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two categories

Fun: sets and functions
qFun: quantum sets and quantum functions

Inc a Pts

Fun qFun FunInc

∼=
Id

Pts

Inc is full and faithful
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quantum sets

definition

A quantum set X is a set of nonzero finite-dimensional Hilbert spaces.

Inc(S) = ‘S =
{
C{s} | s ∈ S

}
Pts(X ) = {X ∈ X |dim(X ) = 1}

qFun has terminal object 1 = {C} ∼= ‘{∗}.
Pts(X ) ∼= qFun(1,X )
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+ and ×

Let X and Y be quantum sets.

definition

Cartesian product X × Y = {X ⊗ Y |X ∈ X , Y ∈ Y}

X × Y is not the product of X and Y

definition

disjoint union X + Y = (X × ‘{1}) ∪ (Y × ‘{2})

X + Y is the coproduct of X and Y

Inc(S + T ) = Inc(S) + Inc(T ) Pts(S + T ) = Pts(S) + Pts(T )

Inc(S × T ) = Inc(S)× Inc(T ) Pts(S × T ) = Pts(S)× Pts(T )
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quantum functions

expository definition

A quantum function F from a quantum set X to a quantum set Y
assigns to each element X of X a unitary operator

X ∼= (H1 ⊗ Y1) ⊕ (H2 ⊗ Y2) ⊕ · · · ⊕ (Hn ⊗ Yn),

up to unitary equivalence of the coefficients H1, . . . ,Hn.

example: qubit measurement

X = {C2} X ‘SF S = {12 ,−
1
2}

C2 ∼= (C⊗ C{
1
2
}) ⊕ (C⊗ C{−

1
2
})
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composing quantum functions

X Y ZF G

X ∼=
⊕
i

H i ⊗ Yi

Yi
∼=

⊕
j

K j
i ⊗ Zj

=⇒ X ∼=
⊕
i ,j

H i ⊗ K j
i ⊗ Zj

∼=
⊕
j

(⊕
i

H i ⊗ K j
i

)
⊗ Zj
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qFun is like a topos

theorem (K)

The symmetric monoidal category (qFun,×)

1 has finite colimits,

2 has finite limits,

3 has a terminal monoidal unit,

4 is closed monoidal, and

5 classifies subobjects by “classical” quantum functions into 1 + 1:

Z 1

X 1 + 1

T

!

For a symmetric monoidal category (C,×) satisfying (1) – (5):

(C,×) is a topos ⇐⇒ × is a category-theoretic product
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compatible quantum functions

we say that F1 and F2 are compatible just in case

Z

Y1 Y1 × 1 Y1 × Y2 1× Y2 Y2

F1 F2
F

id×! !×id

P1 P2

definition

A quantum function out of X is classical iff it is compatible with every
quantum function out of X . A quantum set is classical iff IX is classical.
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classical quantum sets and classical quantum functions

proposition (K)

A quantum set X is classical iff there is a set S such that X ∼= ‘S .

proposition (K)

A quantum function F : X → Y iff there is a function f : X → Pts(Y) with

X Y

‘X ‘Pts(Y)

F

Q

‘f

J

X ∼=Q X ⊗ C{X} C{Y } ∼=J C⊗ Y
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von Neumann algebras

proposition (K)

There is a full and faithful contravariant functor `∞q : qFun→ vNalg.

`q(X ) =
∏
X∈X

L(X ) `∞q (X ) =

{
a ∈ `q(X )

∣∣∣∣ sup
X∈X
‖a(X )‖ <∞

}

theorem (K)

Let A be a von Neumann algebra. The following are equivalent:

1 A ∼= `∞q (X ) for some quantum set X
2 every von Neumann subalgebra of A is atomic

3 if a† = a, then there is an orthogonal family of projections (pα|α ∈ R)

a =
∑
α∈R

α · pα
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internal ring of quantum complex numbers

Write X ∗Y for category theoretic product of X and Y. Write C = ‘R ∗ ‘R.

There are quantum functions

C ∗ C +−→C C ∗ C ·−→C C †−→C ‘C ↪→ C

such that the set qFun(X , C) has the structure of a †-algebra over C.

proposition (K)

We have a natural isomorphism qFun(X , C) ∼= `q(X ).

Andre Kornell (UC Davis) Quantum Sets SYCO September 21, 2018 11 / 15



interlude: quantum relations

definition (essentially, Weaver)

A quantum relation R from a quantum set X to a quantum set Y
assigns to each element X of X and each element Y of Y a subspace

R(X ,Y ) ≤ L(X ,Y )

Quantum relations correspond to quantum functions X × Y∗ → 1 + 1.

The category qRel of quantum sets and quantum relations is a dagger
compact category enriched over ortholattices.

Definition

A quantum function from X to Y is a quantum relation such that

R† ◦ R ≥ IX R ◦ R† ≤ IY
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the graph coloring game

parameters: a finite simple graph G and a finite set S
players: Alice and Bob, cooperating blindly against a Referee

round 1: Referee plays a pair (gA, gB) ∈ G × G
(Alice sees only gA, and Bob sees only gB)

round 2: Alice plays a color sA and Bob plays a color sB
(Alice sees only sA and Bob sees only sB)

scoring: Alice and Bob lose iff
(gA = gB and sA 6= sB) or (gA ∼ gB and sA = sB)

Alice and Bob have a winning strategy ⇔ G can be properly colored by S

true if Alice and Bob share classical randomness
false if Alice and Bob share quantum randomness
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quantum families of graph colorings

‘G ×Z ‘SF

F ◦ (EG ⊗ IZ) ≤ (¬IS) ◦ F

proposition

Alice and Bob have a winning strategy using quantum entanglement iff
there is a quantum family of graph colorings of G by S .
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