Ordinary games	The category PC	Open games	Examples	Cool stuff

Compositional game theory

Jules Hedges

(University of Oxford)

SYCO 1, Birmingham 21 September 2018

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Ordinary games	The category PC	Open games	Examples	Cool stuff
•00000	0000000	0000000	0000	00
A I .	, , ,			

A peek at where we're going

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Ordinary games	The category PC	Open games	Examples	Cool stuff
0●0000	0000000		0000	00
Game theory				

- Mathematical theory of interacting "rational" agents
- Players make observations and then make choices
- Group choices determine payoffs
- "Local view" of rationality: players act to maximise payoff

• "Global view": equilibrium strategies

Ordinary games	The category PC	Open games	Examples	Cool stuff
00●000		0000000	0000	00
Example: per	alty shootout			

$a, b \in \{L, R\}$

Ordinary games	The category PC	Open games	Examples	Cool stuff
00●000	0000000	0000000	0000	00
Example: per	alty shootout			

$$a,b\in\{L,R\}$$
 $\pi(a,b)=egin{cases} (+1,-1) & ext{if }a
eq b \ (-1,+1) & ext{if }a=b \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Ordinary games	The category PC 0000000	Open games	Examples 0000	Cool stuff 00
Example: p	enalty shootou	t		

$$a,b\in\{L,R\}$$
 $\pi(a,b)=egin{cases} (+1,-1) & ext{if } a
eq b \ (-1,+1) & ext{if } a=b \end{cases}$

Unique (probabilistic) equilibrium: $\textit{a}=\textit{b}=\frac{1}{2}\ket{\textit{L}}+\frac{1}{2}\ket{\textit{R}}$

(ロ)、<</p>

Ordinary games	The category PC 0000000	Open games	Examples 0000	Cool stuff 00
Example: p	enalty shootou	t		

$$a,b\in\{L,R\}$$
 $\pi(a,b)=egin{cases} (+1,-1) & ext{if } a
eq b \ (-1,+1) & ext{if } a=b \end{cases}$

Unique (probabilistic) equilibrium: $a = b = \frac{1}{2} |L\rangle + \frac{1}{2} |R\rangle$

Nash's theorem generalises this situation

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

D : 1	1 (4)			
000000	0000000	0000000	0000	00
Ordinary games The category PC	The category PC	Open games	Open games Examples	

Picturing game theory (1945 - 2018)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

• Well known: equilibrium as behavioural prediction is experimentally falsified (e.g. ultimatum game)

Ordinary games	The category PC	Open games	Examples	Cool stuff
0000●0	0000000	0000000	0000	00
Game theory	has some issue	S		

- Well known: equilibrium as behavioural prediction is experimentally falsified (e.g. ultimatum game)
- Harsanyi type spaces are accurate but underfit (and mathematically hard!)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ordinary games	The category PC	Open games	Examples	Cool stuff
0000●0	0000000	0000000	0000	00
Game theory	/ has some iss	ues		

- Well known: equilibrium as behavioural prediction is experimentally falsified (e.g. ultimatum game)
- Harsanyi type spaces are accurate but underfit (and mathematically hard!)
- There is no accepted operational theory (or "equilibriating process") (c.f. evolutionary game theory)

Ordinary games 0000€0	0000000	Open games 0000000	examples 0000	00
Game theory	/ has some iss	ues		

- Well known: equilibrium as behavioural prediction is experimentally falsified (e.g. ultimatum game)
- Harsanyi type spaces are accurate but underfit (and mathematically hard!)
- There is no accepted operational theory (or "equilibriating process") (c.f. evolutionary game theory)
- Serious computability/complexity issues (algorithmic game theory)

Ordinary games	The category PC	Open games	Examples	Cool stuff
0000●0	0000000	0000000	0000	00
Game theory I	has some issues			

- Well known: equilibrium as behavioural prediction is experimentally falsified (e.g. ultimatum game)
- Harsanyi type spaces are accurate but underfit (and mathematically hard!)
- There is no accepted operational theory (or "equilibriating process") (c.f. evolutionary game theory)
- Serious computability/complexity issues (algorithmic game theory)

