Quantum Sets

Andre Kornell

University of California, Davis

SYCO September 21, 2018

Andre Kornell (UC Davis)

Quantum Sets

SYCO September 21, 2018 1 / 15

3

・ 同 ト ・ ヨ ト ・ ヨ ト

two categories

Fun: sets and functions **qFun**: quantum sets and quantum functions

Inc \dashv Pts

 ${\rm Inc}$ is full and faithful

quantum sets

definition

A quantum set \mathcal{X} is a set of nonzero finite-dimensional Hilbert spaces.

$$\operatorname{Inc}(S) = {}^{\mathsf{G}}S = \left\{ \mathbb{C}^{\{s\}} \, | \, s \in S \right\}$$

$$\operatorname{Pts}(\mathcal{X}) = \{X \in \mathcal{X} \,|\, \operatorname{dim}(X) = 1\}$$

qFun has terminal object $\mathbf{1} = \{\mathbb{C}\} \cong \{*\}$. Pts $(\mathcal{X}) \cong qFun(\mathbf{1}, \mathcal{X})$

3

A B F A B F

+ and \times

Let \mathcal{X} and \mathcal{Y} be quantum sets.

definition

Cartesian product $\mathcal{X} \times \mathcal{Y} = \{X \otimes Y \mid X \in \mathcal{X}, Y \in \mathcal{Y}\}$

 $\mathcal{X} \times \mathcal{Y}$ is **not** the product of \mathcal{X} and \mathcal{Y}

definition

disjoint union $\mathcal{X} + \mathcal{Y} = (\mathcal{X} \times {}^{\circ}{1}) \cup (\mathcal{Y} \times {}^{\circ}{2})$

 $\mathcal{X} + \mathcal{Y}$ is the coproduct of \mathcal{X} and \mathcal{Y}

 $\operatorname{Inc}(S+T) = \operatorname{Inc}(S) + \operatorname{Inc}(T)$

 $\operatorname{Inc}(S \times T) = \operatorname{Inc}(S) \times \operatorname{Inc}(T)$

$$Pts(S + T) = Pts(S) + Pts(T)$$

$$\operatorname{Pts}(S \times T) = \operatorname{Pts}(S) \times \operatorname{Pts}(T)$$

4 / 15

quantum functions

expository definition

A quantum function F from a quantum set \mathcal{X} to a quantum set \mathcal{Y} assigns to each element X of \mathcal{X} a unitary operator

$$X \cong (H^1 \otimes Y_1) \oplus (H^2 \otimes Y_2) \oplus \cdots \oplus (H^n \otimes Y_n)$$

up to unitary equivalence of the coefficients H^1, \ldots, H^n .

example: qubit measurement

$$\begin{aligned} \mathcal{X} = \{ \mathbb{C}^2 \} & \qquad \mathcal{X} \xrightarrow{F} `S & \qquad S = \{ \frac{1}{2}, -\frac{1}{2} \} \\ \mathbb{C}^2 &\cong & (\mathbb{C} \otimes \mathbb{C}^{\{ \frac{1}{2} \}}) \oplus (\mathbb{C} \otimes \mathbb{C}^{\{ -\frac{1}{2} \}}) \end{aligned}$$

通 ト イヨ ト イヨト

composing quantum functions

$$\begin{array}{ccc} \mathcal{X} & \xrightarrow{F} & \mathcal{Y} & \xrightarrow{G} & \mathcal{Z} \\ \\ \mathcal{X} & \cong & \bigoplus_{i} & H^{i} \otimes Y_{i} \\ \\ Y_{i} & \cong & \bigoplus_{j} & \mathcal{K}^{j}_{i} \otimes Z_{j} \end{array}$$

$$\implies \qquad X \cong \bigoplus_{i,j} H^i \otimes K^j_i \otimes Z_j \cong \bigoplus_j \left(\bigoplus_i H^i \otimes K^j_i \right) \otimes Z_j$$

3

6 / 15

イロト イポト イヨト イヨト

qFun is like a topos

theorem (K)

The symmetric monoidal category (qFun, \times)

- has finite colimits,
- a has finite limits,
- has a terminal monoidal unit,
- is closed monoidal, and
- ${f 0}$ classifies subobjects by "classical" quantum functions into 1+1:

For a symmetric monoidal category (C, \times) satisfying (1) – (5):

 $(\textbf{C},\times) \text{ is a topos } \quad \Longleftrightarrow \quad \times \text{ is a category-theoretic product}$

= 900

compatible quantum functions

we say that F_1 and F_2 are compatible just in case

definition

A quantum function out of \mathcal{X} is classical iff it is compatible with every quantum function out of \mathcal{X} . A quantum set is classical iff $I_{\mathcal{X}}$ is classical.

