Relating Idioms, Arrows and Monads from Monoidal Adjunctions @ SYCO I

Exequiel Rivas

September 2018

Team πr^2 , Inria

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that a program denotes a morphism from A to TB.

E. Moggi 1989

Semantics of effectful programming languages

The basic idea behind the semantics of programs described below is that a program denotes a morphism from A to TB.

E. Moggi 1989

Moggi used monads for an unified treatment of effects.

$$\mathsf{Id} \xrightarrow{\eta} T \xleftarrow{\mu} T \circ T$$

His usages follows:

- η lifts values to effectful computations, i.e. return.
- μ composes two effects sequentially, i.e. ;.

Wadler: monads as an interface

Monads can be *internalised* as an *interface*.

class Functor $m \Rightarrow Monad m$ where return :: $a \rightarrow m a$ $(\gg=) :: m a \rightarrow (a \rightarrow m b) \rightarrow m b$

The state monad *State* comes with operations

get :: State Int , put :: Int \rightarrow State ()

Computaions written using these operations and the interface.

get $\gg \lambda i \rightarrow if i \equiv 0$ then return False else put $1 \gg \backslash_{-} \rightarrow return True$

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

```
class Functor f \Rightarrow Idiom f where
pure :: a \rightarrow f a
(*) :: f (a \rightarrow b) \rightarrow f a \rightarrow f b
```

Arrows and applicative functors

Monads (as interfaces) has been generalised...

Providing more control over the computations.

class Functor
$$f \Rightarrow Idiom f$$
 where
pure :: $a \rightarrow f a$
(\circledast) :: $f (a \rightarrow b) \rightarrow f a \rightarrow f b$

class Arrow
$$(\rightsquigarrow)$$
 where
arr $:: (x \rightarrow y) \rightarrow x \rightsquigarrow y$
 $(\ggg) :: (x \rightsquigarrow y) \rightarrow (y \rightsquigarrow z) \rightarrow x \rightsquigarrow z$
first $:: (x \rightsquigarrow y) \rightarrow (x, z) \rightsquigarrow (y, z)$

Lindley, Wadler and Yallop (2008), proved the equivalences

$$\begin{aligned} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)), \\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)) \end{aligned}$$

Lindley, Wadler and Yallop (2008), proved the equivalences

$$\begin{aligned} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)), \\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)) \end{aligned}$$

Following a syntactic approach: calculi and translations.

Lindley, Wadler and Yallop (2008), proved the equivalences

$$\begin{aligned} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)), \\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)) \end{aligned}$$

Following a syntactic approach: calculi and translations.

We aim for a semantic explanation, modelling:

- Arrows as profunctors $\mathbb{F}^{op} \times \mathbb{F} \to \mathbb{S}$ with monoid structure.
- \blacktriangleright Monads and idioms as functors $\mathbb{F} \to \mathbb{S}$ with monoid structure.

Notions of computations as monoids

Monads, idioms and arrows have

- ► an operation embedding pure values: *return*, *pure* and *arr*.
- ▶ an operation sequencing computations: (\gg), (\circledast) and (\gg).

Monads, idioms and arrows have

- ► an operation embedding pure values: *return*, *pure* and *arr*.
- ▶ an operation sequencing computations: (\gg), (\circledast) and (\gg).

Resemble monoids.

Monads, idioms and arrows have

- ► an operation embedding pure values: *return*, *pure* and *arr*.
- ▶ an operation sequencing computations: (\gg), (\circledast) and (\gg).

Resemble monoids.

We model computational effects using monoidal categories.

 $\begin{aligned} & \textit{Monad} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \circ) \\ & \textit{Idiom} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \star) \\ & \textit{Arrow} \Rightarrow \textit{Monoid in } ([\mathbb{F}^{\rm op} \times \mathbb{F}, \mathbb{S}]_{\scriptscriptstyle e}, \otimes) \end{aligned}$

Monoidal structures: •

The category of finitary endofunctors $[\mathbb{F},\mathbb{S}]$ has a substitution monoidal structure.

$$(F \circ G)X = \int^{Y} FY \times (Y \to GX)$$

The inclusion $i : \mathbb{F} \to \mathbb{S}$ acts as unit.

Monoidal structures: •

The category of finitary endofunctors $[\mathbb{F}, \mathbb{S}]$ has a *substitution* monoidal structure.

$$(F \circ G)X = \int^{Y} FY \times (Y \to GX)$$

The inclusion $i : \mathbb{F} \to \mathbb{S}$ acts as unit.

