
Relating Idioms, Arrows and Monads from

Monoidal Adjunctions @ SYCO I

Exequiel Rivas

September 2018

Team πr2, Inria

1

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that

a program denotes a morphism from A to TB.

E. Moggi 1989

Moggi used monads for an unified treatment of effects.

Id
η // T T ◦ Tµoo

His usages follows:

I η lifts values to effectful computations, i.e. return.

I µ composes two effects sequentially, i.e. ;.

2

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that

a program denotes a morphism from A to TB.

E. Moggi 1989

Moggi used monads for an unified treatment of effects.

Id
η // T T ◦ Tµoo

His usages follows:

I η lifts values to effectful computations, i.e. return.

I µ composes two effects sequentially, i.e. ;.

2

Wadler: monads as an interface

Monads can be internalised as an interface.

class Functor m⇒ Monad m where

return :: a→ m a

(>>=) :: m a→ (a→ m b)→ m b

The state monad State comes with operations

get :: State Int , put :: Int → State ()

Computaions written using these operations and the interface.

get >>= λi → if i ≡ 0 then return False

else put 1>>= \ → return True
3

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor f ⇒ Idiom f where

pure :: a→ f a

(~) :: f (a→ b)→ f a→ f b

class Arrow () where

arr :: (x → y)→ x y

(≫) :: (x y)→ (y z)→ x z

first :: (x y)→ (x , z) (y , z)

4

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor f ⇒ Idiom f where

pure :: a→ f a

(~) :: f (a→ b)→ f a→ f b

class Arrow () where

arr :: (x → y)→ x y

(≫) :: (x y)→ (y z)→ x z

first :: (x y)→ (x , z) (y , z)

4

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor f ⇒ Idiom f where

pure :: a→ f a

(~) :: f (a→ b)→ f a→ f b

class Arrow () where

arr :: (x → y)→ x y

(≫) :: (x y)→ (y z)→ x z

first :: (x y)→ (x , z) (y , z)

4

Idioms are oblivious, arrows are meticulous, monads are . . .

Lindley, Wadler and Yallop (2008), proved the equivalences

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y))

Following a syntactic approach: calculi and translations.

We aim for a semantic explanation, modelling:

I Arrows as profunctors Fop × F→ S with monoid structure.

I Monads and idioms as functors F→ S with monoid structure.

5

Idioms are oblivious, arrows are meticulous, monads are . . .

Lindley, Wadler and Yallop (2008), proved the equivalences

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y))

Following a syntactic approach: calculi and translations.

We aim for a semantic explanation, modelling:

I Arrows as profunctors Fop × F→ S with monoid structure.

I Monads and idioms as functors F→ S with monoid structure.

5

Idioms are oblivious, arrows are meticulous, monads are . . .

Lindley, Wadler and Yallop (2008), proved the equivalences

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y))

Following a syntactic approach: calculi and translations.

We aim for a semantic explanation, modelling:

I Arrows as profunctors Fop × F→ S with monoid structure.

I Monads and idioms as functors F→ S with monoid structure.

5

Notions of computations as monoids

Monads, idioms and arrows have

I an operation embedding pure values: return, pure and arr .

I an operation sequencing computations: (>>=), (~) and (≫).

Resemble monoids.

We model computational effects using monoidal categories.

Monad V Monoid in ([F,S] , ◦)

Idiom V Monoid in ([F,S] , ?)

Arrow V Monoid in ([Fop× F, S]s,⊗)

6

Notions of computations as monoids

Monads, idioms and arrows have

I an operation embedding pure values: return, pure and arr .

I an operation sequencing computations: (>>=), (~) and (≫).

Resemble monoids.

We model computational effects using monoidal categories.

Monad V Monoid in ([F,S] , ◦)

Idiom V Monoid in ([F,S] , ?)

Arrow V Monoid in ([Fop× F, S]s,⊗)

6

Notions of computations as monoids

Monads, idioms and arrows have

I an operation embedding pure values: return, pure and arr .

I an operation sequencing computations: (>>=), (~) and (≫).

Resemble monoids.

We model computational effects using monoidal categories.

Monad V Monoid in ([F,S] , ◦)

Idiom V Monoid in ([F,S] , ?)

Arrow V Monoid in ([Fop× F, S]s,⊗)

6

Monoidal structures: ◦

The category of finitary endofunctors [F,S] has a substitution

monoidal structure.

