A compositional approach to quantum functions

David Reutter

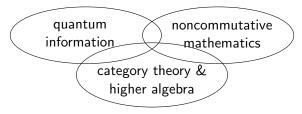
University of Oxford

First Symposium on Compositional Structures University of Birmingham

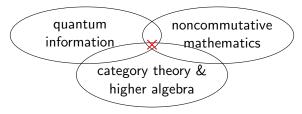
20 September, 2018

This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms

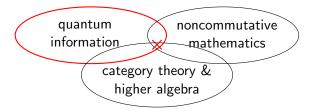
This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms



This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms

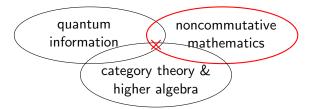


This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms



quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]

This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms



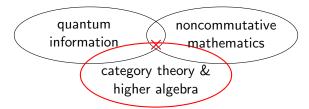
quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]

→ quantum automorphism groups
 [Banica, Bichon et al., 1999–today]

→ quantum sets

[Kornell, 2011–today]

This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms

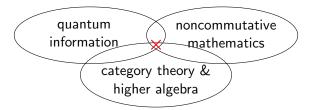


 → quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]
 → quantum automorphism groups
 → quantum sets

[Banica, Bichon et al., 1999–today] [Kornell, 2011–today]

Seems to fit into a much broaded framework of 'finite quantum set theory'.

This talk is based on joint work with Ben Musto and Dominic Verdon: A compositional approach to quantum functions The Morita theory of quantum graph isomorphisms



quantum graph isomorphisms and their role in pseudo-telepathy [Atserias, Mančinska, Roberson, Šámal, Severini, Varvitsiotis, 2017]

→ quantum automorphism groups
 → quantum sets
 [Banica, Bichon et al., 1999–today]
 → Kornell, 2011–today]

Seems to fit into a much broaded framework of 'finite quantum set theory'.

- Part 1: Getting started
- Part 2: Quantum functions

Part 3: Classifying quantum isomorphic graphs

David Reutter

Part 1 Getting started

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter

Quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs. Alice and Bob play against a verifier.

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter

Quantum graph isomorphisms

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1]) Let G and H be graphs. Alice and Bob play against a verifier. They cannot communicate once the game has started.

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.

Step 2: They reply with vertices of the graphs.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.

Step 2: They reply with vertices of the graphs.

Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.

Step 2: They reply with vertices of the graphs.

Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a graph isomorphisms.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Quantum graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier and share an entangled state.

They cannot communicate once the game has started.

Step 1: The verifier gives Alice and Bob vertices of the graphs.

Step 2: They reply with vertices of the graphs.

Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a quantum graph isomorphisms.

Pseudo-telepathy: Use entanglement to perform impossible tasks.

Example (Quantum graph isomorphism game [1])

Let G and H be graphs.

Alice and Bob play against a verifier and share an entangled state.

They cannot communicate once the game has started.

- Step 1: The verifier gives Alice and Bob vertices of the graphs.
- Step 2: They reply with vertices of the graphs.

Rules: Alice and Bob win if the returned vertices fulfill certain conditions.

A perfect winning strategy is a quantum graph isomorphisms.

There are graphs that are quantum but not classically isomorphic!

Quantum graph isomorphisms — the algebra

A quantum graph isomorphism between graphs G and H is: A matrix of projectors $\{P_{xy}\}_{x \in V(G), y \in V(H)}$ on a Hilbert space \mathcal{H} such that:

$$\begin{aligned} P_{xy}P_{xy'} &= \delta_{y,y'}P_{xy} & \sum_{y \in V(H)} P_{xy} = \mathrm{id}_{\mathcal{H}} \\ P_{xy}P_{x'y} &= \delta_{x,x'}P_{xy} & \sum_{x \in V(G)} P_{xy} = \mathrm{id}_{\mathcal{H}} \end{aligned}$$