• Ordinary games do not compose/scale

 Ordinary games
 The category PC
 Open games
 Examples
 Cool stuff

 000000
 0000000
 0000000
 000000
 000000

The fundamental headache of social science

Beliefs have causal effects

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

000000	0000000	0000000	0000	00
Defining PC				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

PC is a category where:

- Objects are pairs of sets $\binom{X}{S}$
- Morphisms $\lambda : {X \choose S} \to {Y \choose R}$ are pairs of functions:

•
$$v_{\lambda} : X \to Y$$

• $\mu_{\lambda} : X \times R \to S$

•
$$u_{\lambda} : X \times K \rightarrow$$

 λ is called a ${\rm lens}$

000000	0000000	0000000	0000	00
Defining PC				

PC is a category where:

- Objects are pairs of sets $\binom{X}{S}$
- Morphisms $\lambda : {X \choose S} \to {Y \choose R}$ are pairs of functions:

•
$$v_{\lambda} : X \to Y$$

• $u_{\lambda} : X \times R \to S$

 λ is called a ${\rm lens}$ We draw it like this:

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

Ordinary games	The category PC	Open games	Examples	Cool stuff
	o●ooooo	0000000	0000	00
Intuition for F	PC			

Approximately ...

- First part: physical information
 - X and Y are sets of things an agent can observe or choose

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Ordinary games	The category PC	Open games	Examples	Cool stuff
	o●ooooo	0000000	0000	00
Intuition for F	PC			

Approximately ...

- First part: physical information
 - X and Y are sets of things an agent can observe or choose
- Second part: teleological or counterfactual information
 - *R* and *S* are sets of things an agent can optimise or have preferences about

(日) (日) (日) (日) (日) (日) (日) (日)

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	o●ooooo	0000000	0000	00
Intuition for P	PC			

Approximately ...

- First part: physical information
 - X and Y are sets of things an agent can observe or choose
- Second part: teleological or counterfactual information
 - *R* and *S* are sets of things an agent can optimise or have preferences about

A typical example:

- $f: X \to Y$ is a function
- Promote to $\lambda: {X \choose \mathbb{R}} o {Y \choose \mathbb{R}}$ with $v_{\lambda} = f$
- $u_{\lambda}: X \times \mathbb{R} \to \mathbb{R}$ is backpropagation of value
- If we know x and we know the value of f(x) then u_{λ} tells us what the value of x was

Ordinary games	The category PC 00●0000	Open games	Examples 0000	Cool stuff 00
Example:	a decision process			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(aka. a Markov decision process without the probability) Take a state space *S*, actions *A*, transition function $f: S \times A \rightarrow S \times \mathbb{R}$

Ordinary games	The category PC 00●0000	Open games	Examples 0000	Cool stuff 00
Example:	a decision process			

(aka. a Markov decision process without the probability) Take a state space *S*, actions *A*, transition function $f: S \times A \to S \times \mathbb{R}$ Every policy function $\sigma: S \to A$ determines a lens $\lambda: {S \choose \mathbb{R}} \to {S \choose \mathbb{R}}$ by

•
$$v_{\lambda}(s) = f(s, \sigma(s))_1$$

•
$$u_{\lambda}(s, u) = f(s, \sigma(s))_2 + \beta \cdot u$$

• $0 < \beta < 1$ is discount factor

Ordinary games	The category PC	Open games 0000000	Examples 0000	Cool stuff 00
Composing le	enses			

Given

$$\begin{pmatrix} X \\ S \end{pmatrix} \xrightarrow{\lambda} \begin{pmatrix} Y \\ R \end{pmatrix} \xrightarrow{\mu} \begin{pmatrix} Z \\ Q \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ∽ ⊙ へ ⊙

we can compose them to $\mu \circ \lambda : {\binom{\mathsf{X}}{\mathsf{S}}} \to {\binom{\mathsf{Z}}{\mathsf{Q}}}$

(Important non-obvious fact: this is associative)

Ordinary games	The category PC 000●000	Open games	Examples 0000	Cool stuff 00
Composing le	nses			

