
Kleene Algebra with Tests: A Tutorial

Part I

Dexter Kozen
Cornell University

RAMiCS, September 17–18, 2012

Outline

Today: Some history. Definitions, models, basic results.
Expressiveness, completeness, complexity.

Tomorrow: The coalgebraic theory. Automata and program
schematology. Applications.

Today – Definitions, Models, Basic Results

Definitions: KA and KAT

Models: relational models, language models, trace models, matrices
over a KAT

Basic results:

KAT and Hoare logic

completeness for the equational theory

completeness for the Hoare theory (reasoning under assumptions)

completeness and incompleteness results for PHL

complexity (PSPACE completeness)

typed KA and KAT and relation to type theory

Kleene Algebra (KA)

Stephen Cole Kleene
(1909–1994)

Kleene algebra is an algebraic
system that captures axiomatically
the properties of a natural class of
structures arising in logic and
computer science.
Named for Stephen Cole Kleene,
who among his many other
achievements, invented finite
automata and regular expressions.
Kleene algebra is the algebraic
theory of these objects. It has many
natural and useful interpretations.

Kleene’s Theorem (1956)

1
0

1

0

0
1

(0 + 1(01∗0)∗1)∗
{multiples of 3 in binary}

a

b

(ab)∗a = a(ba)∗
{a, aba, ababa, . . .}

a + b
(a + b)∗ = a∗(ba∗)∗
{all strings over {a, b}}

Foundations of the Algebraic Theory

John Horton Conway
(1937–)

J. H. Conway. Regular Algebra
and Finite Machines. Chapman
and Hall, London, 1971 (out of
print).

Kleene Algebra

Kleene algebras arise in various guises in many contexts:

relational algebra,

semantics and logics of programs,

program analysis and compiler optimization,

automata and formal language theory,

design and analysis of algorithms.

Many authors have contributed to the development of Kleene algebra
over the years: Anderaa, Archangelsky, Backhouse, Bloom, Boffa,
Braibant, Cohen, Conway, Desharnais, Ésik, Furusawa, Höfner, Hopkins,
Jipsen, Kleene, Krob, Kuich, McIver, Meyer, Möller, Morgan, Pous,
Pratt, Redko, Sakarovich, Salomaa, Schmidt, Silva, Stockmeyer, Struth,
and Tiuryn to name a few.

Kleene Algebra

A Kleene algebra is an algebraic structure

(K , +, ·, ∗, 0, 1)

consisting of a set K with distinguished operations and constants
satisfying certain axioms.

operation intuition arity
+ addition, choice, join 2
· multiplication, sequential composition, meet 2
∗ asterate, iteration 1
0 additive identity, fail, false 0
1 multiplicative identity, skip, true 0

The intuitive meaning of the operations depends on the model.

A regular expression is a term in this language.

Axioms of KA

Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r
p + q = q + p 1p = p1 = p
p + 0 = p p0 = 0p = 0
p + p = p

p(q + r) = pq + pr a ≤ b def⇐⇒ a + b = b
(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

Some Basic Consequences

p∗ = p∗p∗

p∗ = p∗∗

p∗ = 1 + pp∗

p∗ = 1 + p∗p

(p + q)∗ = p∗(qp∗)∗ denesting

(pq)∗p = p(qp)∗ sliding

for all n ≥ 1, p∗ = (1 + p)n−1(pn)∗

pq = qr ⇒ p∗q = qr∗ bisimulation

px ≤ x ⇒ p∗x ≤ x

xp ≤ x ⇒ xp∗ ≤ x

Basic Facts about ≤

≤ is a partial order (reflexive, antisymmetric, transitive – depends
heavily on idempotence)

least element 0

All operations monotone with respect to ≤
that is, if p ≤ q, then

p + r ≤ q + r

pr ≤ qr

rp ≤ rq

p∗ ≤ q∗

Significance of the ∗ Axioms

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

Axioms for ∗

q + pp∗q ≤ p∗q q + px ≤ x ⇒ p∗q ≤ x

p∗q is the least x such that q + px ≤ x

Systems of Affine Linear Inequalities

Theorem
Any system of n affine linear inequalities in n unknowns has a unique least
solution

q1 + p11x1 + p12x2 + · · · p1nxn ≤ x1

...
qn + pn1x1 + pn2x2 + · · · pnnxn ≤ xn

Matrices over a KA form a KA

[
a b
c d

]
+

[
e f
g h

]
=

[
a + e b + f
c + g d + h

]
[

a b
c d

]
·
[

e f
g h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]
0 =

[
0 0
0 0

]
1 =

[
1 0
0 1

]
[

a b
c d

]∗
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗
(d + ca∗b)∗ca∗ (d + ca∗b)∗

]
b

a
c

d

Systems of Affine Linear Inequalities

Theorem
Any system of n affine linear inequalities in n unknowns has a unique least
solution

q1 + p11x1 + p12x2 + · · · p1nxn ≤ x1

...
qn + pn1x1 + pn2x2 + · · · pnnxn ≤ xn

≤+ P = pij

x1
x2

...

xn

x1
x2

...

xn

q1
q2

...

qn

Least solution is P∗q

Matrices over a KA

Representation of finite automata

Construction of regular expressions

Solution of linear inequalities over a KA

Connectivity and shortest path algorithms

Language-Theoretic Models

Σ∗ = {finite-length strings over a finite alphabet Σ}

For A,B ⊆ Σ∗:

A + B def
= A ∪ B

A · B def
= {xy | x ∈ A, y ∈ B}

0 def
= ∅

1 def
= {ε} ε = the null string

A∗ def
=

⋃
n≥0

An = {x1 · · · xn | n ≥ 0, xi ∈ A, 1 ≤ i ≤ n}

where A0 def
= {ε} and An+1 def

= A · An.