+ a certain compatibility condition with the graphs

Quantum graph isomorphisms — the algebra

A quantum graph isomorphism between graphs G and H is: A matrix of projectors $\{P_{xy}\}_{x \in V(G), y \in V(H)}$ on a Hilbert space \mathcal{H} such that:

$$\begin{aligned} P_{xy}P_{xy'} &= \delta_{y,y'}P_{xy} & \sum_{y \in V(H)} P_{xy} &= \mathrm{id}_{\mathcal{H}} \\ P_{xy}P_{x'y} &= \delta_{x,x'}P_{xy} & \sum_{x \in V(G)} P_{xy} &= \mathrm{id}_{\mathcal{H}} \end{aligned}$$

+ a certain compatibility condition with the graphs

$$\left(\begin{array}{ccc} |0\rangle\langle 0| & |1\rangle\langle 1| & |2\rangle\langle 2| \\ |1\rangle\langle 1| & |2\rangle\langle 2| & |0\rangle\langle 0| \\ |2\rangle\langle 2| & |0\rangle\langle 0| & |1\rangle\langle 1| \end{array}\right)$$

Quantum graph isomorphisms — the algebra

A quantum graph isomorphism between graphs G and H is: A matrix of projectors $\{P_{xy}\}_{x \in V(G), y \in V(H)}$ on a Hilbert space \mathcal{H} such that:

$$\begin{aligned} P_{xy}P_{xy'} &= \delta_{y,y'}P_{xy} & \sum_{y \in V(H)} P_{xy} = \mathrm{id}_{\mathcal{H}} \\ P_{xy}P_{x'y} &= \delta_{x,x'}P_{xy} & \sum_{x \in V(G)} P_{xy} = \mathrm{id}_{\mathcal{H}} \end{aligned}$$

 $+\ {\rm a}\ {\rm certain}\ {\rm compatibility}\ {\rm condition}\ {\rm with}\ {\rm the}\ {\rm graphs}$

$$\left(\begin{array}{ccc} |0\rangle\langle 0| & |1\rangle\langle 1| & |2\rangle\langle 2| \\ |1\rangle\langle 1| & |2\rangle\langle 2| & |0\rangle\langle 0| \\ |2\rangle\langle 2| & |0\rangle\langle 0| & |1\rangle\langle 1| \end{array}\right)$$

Are there also notions of quantum bijections? Quantum functions? What is quantum set and quantum graph theory?

Hilb — the category of finite-dimensional Hilbert spaces and linear maps.

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality:

finite set $X \iff$ commutative finite-dimensional C^* -algebra $\mathbb{C}X$

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality:

finite set $X \iff$ commutative special \ddagger -Frobenius algebra $\mathbb{C}X$ in Hilb

Setting the stage

The is
Hilb :
String
Finite
finite
finite

$$\oint_{i} = \int_{i} \int_{i} \int_{i} = (f_{i} \int_{i} f_{i}) = (f_{i} \int_{$$

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

Finite Gelfand duality:

finite set $X \iff$ commutative special \ddagger -Frobenius algebra $\mathbb{C}X$ in Hilb

Hilb — the category of finite-dimensional Hilbert spaces and linear maps. String diagrams: read from bottom to top.

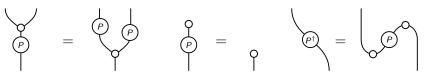
Finite Gelfand duality:

finite set $X \iff$ commutative special \ddagger -Frobenius algebra $\mathbb{C}X$ in Hilb

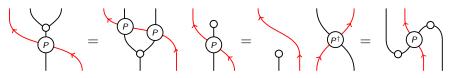
Philosophy: Do finite set theory with string diagrams in Hilb.