(F ◦ G)X =

∫ Y

FY × (Y → GX)

The inclusion i : F→ S acts as unit.

A monoid

i
return // M M ◦M

(>>=)oo

in ([F,S] , ◦, i) is a monad.

7

Monoidal structures: ◦

The category of finitary endofunctors [F,S] has a substitution

monoidal structure.

(F ◦ G)X =

∫ Y

FY × (Y → GX)

The inclusion i : F→ S acts as unit.

A monoid

i
return // M M ◦M

(>>=)oo

in ([F,S] , ◦, i) is a monad.

7

Monoidal structures: ?

The category [F,S] also has a convolution monoidal structure.

(F ? G)X =

∫ Y

FY × G (Y → X)

The inclusion i : F→ S also acts as the unit.

A monoid

i
pure // F F ? F

(~)oo

in ([F,S] , ?, i) is an idiom.

8

Monoidal structures: ?

The category [F,S] also has a convolution monoidal structure.

(F ? G)X =

∫ Y

FY × G (Y → X)

The inclusion i : F→ S also acts as the unit.

A monoid

i
pure // F F ? F

(~)oo

in ([F,S] , ?, i) is an idiom.

8

Intermezzo: strong profunctors

Profunctors compatible with the underlying cartesian structure.

Definition: strong profunctor

A profunctor P : Fop × F→ S is strong if it comes equipped with

a family of morphisms

strX ,Y ,Z : P(X ,Y)→ P(X × Z ,Y × Z)

natural in X , Y and dinatural in Z such that the following

equations hold:

P(id, π1) ◦ strX ,Y ,1 = P(π1, id),

strX ,Y ,W ◦ strX ,Y ,V = P(α−1, α) ◦ strX ,Y ,V×W

9

Intermezzo: strong profunctors

Profunctors compatible with the underlying cartesian structure.

Definition: strong profunctor

A profunctor P : Fop × F→ S is strong if it comes equipped with

a family of morphisms

strX ,Y ,Z : P(X ,Y)→ P(X × Z ,Y × Z)

natural in X , Y and dinatural in Z such that the following

equations hold:

P(id, π1) ◦ strX ,Y ,1 = P(π1, id),

strX ,Y ,W ◦ strX ,Y ,V = P(α−1, α) ◦ strX ,Y ,V×W

9

Monoidal structures: ⊗

Strong profunctors Fop × F→ S have composition of profunctors.

(P ⊗ Q)(X ,Y) =

∫ W

P(X ,W)× Q(W ,Y)

The hom-set HomF : Fop × F→ S as the unit.

A monoid

HomF
arr // A A⊗ A

(≫)oo

in ([Fop × F,S]s ,⊗,HomF) is an arrow.

10

Monoidal structures: ⊗

Strong profunctors Fop × F→ S have composition of profunctors.

(P ⊗ Q)(X ,Y) =

∫ W

P(X ,W)× Q(W ,Y)

The hom-set HomF : Fop × F→ S as the unit.

A monoid

HomF
arr // A A⊗ A

(≫)oo

in ([Fop × F,S]s ,⊗,HomF) is an arrow.

10

The equations II

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y))

We have defined Idiom, Monad and Arrow in our model:

Monad V Monoid in ([F,S] , ◦)

Idiom V Monoid in ([F,S] , ?)

Arrow V Monoid in ([Fop× F, S]s,⊗)

Isomorphisms on the right still missing.

11

The equations II

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y))

We have defined Idiom, Monad and Arrow in our model:

Monad V Monoid in ([F,S] , ◦)

Idiom V Monoid in ([F,S] , ?)

Arrow V Monoid in ([Fop× F, S]s,⊗)

Isomorphisms on the right still missing.

11

Formalising the isomorphisms

As a first step, we model the isomorphisms for profunctors.

If A is the strong profunctor underlying the arrow ()

x y ∼= 1 (x → y) V A(x , y) ∼= A(1, x → y),

x y ∼= x → (1 y) V A(x , y) ∼= ix → A(1, y).

We try to factorise

A(1, x → y) and ix → A(1, y)

as functors applied to A on x and y .

12

Formalising the isomorphisms

As a first step, we model the isomorphisms for profunctors.

If A is the strong profunctor underlying the arrow ()

x y ∼= 1 (x → y) V A(x , y) ∼= A(1, x → y),

x y ∼= x → (1 y) V A(x , y) ∼= ix → A(1, y).

