Relating Idioms, Arrows and Monads from
Monoidal Adjunctions @ SYCO |

Exequiel Rivas
September 2018

Team 7r2, Inria

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that
a program denotes a morphism from A to TB.

E. Moggi 1989

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that
a program denotes a morphism from A to TB.

E. Moggi 1989

Moggi used monads for an unified treatment of effects.

d—~T<" TorT

His usages follows:

» 1 lifts values to effectful computations, i.e. return.

» 1 composes two effects sequentially, i.e. ;.

Wadler: monads as an interface
Monads can be internalised as an interface.

class Functor m = Monad m where
return::a— m a
(>=) sma—(a—mb)—mb

The state monad State comes with operations

get :: State Int |, put :: Int — State ()

Computaions written using these operations and the interface.

get >= \i — if i = 0 then return False
else put 1 >=_ — return True

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor f = Idiom f where
pure::a—f a
(®) =f(a—b)—>Ffa—fb

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor f = Idiom f where
pure::a—f a
(®) =f(a—b)—>Ffa—fb

class Arrow (~~) where
arr t(x—=y) o x~y
>)u(x~y)=(y~z) 2o x~wz
first = (x ~y)— (x,2) ~ (y,2)

Idioms are oblivious, arrows are meticulous, monads are ...

Lindley, Wadler and Yallop (2008), proved the equivalences

ldiom = Arrow + (x ~» y = 1~ (x — y)),
Monad = Arrow + (x ~ y & x — (1 ~ y))

Idioms are oblivious, arrows are meticulous, monads are ...

Lindley, Wadler and Yallop (2008), proved the equivalences

ldiom = Arrow + (x ~» y =1~ (x — y)),

Monad = Arrow + (x ~» y Z x — (1 ~ y))

Following a syntactic approach: calculi and translations.

Idioms are oblivious, arrows are meticulous, monads are ...

Lindley, Wadler and Yallop (2008), proved the equivalences

ldiom = Arrow + (x ~» y =1~ (x — y)),

Monad = Arrow + (x ~» y Z x — (1 ~ y))

Following a syntactic approach: calculi and translations.

We aim for a semantic explanation, modelling:

» Arrows as profunctors F°P x F — S with monoid structure.

» Monads and idioms as functors F — S with monoid structure.

Notions of computations as monoids

Monads, idioms and arrows have

» an operation embedding pure values: return, pure and arr.

» an operation sequencing computations: (=), (®) and (=>).

Notions of computations as monoids

Monads, idioms and arrows have

» an operation embedding pure values: return, pure and arr.

» an operation sequencing computations: (=), (®) and (=>).

Resemble monoids.

Notions of computations as monoids

Monads, idioms and arrows have

» an operation embedding pure values: return, pure and arr.

» an operation sequencing computations: (=), (®) and (=>).

Resemble monoids.
We model computational effects using monoidal categories.

Monad = Monoid in ([F,S], o)
Idiom = Monoid in ([F,S],)
Arrow = Monoid in ([F°P x F, S|, ®)

Monoidal structures: o

The category of finitary endofunctors [F, S| has a substitution
monoidal structure.

Y
(FoG)X:/ FY x (Y = GX)

The inclusion 7 : F — S acts as unit.

Monoidal structures: o

The category of finitary endofunctors [F, S| has a substitution
monoidal structure.

Y
(FoG)X:/ FY x (Y = GX)

The inclusion 7 : F — S acts as unit.

A monoid

; return M (>=) Mo M

in ([F,S],o,i) is a monad.

Monoidal structures: %

The category [F,S] also has a convolution monoidal structure.

Y
(F*G)X:/ FY x G(Y = X)

The inclusion 7 : F — S also acts as the unit.

Monoidal structures: %

The category [F,S] also has a convolution monoidal structure.

Y
(F*G)X:/ FY x G(Y = X)

The inclusion 7 : F — S also acts as the unit.

A monoid
pure

i F

in ([F,S],*,) is an idiom.

Intermezzo: strong profunctors

Profunctors compatible with the underlying cartesian structure.

