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Overview

This talk is based on joint work with Ben Musto and Dominic Verdon:
A compositional approach to quantum functions

The Morita theory of quantum graph isomorphisms

quantum
information

noncommutative
mathematics

category theory &
higher algebra

 quantum graph isomorphisms and their role in pseudo-telepathy
[Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]

 quantum automorphism groups  quantum sets
[Banica, Bichon et al., 1999–today] [Kornell, 2011–today]

Seems to fit into a much broaded framework of ’finite quantum set theory’.
Part 1: Getting started
Part 2: Quantum functions
Part 3: Classifying quantum isomorphic graphs
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Pseudo-telepathy and quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.
Alice and Bob play against a verifier.
They cannot communicate once the game has started.
Step 1: The verifier gives Alice and Bob vertices of the graphs.
Step 2: They reply with vertices of the graphs.
Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!
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[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017



Pseudo-telepathy and quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.
Alice and Bob play against a verifier.
They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.
Step 2: They reply with vertices of the graphs.
Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!

David Reutter Quantum graph isomorphisms 20 September, 2018 3 / 15
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[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017



Pseudo-telepathy and quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.
Alice and Bob play against a verifier.
They cannot communicate once the game has started.
Step 1: The verifier gives Alice and Bob vertices of the graphs.
Step 2: They reply with vertices of the graphs.
Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!

David Reutter Quantum graph isomorphisms 20 September, 2018 3 / 15
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Pseudo-telepathy and quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Quantum graph isomorphism game [1])

Let G and H be graphs.
Alice and Bob play against a verifier and share an entangled state.
They cannot communicate once the game has started.
Step 1: The verifier gives Alice and Bob vertices of the graphs.
Step 2: They reply with vertices of the graphs.
Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a quantum graph isomorphisms.
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Quantum graph isomorphisms — the algebra

A quantum graph isomorphism between graphs G and H is:
A matrix of projectors {Pxy}x∈V (G),y∈V (H) on a Hilbert space H such that:

PxyPxy ′ = δy ,y ′Pxy

∑
y∈V (H)

Pxy = idH

PxyPx ′y = δx ,x ′Pxy

∑
x∈V (G)

Pxy = idH

+ a certain compatibility condition with the graphs

 |0〉〈0| |1〉〈1| |2〉〈2||1〉〈1| |2〉〈2| |0〉〈0|
|2〉〈2| |0〉〈0| |1〉〈1|


Are there also notions of quantum bijections? Quantum functions?

What is quantum set and quantum graph theory?
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Setting the stage

The stage:
Hilb — the category of finite-dimensional Hilbert spaces and linear maps.

String diagrams: read from bottom to top.

Finite Gelfand duality:
finite set X ! commutative finite-dimensional C ∗-algebra CX

Philosophy: Do finite set theory with string diagrams in Hilb.
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Part 2
Quantum functions
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Quantizing functions

Function P between finite sets:

P =
P

P

P = P† = P

δy ,y ′Pxy = PxyPxy ′
∑
y

Pxy = idH P†xy = Pxy

generalizes classical functions

Hilbert space wire enforces noncommutativity:

a

b
=

b

a

a

b
6=

b

a

turns elements of a set into elements of another set using
observations on an underlying quantum system

Recipe:
1) take concept or proof from finite set theory
2) express it in terms of string diagrams in Hilb
3) stick a wire through it

These look like the equations satisfied by a braiding.
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Quantization ⇒ Categorification

This new definition has room for higher structure.

An intertwiner of quantum functions (H,P) =⇒ (H′,Q) is:

a linear map f : H −→ H′ such that
f

P
=

f

Q

no interesting intertwiners between classical functions

keep track of change on underlying system

Set(A,B) : Set of functions between finite sets A and B
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The 2-category QSet

Definition

The 2-category QSet is built from the following structures:

objects are finite sets A,B, ...;

1-morphisms A −→ B are quantum functions (H,P) : A −→ B;

2-morphisms (H,P) −→ (H ′,P ′) are intertwiners

The composition of two quantum functions (H,P) : A −→ B and
(H ′,Q) : B −→ C is a quantum function (H ⊗H ′,Q ◦P) defined as follows:

Q ◦ P

H ⊗ H′

:=

H H′

P

Q

2-morphisms compose by tensor product and composition of linear maps.