We try to factorise

A(1, x → y) and ix → A(1, y)

as functors applied to A on x and y .

12

Fixing one parameter

A strong profunctor in [Fop× F,S]s can be mapped to a functor

F→ S by evaluating its first parameter.

In particular, evaluating with 1, we obtain

-∗ : [Fop× F, S]s −→ [F,S]

A∗ = Z 7→ A(1,Z)

τ∗Z = τ1,Z

13

Fixing one parameter

A strong profunctor in [Fop× F,S]s can be mapped to a functor

F→ S by evaluating its first parameter.

In particular, evaluating with 1, we obtain

-∗ : [Fop× F, S]s −→ [F,S]

A∗ = Z 7→ A(1,Z)

τ∗Z = τ1,Z

13

From functors to strong profunctors

The functor -∗ has left and right adjoints:

-! : [F,S] −→ [Fop× F,S]s
F! = (X ,Y) 7→ F (X → Y)

-∗ : [F,S] −→ [Fop× F,S]s
F∗ = (X ,Y) 7→ i X → F Y

We end up with an adjoint triple

-! a -∗ a -∗

14

From functors to strong profunctors

The functor -∗ has left and right adjoints:

-! : [F, S] −→ [Fop× F,S]s
F! = (X ,Y) 7→ F (X → Y)

-∗ : [F,S] −→ [Fop× F,S]s
F∗ = (X ,Y) 7→ i X → F Y

We end up with an adjoint triple

-! a -∗ a -∗

14

From functors to strong profunctors

The functor -∗ has left and right adjoints:

-! : [F, S] −→ [Fop× F,S]s
F! = (X ,Y) 7→ F (X → Y)

-∗ : [F,S] −→ [Fop× F,S]s
F∗ = (X ,Y) 7→ i X → F Y

We end up with an adjoint triple

-! a -∗ a -∗

14

From functors to strong profunctors

The functor -∗ has left and right adjoints:

-! : [F, S] −→ [Fop× F,S]s
F! = (X ,Y) 7→ F (X → Y)

-∗ : [F,S] −→ [Fop× F,S]s
F∗ = (X ,Y) 7→ i X → F Y

We end up with an adjoint triple

-! a -∗ a -∗

14

The picture

We obtain the diagram

[F, S]

-!
⊥ ++

-∗
⊥ 33

[Fop× F,S]s-∗oo

and the isomorphisms become

A(x , y) ∼= A(1, x → y) V A ∼= (A∗)!

A(x , y) ∼= ix → A(1, y) V A ∼= (A∗)∗

15

The picture

We obtain the diagram

[F, S]

-!
⊥ ++

-∗
⊥ 33

[Fop× F,S]s-∗oo

and the isomorphisms become

A(x , y) ∼= A(1, x → y) V A ∼= (A∗)!

A(x , y) ∼= ix → A(1, y) V A ∼= (A∗)∗

15

What about the monoidal structures?

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y)).

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple F a G a H, we have that the comonad FG

and the monad HG are adjoint FG a HG .

From the adjoint triple

-! a -∗ a -∗

we obtain

(-∗)! = � a ♦ = (-∗)∗

16

What about the monoidal structures?

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y)).

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple F a G a H, we have that the comonad FG

and the monad HG are adjoint FG a HG .

From the adjoint triple

-! a -∗ a -∗

we obtain

(-∗)! = � a ♦ = (-∗)∗

16

What about the monoidal structures?

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y)).

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple F a G a H, we have that the comonad FG

and the monad HG are adjoint FG a HG .

From the adjoint triple

-! a -∗ a -∗

we obtain

(-∗)! = � a ♦ = (-∗)∗

16

What about the monoidal structures?

Idiom = Arrow + (x y ∼= 1 (x → y)),

Monad = Arrow + (x y ∼= x → (1 y)).

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple F a G a H, we have that the comonad FG

and the monad HG are adjoint FG a HG .

From the adjoint triple

-! a -∗ a -∗

we obtain

(-∗)! = � a ♦ = (-∗)∗ 16

Idempotent monads and monoids

In our case, the comonad � and the monad ♦ are idempotent.

Definition: T -monoid

If T : C → C is an idempotent (co)monad, then a T -monoid is

quadruple (M,m, e, α) where

I (M,m : M ⊗M → M, e : I → M) is a monoid;

I (M, α : TM → M) is a T-algebra.

T -monoids form a category Mon (T).