Given

$$\begin{pmatrix} X \\ S \end{pmatrix} \xrightarrow{\lambda} \begin{pmatrix} Y \\ R \end{pmatrix} \xrightarrow{\mu} \begin{pmatrix} Z \\ Q \end{pmatrix}$$

we can compose them to $\mu \circ \lambda : {\binom{X}{S}} \to {\binom{Z}{Q}}$

(Important non-obvious fact: this is associative)

Given
$$\binom{X_1}{S_1} \xrightarrow{\lambda_1} \binom{Y_1}{R_1}$$
 and $\binom{X_2}{S_2} \xrightarrow{\lambda_2} \binom{Y_2}{R_2}$ we can compose them to
$$\begin{pmatrix} X_1 \times X_2 \\ S_2 \times S_1 \end{pmatrix} \xrightarrow{\lambda_1 \otimes \lambda_2} \binom{Y_1 \times Y_2}{R_2 \times R_1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PC is a symmetric monoidal category

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000●00	0000000	0000	00
Special lenses				

$$f: X \to Y$$
 lifts to $f: {X \choose 1} \to {Y \choose 1}$ or $f^*: {1 \choose Y} \to {1 \choose X}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Special case: Every $\binom{X}{1}$ is a comonoid, every $\binom{1}{X}$ is a monoid

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$f: X \to Y$$
 lifts to $f: {X \choose 1} \to {Y \choose 1}$ or $f^*: {1 \choose Y} \to {1 \choose X}$

Special case: Every $\binom{X}{1}$ is a comonoid, every $\binom{1}{X}$ is a monoid

There is canonical $\varepsilon_X : \begin{pmatrix} X \\ X \end{pmatrix} \to \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (but no η !)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	00000●0	0000000	0000	00
The counit lav	N			

Theorem:

 $\varepsilon_{Y} \circ ((f,1) \otimes (1,\mathrm{id}_{Y})) = \varepsilon_{X} \circ ((\mathrm{id}_{X},1) \otimes (1,f))$

aka:

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - つへで

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	000000●	0000000	0000	00
Interesting facts about PC				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- PC is a dialectica category over a 1-valued logic
 - hence, a sound model of linear logic

Interesting fa	cts about PC			
Ordinary games	The category PC 000000●	Open games	Examples 0000	Cool stuff 00

- PC is a dialectica category over a 1-valued logic
 - hence, a sound model of linear logic

•
$$\binom{X}{S} \mapsto X$$
, $\lambda \mapsto v_{\lambda}$ is a fibration

• It's fibrewise opposite of Jacobs' simple fibration

Interesting facts about PC			
Ordinary games The category PC	Open games	Examples	Cool stuff
000000 000000	0000000	0000	00

- PC is a dialectica category over a 1-valued logic
 - hence, a sound model of linear logic
- $\binom{X}{S} \mapsto X, \ \lambda \mapsto v_{\lambda}$ is a fibration
 - It's fibrewise opposite of Jacobs' simple fibration
- Hot off the press: **PC** is complete (if underlying cat is complete, cocomplete, cartesian closed, ...)
 - Work in progress: game theory using Span(PC)

Interesting facts about PC				
Ordinary games The category PC	Open games	Examples	Cool stuff	
000000 000000	0000000	0000	00	

- PC is a dialectica category over a 1-valued logic
 - hence, a sound model of linear logic
- $\binom{X}{S} \mapsto X, \ \lambda \mapsto v_{\lambda}$ is a fibration
 - It's fibrewise opposite of Jacobs' simple fibration
- Hot off the press: **PC** is complete (if underlying cat is complete, cocomplete, cartesian closed, ...)
 - Work in progress: game theory using **Span(PC)**
- Really hot off the press: **PC** can be defined over a monoidal category:

$$\mathsf{hom}_{\mathsf{PC}(\mathcal{C})}\left(\binom{X}{S},\binom{Y}{R}\right) = \int^{A \in \mathcal{C}} \mathsf{hom}_{\mathcal{C}}(X, A \otimes Y) \times \mathsf{hom}_{\mathcal{C}}(A \otimes R, S)$$