Intermezzo: strong profunctors

Profunctors compatible with the underlying cartesian structure.

A profunctor P : F°P X F — S is strong if it comes equipped with
a family of morphisms

strx.y.z: P(X,Y) = P(X x Z,Y x Z)

natural in X, Y and dinatural in Z such that the following
equations hold:

P(id,ﬂ']_) ostrx yi1= P(Tl'l,id),

—1

strx,y,w ostrx y,v = P(Oz ,a) ostrx,y, vxw

Monoidal structures: ®

Strong profunctors F°P x F — S have composition of profunctors.

w
(P® Q)(X,Y) :/ P(X, W) x Q(W, Y)

The hom-set Homy : [F°P x F — S as the unit.

10

Monoidal structures: ®

Strong profunctors F°P x F — S have composition of profunctors.

w
(P® Q)(X,Y) :/ P(X, W) x Q(W, Y)

The hom-set Homy : [F°P x F — S as the unit.

A monoid

(>>)

Homp a A AR A

in ([F°P x I, S], , ®, Homp) is an arrow.

10

The equations Il

ldiom = Arrow + (x ~» y = 1 ~ (x — y)),

Monad = Arrow + (x ~» y = x — (1 ~ y))

We have defined Idiom, Monad and Arrow in our model:

Monad = Monoid in ([F,S], o)
Idiom = Monoid in ([F,S], %)
Arrow = Monoid in ([F°P x F, S|, ®)

11

The equations Il

ldiom = Arrow + (x ~» y = 1 ~ (x — y)),

Monad = Arrow + (x ~» y = x — (1 ~ y))

We have defined Idiom, Monad and Arrow in our model:

Monad = Monoid in ([F,S], o)
Idiom = Monoid in ([F,S], %)
Arrow = Monoid in ([F°P x F, S|, ®)

Isomorphisms on the right still missing.

11

Formalising the isomorphisms

As a first step, we model the isomorphisms for profunctors.

If A is the strong profunctor underlying the arrow (~)

x~yElw(x=y) = Alxy) =AML x—y),
xwy%x—)(lwy) = A(x7y)%ix—>A(1,y).

12

Formalising the isomorphisms

As a first step, we model the isomorphisms for profunctors.

If A is the strong profunctor underlying the arrow (~)

x~yElw(x=y) = Alxy) =AML x—y),
xwy%x—)(lwy) = A(x7y)%ix—>A(1,y).

We try to factorise
A(l,x — y) and ix = A(l,y)

as functors applied to A on x and y.

12

Fixing one parameter

A strong profunctor in [F°P x F, S|, can be mapped to a functor
F — S by evaluating its first parameter.

13

Fixing one parameter

A strong profunctor in [F°P x F, S|, can be mapped to a functor
F — S by evaluating its first parameter.

In particular, evaluating with 1, we obtain

* . [FPxF,S], — [F,S]
A = Ze AL 2)
Tz = Tz

13

From functors to strong profunctors

The functor -* has left and right adjoints:

14

From functors to strong profunctors

The functor -* has left and right adjoints:

o ¢ [F,S] — [FPx F, S|,
F = (X,Y)= F(X=Y)

14

From functors to strong profunctors

The functor -* has left and right adjoints:

o ¢ [F,S] — [FPx F, S|,
FF = (X,Y)— F(X=>Y)

*

~ ¢ [F,S] — [FPxF,S|,
F. = (X,Y)—»iX—>FY

14

From functors to strong profunctors

The functor -* has left and right adjoints:

- [F,S] — [FPx F,S],
FF = (X,Y)— F(X=>Y)

~ ¢ [F,S] — [FPxF,S|,
F. = (X,Y)—»iX—>FY

We end up with an adjoint triple

*

14

We obtain the diagram

I* ==

IF,S] [FoP x F, S],

*

15

The picture

We obtain the diagram

/—\
7S] ~——[Fr xS,
v

5

and the isomorphisms become

1

Alx,y) Z A(l,x — y)
Alx,y) = ix = A(l,y)

= A=(A),
= Az (A

I

*

ii5)

Idiom = Arrow + (x ~> y = 1 ~ (x — y)),

Monad = Arrow + (x ~» y = x — (1 ~ y)).