For idempotent (co)monads, (co)algebras are isos. A T -monoid

(M,m, e, α) is a

Monoid on C + (M ∼= TM)

17

Idempotent monads and monoids

In our case, the comonad � and the monad ♦ are idempotent.

Definition: T -monoid

If T : C → C is an idempotent (co)monad, then a T -monoid is

quadruple (M,m, e, α) where

I (M,m : M ⊗M → M, e : I → M) is a monoid;

I (M, α : TM → M) is a T-algebra.

T -monoids form a category Mon (T).

For idempotent (co)monads, (co)algebras are isos. A T -monoid

(M,m, e, α) is a

Monoid on C + (M ∼= TM)

17

Idempotent monads and monoids

In our case, the comonad � and the monad ♦ are idempotent.

Definition: T -monoid

If T : C → C is an idempotent (co)monad, then a T -monoid is

quadruple (M,m, e, α) where

I (M,m : M ⊗M → M, e : I → M) is a monoid;

I (M, α : TM → M) is a T-algebra.

T -monoids form a category Mon (T).

For idempotent (co)monads, (co)algebras are isos. A T -monoid

(M,m, e, α) is a

Monoid on C + (M ∼= TM)

17

The equivalences

Idiom = Arrow + (x y ∼= 1 (x → y))

⇓
Mon ([F,S]) and Mon (�) are equivalent categories.

Monad = Arrow + (x y ∼= x → (1 y))

⇓
Mon ([F,S]) and Mon (♦) are equivalent categories.

18

The equivalences

Idiom = Arrow + (x y ∼= 1 (x → y))

⇓
Mon ([F,S]) and Mon (�) are equivalent categories.

Monad = Arrow + (x y ∼= x → (1 y))

⇓
Mon ([F,S]) and Mon (♦) are equivalent categories.

18

Proof sketch I

To prove

Mon ([F,S]) and Mon (�) are equivalent categories

note that both functors are monoidal (monoidal adjunction)

([F,S] , ?) ⊥

-!
++

([Fop× F,S]s,⊗)

-∗
kk

Functors lift to categories of monoids.

19

Proof sketch I

To prove

Mon ([F,S]) and Mon (�) are equivalent categories

note that both functors are monoidal (monoidal adjunction)

([F,S] , ?) ⊥

-!
++

([Fop× F,S]s,⊗)

-∗
kk

Functors lift to categories of monoids.

19

Proof sketch I

To prove

Mon ([F,S]) and Mon (�) are equivalent categories

note that both functors are monoidal (monoidal adjunction)

([F,S] , ?) ⊥

-!
++

([Fop× F,S]s,⊗)

-∗
kk

Functors lift to categories of monoids.

19

Proof sketch II

In the case

Mon ([F,S]) and Mon (♦) are equivalent categories

the adjunction

([Fop× F,S]s,⊗) ⊥

-∗
**
([F, S] , ◦)

-∗

kk

is a monoidal conjunction. No guarantees that -∗ preserves

monoids.

A result by Porst and Street gives conditions when an opmonoidal

functor preserves monoids.

20

Proof sketch II

In the case

Mon ([F,S]) and Mon (♦) are equivalent categories

the adjunction

([Fop× F, S]s,⊗) ⊥

-∗
**
([F, S] , ◦)

-∗

kk

is a monoidal conjunction. No guarantees that -∗ preserves

monoids.

A result by Porst and Street gives conditions when an opmonoidal

functor preserves monoids.

20

Proof sketch II

In the case

Mon ([F,S]) and Mon (♦) are equivalent categories

the adjunction

([Fop× F, S]s,⊗) ⊥

-∗
**
([F, S] , ◦)

-∗

kk

is a monoidal conjunction. No guarantees that -∗ preserves

monoids.

A result by Porst and Street gives conditions when an opmonoidal

functor preserves monoids.

20

Conclusions

We have extended the notions of computation as monoids view to

show a semantic counterpart to Lindley et al.’s result.

Further work includes

I replacing F and S.

I relating to relative monads and other solutions that do not

suffer of size issues.

I seeing how comonads and other notions fit in the picture.

21

Conclusions

We have extended the notions of computation as monoids view to

show a semantic counterpart to Lindley et al.’s result.

Further work includes

I replacing F and S.

I relating to relative monads and other solutions that do not

suffer of size issues.

I seeing how comonads and other notions fit in the picture.

21