Part 2 Quantum functions

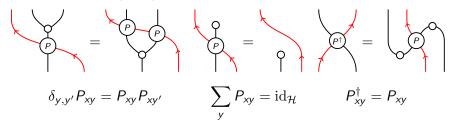
Function *P* between finite sets:



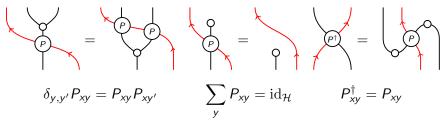
Quantum function (\mathcal{H}, P) between finite sets:



Quantum function (\mathcal{H}, P) between finite sets:

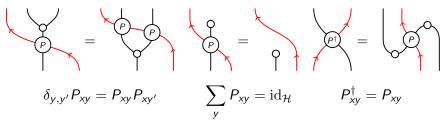


Quantum function (\mathcal{H}, P) between finite sets:



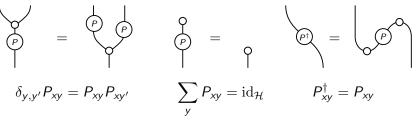
• generalizes classical functions

Quantum function (\mathcal{H}, P) between finite sets:



- generalizes classical functions
- Hilbert space wire enforces noncommutativity:

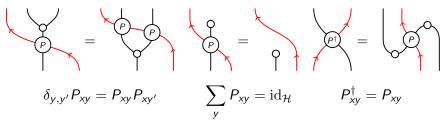
Quantum function (\mathcal{H}, P) between finite sets:



- generalizes classical functions
- Hilbert space wire enforces noncommutativity:

• turns elements of a set into elements of another set

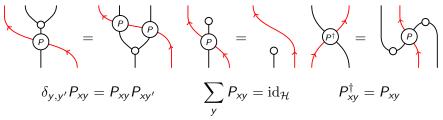
Quantum function (\mathcal{H}, P) between finite sets:



- generalizes classical functions
- Hilbert space wire enforces noncommutativity:

 turns elements of a set into elements of another set using observations on an underlying quantum system

Quantum function (\mathcal{H}, P) between finite sets:



- generalizes classical functions
- Hilbert

Recipe:

1) take concept or proof from finite set theory

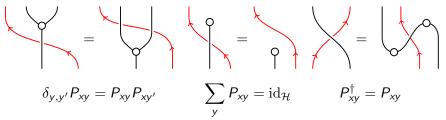
2) express it in terms of string diagrams in Hilb

3) stick a wire through it

• turns elements of a set into elements of another set using observations on an underlying quantum system

)

Quantum function (\mathcal{H}, P) between finite sets:



- generalizes classical functions
- Hilber

Recipe:

1) take concept or proof from finite set theory

- 2) express it in terms of string diagrams in Hilb
- 3) stick a wire through it
- turns elements of a set into elements of another set using observations on an underlying quantum system These look like the equations satisfied by a braiding.

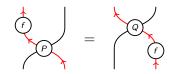
David Reutter

',

This new definition has room for higher structure.

This new definition has room for higher structure. An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f : \mathcal{H} \to \mathcal{H}'$ such that



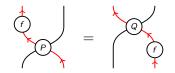
This new definition has room for higher structure. An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f: \mathcal{H} \to \mathcal{H}'$ such that

• no interesting intertwiners between classical functions

This new definition has room for higher structure. An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H}\to\mathcal{H}'$ such that



- no interesting intertwiners between classical functions
- keep track of change on underlying system

This new definition has room for higher structure. An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f : \mathcal{H} \to \mathcal{H}'$ such that

- no interesting intertwiners between classical functions
- keep track of change on underlying system

Set(A, B): Set of functions between finite sets A and B

This new definition has room for higher structure. An intertwiner of quantum functions $(\mathcal{H}, P) \Rightarrow (\mathcal{H}', Q)$ is:

a linear map $f:\mathcal{H}\to\mathcal{H}'$ such that



- no interesting intertwiners between classical functions
- keep track of change on underlying system

QSet(A, B): Category of quantum functions between finite sets A and B

The 2-category QSet

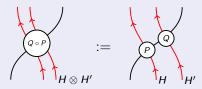
The 2-category QSet

Definition

The 2-category QSet is built from the following structures:

- objects are finite sets A, B, ...;
- 1-morphisms $A \rightarrow B$ are quantum functions $(H, P) : A \rightarrow B$;
- 2-morphisms $(H, P) \rightarrow (H', P')$ are intertwiners

The composition of two quantum functions $(H, P) : A \to B$ and $(H', Q) : B \to C$ is a quantum function $(H \otimes H', Q \circ P)$ defined as follows:



2-morphisms compose by tensor product and composition of linear maps.