Can be extended to also include ‘non-commutative sets’ as objects.
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Quantum bijections

Function P between finite sets:

P =
P

P

P = P† = P

P
=

P
P

P
=

δy ,y ′Pxy = PxyPxy ′
∑
y

Pxy = idH P†xy = Pxy

δx ,x ′Pxy = PxyPx ′y

∑
x

Px ,y = idH

Quantum bijections are not invertible but only dualizable quantum functions.
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Quantum graph isomorphisms

Let G and H be finite graphs with adjacency matrices G and H.

A graph isomorphism is a bijection P such that:

P

G
= P

H

These are exactly the quantum graph isomorphisms from pseudo-telepathy.

Definition

The 2-category QGraph is built from the following structures:

objects are finite graphs G ,H, ...;

1-morphisms G −→ H are quantum graph isomorphisms;

2-morphisms are intertwiners

Quantum graph isomorphisms are dualizable 1-morphisms.
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At the crossroads

QAut(G ) := QGraph(G ,G ) — the quantum automorphism category of a
graph G — is a fusion1 category.

Quantum automorphism groups of graphs have been studied before in the
setting of compact quantum groups [1]  Hopf C ∗-algebra A(G )
Our QAut(G ) is the category of f.d. representations of A(G ).

We are now at the intersection of:

higher algebra: QAut(G ) is a fusion category.

compact quantum group theory: QAut(G ) = Rep(A(G ))

pseudo-telepathy: quantum but not classically isomorphic graphs

Can we understand quantum isomorphisms in terms of the quantum
automorphism categories QAut(G )?

1With possibly infinitely many simple objects
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Part 3
Classifying quantum isomorphic

graphs
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Classifying quantum isomorphic graphs

There is a monoidal forgetful functor F : QAut(G ) −→ Hilb:

H

H VG

VG

P 7→ H

Definition:
A dagger Frobenius algebra A in QAut(G ) is simple if F (A) ∼= End(H) for
some Hilbert space H.

Theorem

For a graph G, there is a bijective correspondence between:

isomorphism classes of graphs H quantum isomorphic to G

Morita classes of simple dagger Frobenius algebras in QAut(G )
fulfilling a certain commutativity condition

drop commutativity condition ! classify quantum graphs [1,2]
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Frobenius algebras in classical subcategories

QAut(G ) is too large.

Let’s focus on an easier subcategory:

The classical subcategory Ãut(G ) : direct sums of classical automorphisms

Definition:
A group of central type is a group H with a 2-cocycle ψ : H × H −→ U(1)
such that CHψ is a simple algebra.
Example:
The Pauli matrices make the group Z2 × Z2 into a group of central type:

C (Z2 × Z2)ψ −→ End(C2) (a, b) 7→ X aZb

Theorem

Morita classes of simple dagger Frobenius algebras in Ãut(G ) are in
bijective correspondence with central type subgroups of Aut(G ).

What about the commutativity condition?
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The classical subcategory Ãut(G ) : direct sums of classical automorphisms

Definition:
A group of central type is a group H with a 2-cocycle ψ : H × H −→ U(1)
such that CHψ is a simple algebra.
Example:
The Pauli matrices make the group Z2 × Z2 into a group of central type:

C (Z2 × Z2)ψ −→ End(C2) (a, b) 7→ X aZb

Theorem

Morita classes of simple dagger Frobenius algebras in Ãut(G ) are in
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Coisotropic stabilizers

Every group of central type is equipped with a symplectic form.

Theorem

Let H be a central type subgroup of Aut(G ). The corresponding simple

dagger Frobenius algebra in Ãut(G ) fulfills the commutativity condition if
and only if H has coisotropic stabilizers.

Corollary

A central type subgroup H of Aut(G ) with coisotropic stabilizers gives rise
to a graph GH quantum isomorphic to G .
If G has no quantum symmetries, then all graphs quantum isomorphic to
G arise in this way.

All quantum isomorphic graphs we are aware of arise in this way.
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Summary

We have

described a framework for finite quantum set and graph theory

which links compact quantum group theory, fusion category theory
and quantum information

and applied it to classify quantum isomorphic graphs.

Many open questions:

Other physical applications?

Other theories based on finite quantum sets? Quantum orders?

Quantum combinatorics?

...