A monoid

$$i \xrightarrow{return} M \xleftarrow{(\gg)} M \circ M$$

in $([\mathbb{F}, \mathbb{S}], \circ, i)$ is a monad.

The category $[\mathbb{F},\mathbb{S}]$ also has a *convolution* monoidal structure.

$$(F \star G)X = \int^Y FY \times G(Y \to X)$$

The inclusion $i : \mathbb{F} \to \mathbb{S}$ also acts as the unit.

The category $[\mathbb{F},\mathbb{S}]$ also has a convolution monoidal structure.

$$(F \star G)X = \int^Y FY \times G(Y \to X)$$

The inclusion $i : \mathbb{F} \to \mathbb{S}$ also acts as the unit.

A monoid

$$i \xrightarrow{pure} F \xleftarrow{(\circledast)} F \star F$$

in $([\mathbb{F}, \mathbb{S}], \star, i)$ is an idiom.

Intermezzo: strong profunctors

Profunctors compatible with the underlying cartesian structure.

Profunctors compatible with the underlying cartesian structure.

Definition: strong profunctor

A profunctor $P: \mathbb{F}^{op} \times \mathbb{F} \to \mathbb{S}$ is *strong* if it comes equipped with a family of morphisms

$$\operatorname{str}_{X,Y,Z}: P(X,Y) \to P(X \times Z, Y \times Z)$$

natural in X, Y and dinatural in Z such that the following equations hold:

$$\begin{aligned} &P(\mathrm{id},\pi_1)\circ\mathrm{str}_{X,Y,1}=P(\pi_1,\mathrm{id}),\\ &\mathrm{str}_{X,Y,W}\circ\mathrm{str}_{X,Y,V}=P(\alpha^{-1},\alpha)\circ\mathrm{str}_{X,Y,V\times W} \end{aligned}$$

Strong profunctors $\mathbb{F}^{\mathsf{op}}\times\mathbb{F}\to\mathbb{S}$ have composition of profunctors.

$$(P\otimes Q)(X,Y)=\int^W P(X,W)\times Q(W,Y)$$

The hom-set $\mathsf{Hom}_{\mathbb{F}}:\mathbb{F}^{\mathsf{op}}\times\mathbb{F}\to\mathbb{S}$ as the unit.

Strong profunctors $\mathbb{F}^{\mathsf{op}}\times\mathbb{F}\to\mathbb{S}$ have composition of profunctors.

$$(P\otimes Q)(X,Y)=\int^W P(X,W)\times Q(W,Y)$$

The hom-set $\mathsf{Hom}_{\mathbb{F}}:\mathbb{F}^{\mathsf{op}}\times\mathbb{F}\to\mathbb{S}$ as the unit.

A monoid

$$\operatorname{Hom}_{\mathbb{F}} \xrightarrow{\operatorname{arr}} A \xleftarrow{(\ggg)} A \otimes A$$

in $([\mathbb{F}^{op} \times \mathbb{F}, \mathbb{S}]_s, \otimes, Hom_{\mathbb{F}})$ is an arrow.

$$\begin{split} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)),\\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)) \end{split}$$

We have defined Idiom, Monad and Arrow in our model:

 $\begin{array}{l} \textit{Monad} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \circ) \\ \textit{Idiom} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \star) \\ \textit{Arrow} \Rightarrow \textit{Monoid in } ([\mathbb{F}^{\mathrm{op}} \times \mathbb{F}, \mathbb{S}]_{\mathrm{s}}, \otimes) \end{array}$

$$\begin{split} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)),\\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)) \end{split}$$

We have defined Idiom, Monad and Arrow in our model:

$$\begin{array}{l} \textit{Monad} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \circ) \\ \textit{Idiom} \Rightarrow \textit{Monoid in } ([\mathbb{F}, \mathbb{S}], \star) \\ \textit{Arrow} \Rightarrow \textit{Monoid in } ([\mathbb{F}^{op} \times \mathbb{F}, \mathbb{S}]_{s}, \otimes) \end{array}$$

Isomorphisms on the right still missing.

As a first step, we model the isomorphisms for profunctors. If A is the strong profunctor underlying the arrow (\rightsquigarrow)

$$x \rightsquigarrow y \cong 1 \rightsquigarrow (x \rightarrow y) \quad \Rightarrow \quad A(x, y) \cong A(1, x \rightarrow y),$$

 $x \rightsquigarrow y \cong x \rightarrow (1 \rightsquigarrow y) \quad \Rightarrow \quad A(x, y) \cong ix \rightarrow A(1, y).$

As a first step, we model the isomorphisms for profunctors. If A is the strong profunctor underlying the arrow (\rightsquigarrow)

$$x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y) \quad \Rightarrow \quad A(x, y) \cong A(1, x \to y),$$

 $x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y) \quad \Rightarrow \quad A(x, y) \cong ix \to A(1, y).$

We try to factorise

$$A(1, x \rightarrow y)$$
 and $ix \rightarrow A(1, y)$

as functors applied to A on x and y.