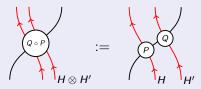
The 2-category QSet

Definition

The 2-category QSet is built from the following structures:

- objects are finite sets A, B, ...;
- 1-morphisms $A \rightarrow B$ are quantum functions $(H, P) : A \rightarrow B$;
- 2-morphisms $(H, P) \rightarrow (H', P')$ are intertwiners

The composition of two quantum functions $(H, P) : A \to B$ and $(H', Q) : B \to C$ is a quantum function $(H \otimes H', Q \circ P)$ defined as follows:



2-morphisms compose by tensor product and composition of linear maps.

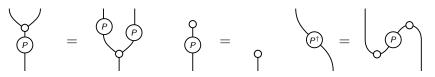
Can be extended to also include 'non-commutative sets' as objects.

David Reutter

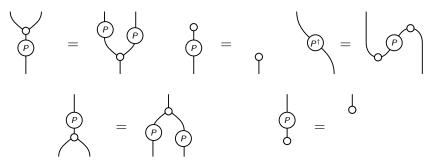
Quantum graph isomorphisms

20 September, 2018 8 / 15

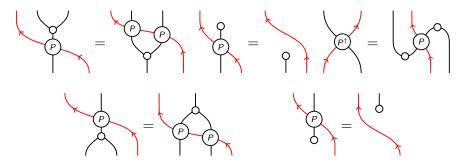
Function *P* between finite sets:



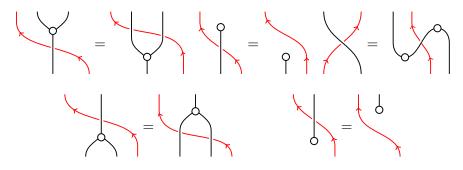
Bijection *P* between finite sets:



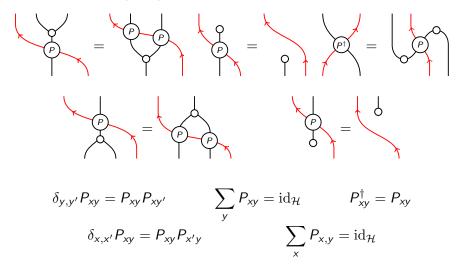
Quantum bijection (\mathcal{H}, P) between finite sets:



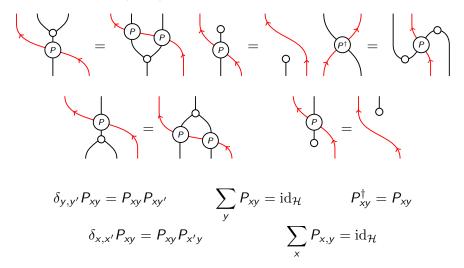
Quantum bijection (\mathcal{H}, P) between finite sets:



Quantum bijection (\mathcal{H}, P) between finite sets:



Quantum bijection (\mathcal{H}, P) between finite sets:



Quantum bijections are not invertible but only dualizable quantum functions.

David Reutter

Let G and H be finite graphs with adjacency matrices G and H.

Let G and H be finite graphs with adjacency matrices G and H. A graph isomorphism is a bijection P such that:

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Definition

The 2-category QGraph is built from the following structures:

- **objects** are finite graphs *G*, *H*, ...;
- 1-morphisms $G \rightarrow H$ are quantum graph isomorphisms;
- 2-morphisms are intertwiners

Let G and H be finite graphs with adjacency matrices G and H. A quantum graph isomorphism is a quantum bijection P such that:

These are *exactly* the quantum graph isomorphisms from pseudo-telepathy.

Definition

The 2-category QGraph is built from the following structures:

- **objects** are finite graphs *G*, *H*, ...;
- 1-morphisms $G \rightarrow H$ are quantum graph isomorphisms;
- 2-morphisms are intertwiners

Quantum graph isomorphisms are dualizable 1-morphisms.