Thanks for listening!
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An example: binary magic squares (BMS)

BMS: a 3× 3 square with

{
entries in {0, 1}

rows and columns add up to 0 mod 2

Define a graph ΓBMS :

vertices: partial BMS — only one row or column filled — 24 vertices

 0
 

0

 1
0
1



7 7

7 7

7 7

7 7

7 7

7 7

7 7

edge between two vertices if the partial BMS contradict each other

Bit-flip symmetries

of this graph

form a subgroup (Z2)4 ≤ Aut(ΓBMS).

generators:7 7 ·
7 7 ·
· · ·

 · 7 7

· 7 7

· · ·

 · · ·7 7 ·
7 7 ·

 · · ·· 7 7

· 7 7



⇒ (Z2)4 is a group of central type with coisotropic stabilizers

⇒ classification gives graph Γ′ quantum isomorphic to Γ

⇒ Γ′ coincides with a graph in [1] coming from the Mermin-Peres square

⇒ Pseudo-telepathy from the symmetries of classical magic squares

David Reutter Quantum graph isomorphisms 20 September, 2018 15 / 15

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017
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[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017



An example: binary magic squares (BMS)

BMS: a 3× 3 square with

{
entries in {0, 1}

rows and columns add up to 0 mod 2
Define a graph ΓBMS :

vertices: partial BMS — only one row or column filled — 24 vertices1 1 0
1 1 0
0 0 0

 0 1 1
0 1 1
0 0 0

 1 0 1
0 1 1
1 1 0



7 7

7 7

7 7

7 7

7 7

7 7

7 7

edge between two vertices if the partial BMS contradict each other

Bit-flip symmetries

of this graph form a subgroup (Z2)4 ≤ Aut(ΓBMS).

generators:7 7 ·
7 7 ·
· · ·

 · 7 7

· 7 7

· · ·

 · · ·7 7 ·
7 7 ·

 · · ·· 7 7

· 7 7



⇒ (Z2)4 is a group of central type with coisotropic stabilizers

⇒ classification gives graph Γ′ quantum isomorphic to Γ

⇒ Γ′ coincides with a graph in [1] coming from the Mermin-Peres square

⇒ Pseudo-telepathy from the symmetries of classical magic squares

David Reutter Quantum graph isomorphisms 20 September, 2018 15 / 15
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Coisotropic stabilizers

Let H be a group of central type with 2-cocycle ψ.
Define ρ(a, b) := ψ(a, b)ψ(b, a). ρ is a symplectic form on H.

The orthogonal complement of a subgroup S ⊆ H is

S⊥ = {h ∈ H | ρ(s, h) = 1 ∀s ∈ S ∩ Zh}

Zh = {s ∈ H | sh = hs}

A subgroup S ⊆ H is coisotropic if S⊥ ⊆ S .
Let G be a graph. A subgroup H ⊆ Aut(G ) has coisotropic stabilizers if
Stab(v) ∩ H is coisotropic for all vertices v of G .

Theorem

Let H be a central type subgroup of Aut(G ). The corresponding simple

dagger Frobenius algebra in Ãut(G ) fulfills the commutativity condition if
and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G ) with coisotropic stabilizers.
Get: A graph G ′ quantum isomorphic to G .
If G has no quantum symmetries: get all quantum isomorphic graphs G ′

David Reutter Quantum graph isomorphisms 20 September, 2018 15 / 15
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Coisotropic stabilizers

Let H be a group of central type with 2-cocycle ψ.
Define ρ(a, b) := ψ(a, b)ψ(b, a). ρ is a symplectic form on H.
The orthogonal complement of a subgroup S ⊆ H is

S⊥ = {h ∈ H | ρ(s, h) = 1 ∀s ∈ S ∩ Zh}

Zh = {s ∈ H | sh = hs}

A subgroup S ⊆ H is coisotropic if S⊥ ⊆ S .
Let G be a graph. A subgroup H ⊆ Aut(G ) has coisotropic stabilizers if
Stab(v) ∩ H is coisotropic for all vertices v of G .
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The construction in the abelian case

Let G be a graph with vertex set VG .
Given: An abelian central type subgroup H ⊆ Aut(G ) with corresponding
2-cocycle ψ which has coisotropic stabilizers.

Construct: A graph G ′ quantum isomorphic to G .

Let O ⊆ VG be an H-orbit and let Stab(O) ⊆ H be the stabilizer
subgroup of this orbit.

Let GO be the graph G restricted to the orbit O.

Consider the disjoint union graph tOGO .

For every orbit O pick a 1-cochain φO on Stab(O) such that
dφO = ψ|Stab(O).

For every pair of orbits O and O ′, consider the 1-cocycle φOφO′ on
Stab(O) ∩ Stab(O ′). This extends to a 1-cocycle on the group H of
the form ρ(hO,O′ ,−) for some hO,O′ ∈ H.

Reconnect the disjoint components of tOGO as follows:

v ∈ O ∼G ′ w ∈ O ′ ⇔ hO,Ov ∼G w
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