A strong profunctor in $[\mathbb{F}^{\mathrm{op}}\times\mathbb{F},\mathbb{S}]_{\mathrm{s}}$ can be mapped to a functor $\mathbb{F}\to\mathbb{S}$ by evaluating its first parameter.

A strong profunctor in $\left[\mathbb{F}^{\mathrm{op}}\times\mathbb{F},\mathbb{S}\right]_{\mathrm{s}}$ can be mapped to a functor $\mathbb{F}\to\mathbb{S}$ by evaluating its first parameter.

In particular, evaluating with 1, we obtain

$$\begin{array}{rcl} -^* & : & \left[\mathbb{F}^{\mathrm{op}} \times \mathbb{F}, \mathbb{S} \right]_{\mathrm{s}} \longrightarrow \left[\mathbb{F}, \mathbb{S} \right] \\ A^* & = & Z \mapsto A(1, Z) \\ \tau^*{}_Z & = & \tau_{1, Z} \end{array}$$

$$\begin{array}{rcl} -_! & : & [\mathbb{F}, \mathbb{S}] \longrightarrow [\mathbb{F}^{\mathrm{op}} \times \mathbb{F}, \mathbb{S}]_{\mathrm{s}} \\ F_! & = & (X, Y) \mapsto F(X \to Y) \end{array}$$

$$egin{array}{rl} -_{!} & : & [\mathbb{F},\mathbb{S}] \longrightarrow [\mathbb{F}^{\mathrm{op}} imes \mathbb{F},\mathbb{S}]_{\mathrm{s}} \ F_{!} & = & (X,Y) \mapsto F(X o Y) \end{array}$$

$$\begin{array}{rcl} -_* & : & [\mathbb{F}, \mathbb{S}] \longrightarrow [\mathbb{F}^{\mathrm{op}} \times \mathbb{F}, \mathbb{S}]_{\mathrm{s}} \\ F_* & = & (X, Y) \mapsto i \; X \to F \; Y \end{array}$$

$$egin{array}{rl} egin{array}{ll} & & : & [\mathbb{F},\mathbb{S}] \longrightarrow [\mathbb{F}^{\mathrm{op}} imes \mathbb{F},\mathbb{S}]_{\mathrm{s}} \ F_! & = & (X,Y) \mapsto F(X o Y) \end{array}$$

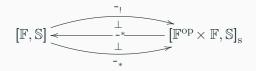
$$\begin{array}{rcl} -_* & : & [\mathbb{F}, \mathbb{S}] \longrightarrow [\mathbb{F}^{\mathrm{op}} \times \mathbb{F}, \mathbb{S}]_{\mathrm{s}} \\ F_* & = & (X, Y) \mapsto i \; X \to F \; Y \end{array}$$

We end up with an adjoint triple

$$*$$
 $*$

The picture

We obtain the diagram



The picture

We obtain the diagram



and the isomorphisms become

$$A(x,y) \cong A(1,x \to y) \quad \Rightarrow \quad A \cong (A^*),$$

 $A(x,y) \cong ix \to A(1,y) \quad \Rightarrow \quad A \cong (A^*),$

What about the monoidal structures?

$$\begin{aligned} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)),\\ \mathsf{Monad} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y)). \end{aligned}$$

What about the monoidal structures?

Idiom = Arrow +
$$(x \rightsquigarrow y \cong 1 \rightsquigarrow (x \rightarrow y))$$
,
Monad = Arrow + $(x \rightsquigarrow y \cong x \rightarrow (1 \rightsquigarrow y))$.

On the isomorphisms we only dealt with the objects.

What about the monoidal structures?

Idiom = Arrow +
$$(x \rightsquigarrow y \cong 1 \rightsquigarrow (x \rightarrow y))$$
,
Monad = Arrow + $(x \rightsquigarrow y \cong x \rightarrow (1 \rightsquigarrow y))$.

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple $F \dashv G \dashv H$, we have that the comonad FGand the monad HG are adjoint $FG \dashv HG$.

What about the monoidal structures?