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

¹With possibly infinitely many simple objects

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups [1] \rightsquigarrow Hopf C^* -algebra A(G)

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups $[1] \rightsquigarrow$ Hopf C^* -algebra A(G)Our QAut(G) is the category of f.d. representations of A(G).

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups $[1] \rightsquigarrow$ Hopf C^* -algebra A(G)Our QAut(G) is the category of f.d. representations of A(G).

We are now at the intersection of:

higher algebra: QAut(G) is a fusion category.

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups $[1] \rightsquigarrow$ Hopf C^* -algebra A(G)Our QAut(G) is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups $[1] \rightsquigarrow$ Hopf C^* -algebra A(G)Our QAut(G) is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))
- pseudo-telepathy: quantum but not classically isomorphic graphs

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

QAut(G) := QGraph(G, G) — the quantum automorphism category of a graph G — is a fusion¹ category.

Quantum automorphism groups of graphs have been studied before in the setting of compact quantum groups $[1] \rightsquigarrow$ Hopf C^* -algebra A(G)Our QAut(G) is the category of f.d. representations of A(G).

We are now at the intersection of:

- higher algebra: QAut(G) is a fusion category.
- compact quantum group theory: QAut(G) = Rep(A(G))
- pseudo-telepathy: quantum but not classically isomorphic graphs

Can we understand quantum isomorphisms in terms of the quantum automorphism categories QAut(G)?

[1] Banica, Bichon and others — Quantum automorphism groups of graphs. 1999-

¹With possibly infinitely many simple objects

David Reutter

Part 3 Classifying quantum isomorphic graphs

Classifying quantum isomorphic graphs

There is a monoidal forgetful functor $F : \text{QAut}(G) \to \text{Hilb}$:

$$\begin{array}{c} \mathcal{H} \\ \mathcal{V}_{G} \\ \mathcal{V}_{G} \end{array} \mapsto \mathcal{H} \end{array}$$

Classifying quantum isomorphic graphs

There is a monoidal forgetful functor $F : \operatorname{QAut}(G) \to \operatorname{Hilb}$:

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Classifying quantum isomorphic graphs

There is a monoidal forgetful functor $F : \text{QAut}(G) \to \text{Hilb}$:

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a graph G, there is a bijective correspondence between:

• isomorphism classes of graphs H quantum isomorphic to G

Classifying quantum isomorphic graphs

There is a monoidal forgetful functor $F : \text{QAut}(G) \to \text{Hilb}$:

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a graph G, there is a bijective correspondence between:

- isomorphism classes of graphs H quantum isomorphic to G
- Morita classes of simple dagger Frobenius algebras in QAut(G) fulfilling a certain commutativity condition

Classifying quantum isomorphic graphs

There is a monoidal forgetful functor $F : \text{QAut}(G) \to \text{Hilb}$:

Definition:

A dagger Frobenius algebra A in QAut(G) is simple if $F(A) \cong End(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Theorem

For a quantum graph G, there is a bijective correspondence between:

- isomorphism classes of quantum graphs H quantum isomorphic to G
- Morita classes of simple dagger Frobenius algebras in QAut(G)

drop commutativity condition \iff classify quantum graphs [1,2]

[1] Weaver — Quantum graphs as quantum relations. 2015

[2] Duan, Severini, Winter — Zero error communication $[\ldots]$ theta functions. 2010

 $\operatorname{QAut}(G)$ is too large.

QAut(G) is too large. Let's focus on an easier subcategory: The classical subcategory $\widetilde{Aut}(G)$: direct sums of classical automorphisms

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory Aut(G): direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi : H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory Aut(G): direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi : H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2\times\mathbb{Z}_2$ into a group of central type:

$$\mathbb{C} \left(\mathbb{Z}_2 imes \mathbb{Z}_2
ight)^\psi o \mathsf{End}(\mathbb{C}^2) \hspace{1cm} (a,b) \mapsto X^a Z^b$$

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory Aut(G): direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi : H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ into a group of central type:

$$\mathbb{C} \left(\mathbb{Z}_2 \times \mathbb{Z}_2 \right)^{\psi} o \mathsf{End}(\mathbb{C}^2)$$
 $(a,b) \mapsto X^a Z^b$

Theorem

Morita classes of simple dagger Frobenius algebras in $\widetilde{Aut}(G)$ are in bijective correspondence with central type subgroups of Aut(G).