- Needed for probabilistic open games etc
- Universal property: "freely adding counits"
- Mitchell Riley, Categories of Optics, arXiv

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000		●000000	0000	00
The context f	unctors			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\mathbb{V}: \mathbf{PC} \to \mathbf{Set}, \ (X, S) \mapsto X, \ \ell \mapsto v_{\ell}$
 - It's the view fibration of a lens
 - $\mathbb{V} \cong \hom_{\mathsf{PC}}(I, -)$

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000000	●000000	0000	00
The context	functors			

•
$$\mathbb{V}: \mathsf{PC} \to \mathsf{Set}$$
, $(X, S) \mapsto X$, $\ell \mapsto v_\ell$

- It's the view fibration of a lens
- $\mathbb{V} \cong \hom_{\mathsf{PC}}(I, -)$

•
$$\mathbb{K}: \mathbf{PC}^{\mathrm{op}}
ightarrow \mathbf{Set}, \, (X,S) \mapsto X
ightarrow S$$

• The continuation functor

•
$$\mathbb{K} \cong \mathsf{hom}_{\mathsf{PC}}(-, I)$$

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	●000000	0000	00
The context functors				

•
$$\mathbb{V}: \mathsf{PC} o \mathsf{Set}$$
, $(X, S) \mapsto X$, $\ell \mapsto v_\ell$

• It's the view fibration of a lens

•
$$\mathbb{V} \cong \mathsf{hom}_{\mathsf{PC}}(I, -)$$

•
$$\mathbb{K}: \operatorname{\mathsf{PC}^{op}}
ightarrow \operatorname{\mathsf{Set}}, \, (X,S) \mapsto X
ightarrow S$$

• The continuation functor

•
$$\mathbb{K} \cong \hom_{\mathsf{PC}}(-, I)$$

Slogan: points are states, continuations are effects

Ordinary games	The category PC	Open games ○●○○○○○	Examples 0000	Cool stuff 00
Defining open	games			

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○ ○

An open game $\mathcal{G} : {X \choose S} \to {Y \choose R}$ consists of:

• A set $\Sigma_{\mathcal{G}}$ of strategy profiles

Ordinary games	The category PC	Open games o●ooooo	Examples 0000	00 Stuff
Defining open	games			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

An open game $\mathcal{G} : {X \choose S} \to {Y \choose R}$ consists of:

• A set $\Sigma_{\mathcal{G}}$ of strategy profiles

• For every
$$\sigma: \Sigma_{\mathcal{G}}$$
, a lens $\mathcal{G}(\sigma): {X \choose S} \to {Y \choose R}$

Defining open	games			
Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000000	0●00000	0000	00

An open game $\mathcal{G} : {X \choose S} \to {Y \choose R}$ consists of:

• A set $\Sigma_{\mathcal{G}}$ of strategy profiles

• For every $\sigma: \Sigma_{\mathcal{G}}$, a lens $\mathcal{G}(\sigma): {X \choose S} \to {Y \choose R}$

For every context (h, k) : V(^X_S) × K(^Y_R), a set E_G(h, k) ⊆ Σ_G of Nash equilibria

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

	0000000	000000	0000	00
Defining open	games			

An open game $\mathcal{G}: {X \choose S} \to {Y \choose R}$ consists of:

- A set $\Sigma_{\mathcal{G}}$ of strategy profiles
- For every $\sigma: \Sigma_{\mathcal{G}}$, a lens $\mathcal{G}(\sigma): {X \choose S} \to {Y \choose R}$
- For every context (h, k) : V(^X_S) × K(^Y_R), a set E_G(h, k) ⊆ Σ_G of Nash equilibria

(日) (日) (日) (日) (日) (日) (日) (日)

Things that have been abstracted away: players, moves, payoffs, maximisation

Defining open	games			
Ordinary games	The category PC	Open games ○●○○○○○	Examples 0000	Cool stuff 00

An open game $\mathcal{G}: {X \choose S} \to {Y \choose R}$ consists of:

- A set $\Sigma_{\mathcal{G}}$ of strategy profiles
- For every $\sigma: \Sigma_{\mathcal{G}}$, a lens $\mathcal{G}(\sigma): {X \choose S} \to {Y \choose R}$
- For every context $(h, k) : \mathbb{V} \binom{X}{S} \times \mathbb{K} \binom{Y}{R}$, a set $\mathbf{E}_{\mathcal{G}}(h, k) \subseteq \Sigma_{\mathcal{G}}$ of Nash equilibria

Things that have been abstracted away: players, moves, payoffs, maximisation

We draw it like this:

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	00●0000	0000	00
Special open	games			

A zero player open game has $\Sigma_{\mathcal{G}} = 1$ and $\mathsf{E}_{\mathcal{G}}(h,k) = \{*\}$ for all (h,k)

• Zero-player open games $\binom{X}{S} \to \binom{Y}{R}$ are in bijection with lenses $\binom{X}{S} \to \binom{Y}{R}$

(日) (日) (日) (日) (日) (日) (日) (日)

Currential annual		 0000	
Special open	games		

A zero player open game has $\Sigma_{\mathcal{G}} = 1$ and $\mathsf{E}_{\mathcal{G}}(h,k) = \{*\}$ for all (h,k)

• Zero-player open games $\binom{X}{S} \to \binom{Y}{R}$ are in bijection with lenses $\binom{X}{S} \to \binom{Y}{R}$

A scalar open game is an open game $\binom{1}{1} \rightarrow \binom{1}{1}$

- They are determined by a set of strategy profiles, and a subset of Nash equilibria
- Every ordinary (eg. extensive form) game determines a scalar open game

(日) (日) (日) (日) (日) (日) (日) (日)

Ordinary games	The category PC	Open games 000●000	Examples 0000	Cool stuff 00
Sequential pla	У			

Suppose we have open games

$$\begin{pmatrix} X \\ S \end{pmatrix} \xrightarrow{\mathcal{G}} \begin{pmatrix} Y \\ R \end{pmatrix} \xrightarrow{\mathcal{H}} \begin{pmatrix} Z \\ Q \end{pmatrix}$$

We define $\mathcal{H} \circ \mathcal{G} : {X \choose S} \to {Z \choose Q}$ like this:

• $\Sigma_{\mathcal{H} \circ \mathcal{G}} = \Sigma_{\mathcal{G}} \times \Sigma_{\mathcal{H}}$

•
$$(\mathcal{H} \circ \mathcal{G})(\sigma, \tau) = \mathcal{H}(\tau) \circ \mathcal{G}(\sigma)$$

• The magic part:

$$\mathsf{E}_{\mathcal{H} \circ \mathcal{G}}(h,k) = \left\{ (\sigma,\tau) \left| \begin{matrix} \sigma \in \mathsf{E}_{\mathcal{G}}(h,\mathbb{K}(\mathcal{H}(\tau))(k)) \\ \tau \in \mathsf{E}_{\mathcal{H}}(\mathbb{V}(\mathcal{G}(\sigma))(h),k) \end{matrix} \right. \right\}$$

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	0000●00	0000	00
Example				

$$\mathcal{G}: (1,1)
ightarrow (X imes Z, \mathbb{R})$$

• $\Sigma_{\mathcal{G}} = X$

•
$$v_{\mathcal{G}(x)}(*) = (x, f(x))$$

• $E_{\mathcal{G}}(*, k) =$ arg max_x k(x, f(x))

- $\mathcal{H}:(X imes Z,\mathbb{R}) o(1,1)$
 - $\Sigma_{\mathcal{H}} = Z \to Y$
 - $u_{\mathcal{H}(\sigma)}((x,z),*) = q_1(x,\sigma(z))$
 - $\mathbf{E}_{\mathcal{H}}((x,z),*) = \{\sigma \mid \sigma(z) \in arg \max_{y} q_2(x,y)\}$

000000	0000000	0000000	0000	00
Simultaneous	play			

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ − つへで

\ldots is more complicated, cut for time

000000	OCOCCOC	Open games 000000●	examples 0000	00
Finitely ger	nerated games			

Define an open game $\mathcal{A}_{X,Y}: {X \choose 1} o {Y \choose \mathbb{R}}$ by

- $\Sigma_{\mathcal{A}_{X,Y}} = X \to Y$
- $v_{\mathcal{A}_{X,Y}(\sigma)} = \sigma$
- $\mathbf{E}_{\mathcal{A}_{X,Y}}(h,k) = \{\sigma \mid \sigma(h) \in \arg \max(k)\}$

It's (a single decision by) an agent N.B. This is the only place we mention \mathbb{R} or arg max!

