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Idea

What do these things have in common?
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Monads and formal expressions

Setting:

Let C be a concrete category and (T , µ, η) a monad with η monic.

X =
{
x , y , z , . . .

}
TX =

{
x + y , x + y + z , x , . . .

}
TTX =

{
(x + y) + (x + z) , (x) , . . .

}
f : X → Y 7−→ Tf : x + x ′ 7→ f (x) + f (x ′)
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Monads and formal expressions

• η : X → TX maps the element x to x as a formal expression

• µ : TTX → TX removes the brackets:

(x + y) + (z + t) 7−→ x + y + z + t.

((x + y) + (z)) (x + y + z)

TTTX TTX

TTX TX

(x + y) + (z) x + y + z

Tµ

µ µ

µ
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Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e

5 of 22



Partial evaluations and partial decompositions

Idea:
A formal expression of elements of an algebra can also be partially
evaluated, instead of totally.
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Partial evaluations and partial decompositions

Definition:
Let p, q ∈ TA. If µ(m) = p and (Te)(m) = q for some m ∈ TTA, we
call q a partial evaluation of p and p a partial decomposition of q.

(2 + 3) + (4)

2 + 3 + 4 5 + 4

remove brackets evaluate brackets

TTA

TA TA

µ Te
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Partial evaluations and partial decompositions

Properties:

• Every p ∈ TA is a partial evaluation/decomposition of itself:

TTA

TA
Teµ

Tη

(2) + (3)

2 + 3

• Every p ∈ TA admits a unique total evaluation:

TA TTA

A TA

e

η

Te
µ

η

2 + 3 (2 + 3)

5 5
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In terms of rewriting systems

Abstract rewriting system on TA:

• Reflexivity: 2 + 3→ 2 + 3;

• Confluence:

1 + 1 + 1 + 1

2 + 2 3 + 1

4

• The irreducible elements are the total evaluations.
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Transitivity

Question:
Can partial evaluations be composed?
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Transitivity

Question:
Can partial evaluations be composed?

TTTA

TTA TTA TTA

TA TA TA

µ TTeTµ

Teµ

µ Te

µ Te

We are asking for the existence of a “rewriting of rewritings”.
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Transitivity

Definition:
The diagram

a b

A B

C D

c d

f

g m

n

is called a weak or meek pullback if for every b ∈ B and c ∈ C such
that m(b) = n(c) there exists an a ∈ A such that f (a) = b and
g(a) = c .
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Transitivity

Definition:
A cartesian monad is a monad (T , η, µ) such that:
• T preserves pullbacks;

• All naturality squares of η and µ are pullbacks.
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Transitivity

What is known [Clementino et al., 2014]:

• All monads presented by an operad are cartesian;
◦ Monoid and group action monads;
◦ Free monoid monads;
◦ Maybe monad;

• A wide class of monads, including the free commutative monoid
monad, are weakly cartesian;

• Most monads of classical algebras are not weakly cartesian;

• As we prove, the Kantorovich probability monad is weakly cartesian
(more on that later).
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Examples

Factorization
Let T be the free commutative monoid monad. Consider (N, ·) as an
algebra.

• Given a number n, its partial decompositions are its factorizations.

• Each number admits a unique total decomposition, the
decomposition into prime factors.

6 · 5 · 11 30 · 11

2 · 3 · 5 · 11 2 · 15 · 11 6 · 55 330

2 · 3 · 55 3 · 110
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Examples

Group or monoid action

Let G be an internal monoid (or group) in a (cartesian) monoidal
category.

• X 7→ G × X is a monad;

• The algebras e : G × A→ A are G -spaces.

Let (g , x), (h, y) ∈ G × A. A partial evaluation from (g , x) to (h, y) is
an element (h, `, x) ∈ G × G × A such that h` = g and ` · x = y .

x ` · x g · x

g

` h
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Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

• Base category C

• Functor X 7→ PX

• Unit δ : X → PX

• Composition
E : PPX → PX
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Probability monads

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

• Given a complete metric space X , PX is the set of Radon
probability measures of finite first moment, equipped with the
Wasserstein distance, or Kantorovich-Rubinstein distance, or earth
mover’s distance:

dPX (p, q) = sup
f :X→R

∣∣∣∣∫
X
f (x) d(p − q)(x)

∣∣∣∣

• The assignment X 7→ PX is part of a monad on the category of
complete metric spaces and short maps.

• Algebras of P are closed convex subsets of Banach spaces.
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Idea:
Partial evaluations for P are “partial expectations”.

18 of 22



Probability monads

Idea:
Partial evaluations for P are “partial expectations”.

18 of 22



Probability monads

Idea:
Partial evaluations for P are “partial expectations”.

18 of 22



Probability monads

Idea:
Partial evaluations for P are “partial expectations”.

18 of 22



Probability monads

Idea:
Partial evaluations for P are “partial expectations”.

18 of 22



Probability monads

Idea:
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Properties:

1. A partial expectation makes a distribution “more concentrated”, or
“less random” (closer to its center of mass);

2. Partial expectations can always be composed (not uniquely);

3. The relation on PA induced by partial evaluations is a closed
partial order, which is known in the literature as the Choquet or
convex order, used in statistics and finance [Winkler, 1985],
[Rothschild and Stiglitz, 1970].
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Probability monads

Theorem, extending [Winkler, 1985, Theorem 1.3.6]

Let A be a P-algebra and p, q ∈ PA. The following conditions are
equivalent:

1. p is a partial evaluation of q;

2. There exists random variables X and Y on A with laws p and q,
respectively, and such that Y is a conditional expectation of X .
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Theorem, extending [Winkler, 1985, Theorem 1.3.6]

Let A be a P-algebra and p, q ∈ PA. The following conditions are
equivalent:
1. p is a partial evaluation of q;

2. There exists random variables X and Y on A with laws p and q,
respectively, and such that Y is a conditional expectation of X .

Corollary

A chain of composable partial decompositions in PA is (basically) the
same as a martingale on A.
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Towards higher rewritings (work in progress)

· · · TTTA TTA TA A
µT

Tµ

TTe

TηT

TTη

Te

µ

Tη

e

• The partial evaluation rewriting system is the 1-dimensional
truncation of a simplicial set.

• Composition is a 2-simplex of TTTA, which can be seen as a Kan
filler condition for inner 2-horns.
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