QAut(G) is too large. Let's focus on an easier subcategory:

The classical subcategory $\widetilde{Aut}(G)$: direct sums of classical automorphisms

Definition:

A group of central type is a group H with a 2-cocycle $\psi : H \times H \to U(1)$ such that $\mathbb{C}H^{\psi}$ is a simple algebra.

Example:

The Pauli matrices make the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ into a group of central type:

$$\mathbb{C} \left(\mathbb{Z}_2 \times \mathbb{Z}_2 \right)^{\psi} o \mathsf{End}(\mathbb{C}^2)$$
 $(a,b) \mapsto X^a Z^b$

Theorem

Morita classes of simple dagger Frobenius algebras in $\widetilde{Aut}(G)$ are in bijective correspondence with central type subgroups of Aut(G).

What about the commutativity condition?

Every group of central type is equipped with a symplectic form.

Every group of central type is equipped with a symplectic form.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Every group of central type is equipped with a symplectic form.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Corollary

A central type subgroup H of Aut(G) with coisotropic stabilizers gives rise to a graph G_H quantum isomorphic to G.

Every group of central type is equipped with a symplectic form.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Corollary

A central type subgroup H of Aut(G) with coisotropic stabilizers gives rise to a graph G_H quantum isomorphic to G. If G has no quantum symmetries, then all graphs quantum isomorphic to G arise in this way.

Every group of central type is equipped with a symplectic form.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Corollary

A central type subgroup H of Aut(G) with coisotropic stabilizers gives rise to a graph G_H quantum isomorphic to G. If G has no quantum symmetries, then all graphs quantum isomorphic to G arise in this way.

All quantum isomorphic graphs we are aware of arise in this way.

We have

• described a framework for finite quantum set and graph theory

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

• Other physical applications?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?

• ...

We have

- described a framework for finite quantum set and graph theory
- which links compact quantum group theory, fusion category theory and quantum information
- and applied it to classify quantum isomorphic graphs.

Many open questions:

- Other physical applications?
- Other theories based on finite quantum sets? Quantum orders?
- Quantum combinatorics?

• ...

Thanks for listening!

BMS: a 3×3 square with $\begin{cases} entries in \{0, 1\} \\ rows and columns add up to 0 \mod 2 \end{cases}$

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter

BMS: a 3×3 square with $\begin{cases} entries in \{0, 1\} \\ rows and columns add up to 0 \mod 2 \end{cases}$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter

Quantum graph isomorphisms

20 September, 2018 15 / 15

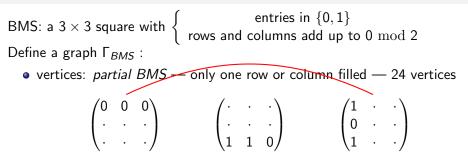
 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \end{array} \right. \\ {\sf Define \ a \ graph \ } \Gamma_{{\sf BMS}}: \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

[1] Atserias, Mančinska, Roberson, Šámal, Severini and Varvitsiotis — Quantum [...] graph isomorphisms. 2017

David Reutter



• edge between two vertices if the partial BMS *contradict* each other

 $\begin{array}{l} \mathsf{BMS: a \ 3 \times 3 \ square \ with} \ \left\{ \begin{array}{c} \mathsf{entries \ in} \ \{0,1\} \\ \mathsf{rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \end{array} \right. \\ \\ \mathsf{Define \ a \ graph} \ \Gamma_{BMS} : \end{array}$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries

 $\begin{array}{l} \mathsf{BMS: a 3 \times 3 \ square \ with} \ \left\{ \begin{array}{c} \mathsf{entries \ in} \ \{0,1\} \\ \mathsf{rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \end{array} \right. \\ \mathsf{Define \ a \ graph} \ \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} \emptyset & \emptyset & 0 \\ \emptyset & \emptyset & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & \emptyset & \emptyset \\ \mathbf{1} & 1 & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix} \qquad \begin{pmatrix} 1 & \mathbf{1} & \mathbf{0} \\ 0 & 1 & 1 \\ 1 & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries

 $\begin{array}{l} \mathsf{BMS: a \ 3 \times 3 \ square \ with} \ \left\{ \begin{array}{c} \mathsf{entries \ in} \ \{0,1\} \\ \mathsf{rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \end{array} \right. \\ \\ \mathsf{Define \ a \ graph} \ \Gamma_{BMS} : \end{array}$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{{\sf BMS}} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} 0 & 0 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 1 & 1 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{{\sf BMS}} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

$$\begin{pmatrix} \mathbf{x} & \mathbf{x} & \mathbf{0} \\ \mathbf{x} & \mathbf{x} & \mathbf{\cdot} \\ \mathbf{\cdot} & \mathbf{\cdot} & \mathbf{\cdot} \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{\cdot} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{x} \\ \mathbf{x} & \mathbf{x} & \mathbf{0} \end{pmatrix} \qquad \qquad \begin{pmatrix} \mathbf{1} & \mathbf{x} & \mathbf{x} \\ \mathbf{0} & \mathbf{\cdot} & \mathbf{\cdot} \\ \mathbf{1} & \mathbf{x} & \mathbf{x} \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{{\sf BMS}} : \end{array} \right.$

• vertices: partial BMS - only one row or column filled - 24 vertices

$$\begin{pmatrix} 1 & 1 & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad \begin{pmatrix} 1 & \cdot & \cdot \\ 0 & \cdot & \cdot \\ 1 & \cdot & \cdot \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:

$$\begin{pmatrix} X & X & \cdot \\ X & X & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & X & X \\ \cdot & X & X \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ X & X \\ \cdot & X \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ X & X \\ \cdot & X \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:

$$\begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

• edge between two vertices if the partial BMS contradict each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

 $\,\Rightarrow\, \left(\mathbb{Z}_2\right)^4$ is a group of central type with coisotropic stabilizers

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:

$$\begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

- $\Rightarrow~\left(\mathbb{Z}_2\right)^4$ is a group of central type with coisotropic stabilizers
- $\Rightarrow\,$ classification gives graph Γ' quantum isomorphic to Γ

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:

$$\begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

- $\Rightarrow~\left(\mathbb{Z}_2\right)^4$ is a group of central type with coisotropic stabilizers
- $\Rightarrow\,$ classification gives graph Γ' quantum isomorphic to Γ
- $\Rightarrow~\Gamma'$ coincides with a graph in [1] coming from the Mermin-Peres square

 $\begin{array}{l} {\sf BMS: a \ 3 \times 3 \ square \ with } \left\{ \begin{array}{c} {\sf entries \ in \ \{0,1\}} \\ {\sf rows \ and \ columns \ add \ up \ to \ 0 \ mod \ 2} \\ {\sf Define \ a \ graph \ } \Gamma_{BMS} : \end{array} \right.$

• vertices: partial BMS — only one row or column filled — 24 vertices

generators:

$$\begin{pmatrix} \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \cdot & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \\ \mathbf{X} & \mathbf{X} & \cdot \end{pmatrix} \qquad \begin{pmatrix} \cdot & \cdot & \cdot \\ \cdot & \mathbf{X} & \mathbf{X} \\ \cdot & \mathbf{X} & \mathbf{X} \end{pmatrix}$$

• edge between two vertices if the partial BMS *contradict* each other Bit-flip symmetries of this graph form a subgroup $(\mathbb{Z}_2)^4 \leq \operatorname{Aut}(\Gamma_{BMS})$.