16

What about the monoidal structures?

[diom = Arrow +

Monad = Arrow +

On the isomorphisms we only dealt with the objects.

16

What about the monoidal structures?

Idiom = Arrow + (x ~> y = 1~ (x — y)),
Monad = Arrow + (x ~» y = x — (1 ~ y)).
On the isomorphisms we only dealt with the objects.

For an adjoint triple £ 4 G - H, we have that the comonad FG
and the monad HG are adjoint FG - HG.

16

What about the monoidal structures?

Idiom = Arrow + (x ~> y = 1~ (x — y)),
Monad = Arrow + (x ~» y = x — (1 ~ y)).
On the isomorphisms we only dealt with the objects.

For an adjoint triple £ 4 G - H, we have that the comonad FG
and the monad HG are adjoint FG - HG.

From the adjoint triple

we obtain
(‘*)! =040 = (‘*)* 16

Idempotent monads and monoids

In our case, the comonad [J and the monad ¢} are idempotent.

17

Idempotent monads and monoids

In our case, the comonad [J and the monad ¢} are idempotent.

If T:C — Cis an idempotent (co)monad, then a T-monoid is
quadruple (M, m, e, &) where

» (M,m: M®M — M,e: | — M) is a monoid;
» (M,a: TM — M) is a T-algebra.

T-monoids form a category Mon (T).

17

Idempotent monads and monoids

In our case, the comonad [J and the monad ¢} are idempotent.

If T:C — Cis an idempotent (co)monad, then a T-monoid is
quadruple (M, m, e, &) where

» Mim: M@ M — M,e: | — M) is a monoid,;
» (M,a: TM — M) is a T-algebra.

T-monoids form a category Mon (T).

For idempotent (co)monads, (co)algebras are isos. A T-monoid
(M, m,e,a) is a

Monoid on C + (M = TM)

17

Idiom = Arrow + (x ~» y = 1~ (x — y))

4

Mon ([F,S]) and Mon (OJ) are equivalent categories.

18

The equivalences

Idiom = Arrow + (x ~» y = 1~ (x — y))

4

Mon ([FF,S]) and Mon ([J) are equivalent categories.

Monad = Arrow + (x ~» y Z x — (1 ~ y))

4

Mon ([F,S]) and Mon ({) are equivalent categories.

18

To prove

Mon ([F,S]) and Mon (CJ) are equivalent categories

19

Proof sketch |

To prove
Mon ([FF,S]) and Mon () are equivalent categories

note that both functors are monoidal (monoidal adjunction)

A
([F,S], %) L ([FP = F, S, ®)
v

*

19

Proof sketch |

To prove
Mon ([FF,S]) and Mon () are equivalent categories

note that both functors are monoidal (monoidal adjunction)

A
([F,S], %) L ([FP = F, S, ®)
v

*

Functors lift to categories of monoids.

19

In the case

Mon ([IF,S]) and Mon () are equivalent categories

20

Proof sketch Il

In the case
Mon ([F,S]) and Mon () are equivalent categories

the adjunction

/\
([FPxF,S,®) 1 ([F,S],)
_/

*

is a monoidal conjunction. No guarantees that -* preserves
monoids.

20

Proof sketch Il

In the case
Mon ([F,S]) and Mon () are equivalent categories

the adjunction

/\
([FPxF,S,®) 1 ([F,S],)
_/

*

is a monoidal conjunction. No guarantees that -* preserves
monoids.

A result by Porst and Street gives conditions when an opmonoidal
functor preserves monoids.

20

Conclusions

We have extended the notions of computation as monoids view to
show a semantic counterpart to Lindley et al.’s result.

21

Conclusions

We have extended the notions of computation as monoids view to

show a semantic counterpart to Lindley et al.’s result.

Further work includes

» replacing I and S.
» relating to relative monads and other solutions that do not
suffer of size issues.

» seeing how comonads and other notions fit in the picture.

21