Idiom = Arrow +
$$(x \rightsquigarrow y \cong 1 \rightsquigarrow (x \rightarrow y))$$
,
Monad = Arrow + $(x \rightsquigarrow y \cong x \rightarrow (1 \rightsquigarrow y))$.

On the isomorphisms we only dealt with the objects.

Theorem

For an adjoint triple $F \dashv G \dashv H$, we have that the comonad FGand the monad HG are adjoint $FG \dashv HG$.

From the adjoint triple

we obtain

$$(-^*)_! = \Box \dashv \Diamond = (-^*)_*$$
 16

Idempotent monads and monoids

In our case, the comonad \Box and the monad \Diamond are idempotent.

Idempotent monads and monoids

In our case, the comonad \Box and the monad \Diamond are idempotent.

Definition: *T*-monoid

If $T : C \to C$ is an idempotent (co)monad, then a *T*-monoid is quadruple (M, m, e, α) where

•
$$(M, m: M \otimes M \rightarrow M, e: I \rightarrow M)$$
 is a monoid;

•
$$(M, \alpha : TM \rightarrow M)$$
 is a T-algebra.

T-monoids form a category Mon(T).

Idempotent monads and monoids

In our case, the comonad \Box and the monad \Diamond are idempotent.

Definition: *T*-monoid

If $T : C \to C$ is an idempotent (co)monad, then a *T*-monoid is quadruple (M, m, e, α) where

•
$$(M, m: M \otimes M \rightarrow M, e: I \rightarrow M)$$
 is a monoid;

•
$$(M, \alpha : TM \rightarrow M)$$
 is a T-algebra.

T-monoids form a category Mon(T).

For idempotent (co)monads, (co)algebras are isos. A T-monoid (M, m, e, α) is a

Monoid on $C + (M \cong TM)$

The equivalences

$$\begin{split} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)) \\ & \Downarrow \\ \mathrm{Mon}\left([\mathbb{F}, \mathbb{S}]\right) \text{ and } \mathrm{Mon}\left(\Box\right) \text{ are equivalent categories.} \end{split}$$

The equivalences

$$\begin{split} \mathsf{Idiom} &= \mathsf{Arrow} + (x \rightsquigarrow y \cong 1 \rightsquigarrow (x \to y)) \\ & \Downarrow \\ \mathrm{Mon}\left([\mathbb{F}, \mathbb{S}]\right) \text{ and } \mathrm{Mon}\left(\Box\right) \text{ are equivalent categories.} \end{split}$$

$$\mathsf{Monad} = \mathsf{Arrow} + (x \rightsquigarrow y \cong x \to (1 \rightsquigarrow y))$$
 \Downarrow

 $\mathrm{Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and $\mathrm{Mon}\left(\Diamond\right)$ are equivalent categories.

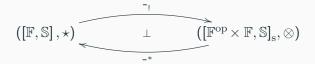
To prove

 ${\rm Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and ${\rm Mon}\left(\Box\right)$ are equivalent categories

To prove

 $\mathrm{Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and $\mathrm{Mon}\left(\Box\right)$ are equivalent categories

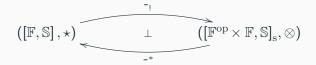
note that both functors are monoidal (monoidal adjunction)



To prove

 $Mon([\mathbb{F},\mathbb{S}])$ and $Mon(\Box)$ are equivalent categories

note that both functors are monoidal (monoidal adjunction)



Functors lift to categories of monoids.

Proof sketch II

In the case

${\rm Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and ${\rm Mon}\left(\Diamond\right)$ are equivalent categories

Proof sketch II

In the case

${\rm Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and ${\rm Mon}\left(\Diamond\right)$ are equivalent categories

the adjunction

is a monoidal conjunction. No guarantees that $\ensuremath{^*}$ preserves monoids.

Proof sketch II

In the case

 $\mathrm{Mon}\left([\mathbb{F},\mathbb{S}]\right)$ and $\mathrm{Mon}\left(\Diamond\right)$ are equivalent categories

the adjunction

is a monoidal conjunction. No guarantees that $-^*$ preserves monoids.

A result by Porst and Street gives conditions when an opmonoidal functor preserves monoids.

We have extended the notions of computation as monoids view to show a semantic counterpart to Lindley et al.'s result.

We have extended the notions of computation as monoids view to show a semantic counterpart to Lindley et al.'s result.

Further work includes

- ▶ replacing **F** and **S**.
- relating to relative monads and other solutions that do not suffer of size issues.
- ▶ seeing how comonads and other notions fit in the picture.