- $\Rightarrow~(\mathbb{Z}_2)^4$ is a group of central type with coisotropic stabilizers
- $\Rightarrow\,$ classification gives graph Γ' quantum isomorphic to Γ
- $\Rightarrow~\Gamma^\prime$ coincides with a graph in [1] coming from the Mermin-Peres square

 \Rightarrow Pseudo-telepathy from the symmetries of classical magic squares

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic form on *H*.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic form on *H*. The orthogonal complement of a subgroup $S \subseteq H$ is

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h\}$$

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h^{\swarrow}\}$$

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h^{
u'}\}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h^{\swarrow}\}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $Stab(v) \cap H$ is coisotropic for all vertices v of G.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h^{\swarrow}\}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $Stab(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$S^{\perp} = \{h \in H \mid
ho(s,h) = 1 \; orall s \in S \cap Z_h^{\swarrow}\}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $Stab(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G) with coisotropic stabilizers.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$\mathcal{S}^{\perp} = \{ h \in \mathcal{H} \mid
ho(s,h) = 1 \; orall s \in \mathcal{S} \cap Z_h^{\swarrow} \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $Stab(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G) with coisotropic stabilizers. Get: A graph G' quantum isomorphic to G.

Let *H* be a group of central type with 2-cocycle ψ . Define $\rho(a, b) := \psi(a, b)\overline{\psi}(b, a)$. ρ is a symplectic The orthogonal complement of a subgroup $S \subseteq H$ $Z_h = \{s \in H \mid sh = hs\}$

$$\mathcal{S}^{\perp} = \{ h \in \mathcal{H} \mid
ho(s,h) = 1 \; orall s \in \mathcal{S} \cap Z_h^{\swarrow} \}$$

A subgroup $S \subseteq H$ is coisotropic if $S^{\perp} \subseteq S$.

Let G be a graph. A subgroup $H \subseteq Aut(G)$ has coisotropic stabilizers if $Stab(v) \cap H$ is coisotropic for all vertices v of G.

Theorem

Let H be a central type subgroup of Aut(G). The corresponding simple dagger Frobenius algebra in $\widetilde{Aut}(G)$ fulfills the commutativity condition if and only if H has coisotropic stabilizers.

Given: A central type subgroup of Aut(G) with coisotropic stabilizers. Get: A graph G' quantum isomorphic to G. If G has no quantum symmetries: get all quantum isomorphic graphs G'

David Reutter

Let G be a graph with vertex set V_G . Given: An abelian central type subgroup $H \subseteq Aut(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers.

Let G be a graph with vertex set V_G . Given: An abelian central type subgroup $H \subseteq Aut(G)$ with corresponding 2-cocycle ψ which has coisotropic stabilizers. Construct: A graph G' quantum isomorphic to G.

Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.

- Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.

- Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.

- Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on Stab(O) such that $d\phi_O = \psi|_{\text{Stab}(O)}$.

- Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on Stab(O) such that $d\phi_O = \psi|_{\text{Stab}(O)}$.
- For every pair of orbits O and O', consider the 1-cocycle φ_Oφ_{O'} on Stab(O) ∩ Stab(O'). This extends to a 1-cocycle on the group H of the form ρ(h_{O,O'}, −) for some h_{O,O'} ∈ H.

- Let O ⊆ V_G be an H-orbit and let Stab(O) ⊆ H be the stabilizer subgroup of this orbit.
- Let G_O be the graph G restricted to the orbit O.
- Consider the disjoint union graph $\sqcup_O G_O$.
- For every orbit O pick a 1-cochain ϕ_O on Stab(O) such that $d\phi_O = \psi|_{\text{Stab}(O)}$.
- For every pair of orbits O and O', consider the 1-cocycle φ_Oφ_{O'} on Stab(O) ∩ Stab(O'). This extends to a 1-cocycle on the group H of the form ρ(h_{O,O'}, −) for some h_{O,O'} ∈ H.
- Reconnect the disjoint components of $\sqcup_O G_O$ as follows:

$$v \in O \sim_{G'} w \in O' \quad \Leftrightarrow \quad h_{O,O}v \sim_G w$$