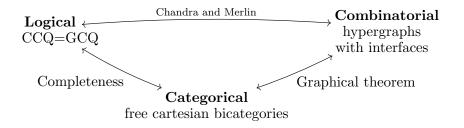


イロト イポト イヨト イヨ

• Cartesian bicategories

Conjunctive queries

Completeness



Theorem (hopefully coming soon)

Given morphisms x, y in \mathcal{B} such that $\mathcal{M}(x) \subseteq \mathcal{M}(y)$ for all $\mathcal{M}: \mathcal{B} \to \mathbf{Rel}$. Then

$$x \leq y$$