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	000000●	0000	00
Finitely ger	nerated games			

Define an open game $\mathcal{A}_{X,Y}: {X \choose 1} o {Y \choose \mathbb{R}}$ by

- $\Sigma_{\mathcal{A}_{X,Y}} = X \to Y$
- $v_{\mathcal{A}_{X,Y}(\sigma)} = \sigma$
- $\mathbf{E}_{\mathcal{A}_{X,Y}}(h,k) = \{\sigma \mid \sigma(h) \in \arg \max(k)\}$

It's (a single decision by) an agent N.B. This is the only place we mention \mathbb{R} or arg max! Fundamental theorem of compositional game theory: The following are in (sensible) bijective correspondence:

- Scalar open games finitely generated by zero-player open games, $\mathcal{A}_{X,Y}$, \circ and \otimes
- Strategy profiles & pure Nash equilibria of finite-depth extensive form games of imperfect information

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	0000000	●000	00
Bimatrix gan	าย			

Ordinary games Examples 0000

Sequential game of perfect information

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - つへで

 Ordinary games
 The category PC
 Open games
 Examples
 Cool stuff

 000000
 000000
 00000
 0000
 00000

Sequential game of imperfect information

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

11.1.1.1	and the second second			
			0000	
Ordinary games	The category PC	Open games	Examples	Cool stuff

Hybrid sequential-simultaneous game

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	0000000	0000	●0
Cool stuff in t	the past			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Morphisms of open games, version 1:
 - infinitely repeated games are final coalgebras

Ordinary games	The category PC 0000000	Open games	Examples 0000	Cool stuff ●0
Cool stuff in t	the past			

- Morphisms of open games, version 1:
 - infinitely repeated games are final coalgebras
- Morphisms between open games, version 2:
 - Nash equilibria are states
 - $\bullet\,$ Subgame perfect equilibria are $\otimes\mbox{-separable states}$

• Products are external choice

Ordinary games	The category PC 0000000	Open games	Examples 0000	Cool stuff ●0
Cool stuff in t	the past			

- Morphisms of open games, version 1:
 - infinitely repeated games are final coalgebras
- Morphisms between open games, version 2:
 - Nash equilibria are states
 - Subgame perfect equilibria are ⊗-separable states

- Products are external choice
- Bayesian open games
 - (not released yet)
 - Unexpectedly hard

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	0000000	0000	0●
Cool stuff in t	he future			

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Compositional economic modelling

Ordinary games	The category PC	Open games	Examples	Cool stuff
	0000000	0000000	0000	○●
Cool stuff in t	he future			

- Compositional economic modelling
- Composing numerical solution methods

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000000	0000000	0000	⊙●
Cool stuff in t	the future			

- Compositional economic modelling
- Composing numerical solution methods
- Connections with learning
 - Using deep learning to cheat complexity theory

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000000	0000000	0000	○●
Cool stuff in t	he future			

- Compositional economic modelling
- Composing numerical solution methods
- Connections with learning
 - Using deep learning to cheat complexity theory

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

• Open graphical games

Ordinary games	The category PC	Open games	Examples	Cool stuff
000000	0000000	0000000	0000	○●
Cool stuff	in the future			

- Compositional economic modelling
- Composing numerical solution methods
- Connections with learning
 - Using deep learning to cheat complexity theory

▲ロト ▲理ト ▲ヨト ▲ヨト - ヨー つくで

- Open graphical games
- Getting a compact closed category
 - Version 1: $\mathbf{PC} \hookrightarrow \mathbf{Int}$
 - Version 2: $PC \hookrightarrow Span(PC)$