8 / 15

classical quantum sets and classical quantum functions

proposition (K)

A quantum set \mathcal{X} is classical iff there is a set S such that $\mathcal{X} \cong {}^{\circ}S$.

proposition (K)

A quantum function $F: \mathcal{X} \to \mathcal{Y}$ iff there is a function $f: \mathcal{X} \to Pts(\mathcal{Y})$ with

$$\begin{array}{ccc} \mathcal{X} & \xrightarrow{F} & \mathcal{Y} \\ \varphi_{\downarrow}^{\downarrow} & & \uparrow^{J} \\ `\mathcal{X} & \xrightarrow{'f} & \operatorname{Pts}(\mathcal{Y}) \end{array}$$

 $X \cong_Q X \otimes \mathbb{C}^{\{X\}}$

 $\mathbb{C}^{\{Y\}} \cong_J \mathbb{C} \otimes Y$

von Neumann algebras

proposition (K)

There is a full and faithful contravariant functor $\ell_q^\infty : \mathbf{qFun} \to \mathbf{vNalg}$.

$$\ell_q(\mathcal{X}) = \prod_{X \in \mathcal{X}} L(X) \qquad \qquad \ell_q^{\infty}(\mathcal{X}) = \left\{ a \in \ell_q(\mathcal{X}) \left| \sup_{X \in \mathcal{X}} \| a(X) \| < \infty \right\} \right\}$$

theorem (K)

Let A be a von Neumann algebra. The following are equivalent:

- $A \cong \ell^{\infty}_{q}(\mathcal{X})$ for some quantum set \mathcal{X}
- ② every von Neumann subalgebra of A is atomic
- **③** if $a^{\dagger} = a$, then there is an orthogonal family of projections $(p_{\alpha}|\alpha \in \mathbb{R})$

$$a = \sum_{\alpha \in \mathbb{R}} \alpha \cdot p_{\alpha}$$

internal ring of quantum complex numbers

Write $\mathcal{X} * \mathcal{Y}$ for category theoretic product of \mathcal{X} and \mathcal{Y} . Write $\mathcal{C} = \mathbb{R} * \mathbb{R}$. There are quantum functions

$$\mathcal{C} \ast \mathcal{C} \xrightarrow{+} \mathcal{C} \qquad \mathcal{C} \ast \mathcal{C} \xrightarrow{\cdot} \mathcal{C} \qquad \mathcal{C} \xrightarrow{\dagger} \mathcal{C} \qquad `\mathbb{C} \hookrightarrow \mathcal{C}$$

such that the set $qFun(\mathcal{X}, \mathcal{C})$ has the structure of a \dagger -algebra over \mathbb{C} .

proposition (K)

We have a natural isomorphism $qFun(\mathcal{X}, \mathcal{C}) \cong \ell_q(\mathcal{X})$.

interlude: quantum relations

definition (essentially, Weaver)

A quantum relation R from a quantum set \mathcal{X} to a quantum set \mathcal{Y} assigns to each element X of \mathcal{X} and each element Y of \mathcal{Y} a subspace

 $R(X, Y) \leq L(X, Y)$

Quantum relations correspond to quantum functions $\mathcal{X}\times\mathcal{Y}^*\to 1+1.$

The category **qRel** of quantum sets and quantum relations is a dagger compact category enriched over ortholattices.

Definition

A quantum function from ${\mathcal X}$ to ${\mathcal Y}$ is a quantum relation such that

$$R^{\dagger} \circ R \geq I_{\mathcal{X}} \qquad \qquad R \circ R^{\dagger} \leq I_{\mathcal{Y}}$$

イロト 不得下 イヨト イヨト

the graph coloring game

parameters: a finite simple graph G and a finite set S players: Alice and Bob, cooperating blindly against a Referee

round 1: Referee plays a pair $(g_A, g_B) \in G \times G$ (Alice sees only g_A , and Bob sees only g_B)

round 2: Alice plays a color s_A and Bob plays a color s_B (Alice sees only s_A and Bob sees only s_B)

```
scoring: Alice and Bob lose iff (g_A = g_B \text{ and } s_A \neq s_B) or (g_A \sim g_B \text{ and } s_A = s_B)
```

Alice and Bob have a winning strategy \Leftrightarrow *G* can be properly colored by *S*

true if Alice and Bob share classical randomness false if Alice and Bob share quantum randomness

from the graph coloring game to quantum functions

G. Brassard, R. Cleve, and A. Tapp, *Cost of Exactly Simulating Quantum Entaglement with Classical Communication*, Phys. Rev. Lett. **83**, no 9 (1999).

V. Galliard and S. Wolf, *Pseudo-telepathy, entanglement, and graph colorings*, Proc. ISIT 2002 (2002).

V. Galliard, A. Tapp, and S. Wolf, *The impossibility of pseudotelepathy without quantum entaglement*, Proc. ISIT 2003 (2004).

P. J. Cameron, A. Montanaro, M. W. Newman, S. Severini, and A. Winter, *On the quantum chromatic number of a graph*, Electron. J. Combin. **14**, no. 1 (2007).

L. Mančinska and D. E. Roberson, *Quantum homomorphisms*, J. Combin. Theory, Series B **118** (2016).

S. Abramsky, R. S. Barbosa, N. De Silva, and O. Zapata, *The quantum Monad* on *Relational Structures*, Proc. MFCS 2017 (2017).

B. Musto, D. J. Reutter, and D. Verdon, *A compositional approach to quantum functions*, to appear in J. Math. Phys. (2017/2018).

Andre Kornell (UC Davis)

Quantum Set

quantum families of graph colorings

$$G \times \mathcal{Z} \xrightarrow{F} S$$

$$F \circ (E_G \otimes I_{\mathcal{Z}}) \leq (\neg I_S) \circ F$$

proposition

Alice and Bob have a winning strategy using quantum entanglement iff there is a quantum family of graph colorings of G by S.