The operation ∗ on sets of strings is known as (Kleene) asterate.

Language-Theoretic Models

Any subset of 2Σ∗ closed under the operations ∅, {ε},∪, ·,∗

RegΣ = {regular sets over Σ} = smallest subalgebra of 2Σ∗

containing {a}, a ∈ Σ.

Many others!

The standard interpretation is the unique KA homomorphism
R : RExpΣ → RegΣ such that R(a) = {a}. Examples:

R(a∗b∗) = {anbm | n,m ≥ 0}
R(a(ba)∗) = {a, aba, ababa, abababa, . . .}

R((a + b)∗) = {all strings of a’s and b’s}

Context-Free Languages

Context-free languages are the algebraic closure of RegΣ in 2Σ∗ , i.e.
solutions of finite systems of algebraic inequalities.

Examples:

{anbn | n ≥ 0}: 1 + axb ≤ x

Palindromes: 1 + axa + bxb ≤ x

Balanced parens: 1 + (x) + xx ≤ x

Parikh’s theorem = Every CFL is “letter equivalent” to a regular set =
Every commutative KA is algebraically closed

Relational Models

Let R, S ⊆ X × X

R + S def
= R ∪ S

R ◦ S def
= {(x , z) | ∃y ∈ X (x , y) ∈ R ∧ (y , z) ∈ S}

0 def
= ∅ empty relation

1 def
= {(x , x) | x ∈ X} identity relation

R∗ def
=

⋃
n≥0

Rn reflexive-transitive closure

where

R0 def
= 1 Rn+1 def

= R ◦ Rn.

Relational Models

Relational KA
Any subset of 2X×X closed under these operations

Useful in programming language semantics, because they can be
used to represent the input/output relations of programs

Every language model is isomorphic to a relational model

A 7→ {(x , xy) | x ∈ Σ∗, y ∈ A}

but not vice versa (language models satisfy

p2 = 1 ⇒ p = 1,

relational models not necessarily) p

p

Trace Models

Labeled transition system (LTS)

a set X of states

a mapping π : Σ→ 2X×X , where Σ is a set of atomic actions

A trace is an alternating sequence of states and atomic actions

s0 p0 s1 p1 · · · sn−1 pn−1 sn

beginning and ending with a state, such that (si , si+1) ∈ π(pi),
0 ≤ i ≤ n − 1.

ss0

s s s s s s
s1 s2

sn−1
sn�

�
��

-HH
Hj�

��*HH
HjHH

Hj

p0

p1
p2 · · · pn−2

pn−1

Trace Models

Fusion product

If lastσ = first τ , form στ , suppressing the extra copy of
lastσ = first τ

If lastσ 6= first τ , στ does not exist

For A,B ∈ 2{Traces},

A + B def
= A ∪ B

A · B def
= {στ | σ ∈ A, τ ∈ B, στ exists}

0 def
= ∅

1 def
= {s | s ∈ X} = {traces of length 0}

A∗ def
=

⋃
n≥0

An.

Trace Models

Every language model is isomorphic to a trace model on one state.

Every trace model is isomorphic to a relational model

A 7→ {(σ, στ) | σ ∈ {Traces}, τ ∈ A}

but not vice versa (trace models satisfy

p2 = 1 ⇒ p = 1,

relational models not necessarily)

The min,+ Algebra (aka Tropical Semiring)

The domain is R+ ∪ {∞}, where

R+ = {r ∈ R | r ≥ 0}

r ≤ ∞ for all r ∈ R

x +∞ = ∞+ x = ∞+∞ = ∞

The Kleene operations are

K R+ ∪ {∞}
+ min
· +
0 ∞
1 0
≤ ≥

and x∗ = 1 (= the real number 0) for any x .

su sw

sv
�
�
�
�>Z

Z
Z
Z~-

3.7 2.2

6.3

R =

u v w
u 0 3.7 6.3
v ∞ 0 2.2
w ∞ ∞ 0

R∗ =

u v w
u 0 3.7 5.9
v ∞ 0 2.2
w ∞ ∞ 0

Deductive Completeness and Complexity

The KA axioms exactly characterize the equational theory of

the standard interpretation R : RExpΣ → RegΣ

all language models

all relational models

all trace models

That is, p = q holds under all interpretations in that class of models iff
p = q is a theorem of KA.

The equational theory is PSPACE -complete [(1 + Stock)Meyer 1974]

Salomaa’s Axiomatization (1966)

Arto Salomaa
(1934–)

Salomaa (1966) was the first to
axiomatize the equational theory of the
regular sets and prove completeness. He
presented two axiomatizations F1 and F2
for the algebra of regular sets and
proved their completeness.

Aanderaa (1965) independently
presented a system similar to Salomaa’s
F1. Backhouse (1975) gave an algebraic
version of F1.

Salomaa’s Axiomatization (1966)

Salomaa’s system F1 contains the rule

u + st = t, ε 6∈ R(s)

s∗u = t

This rule is sound under the standard interpretation R, but the premise
“ε 6∈ R(s)” is not preserved under substititution, thus the rule is not valid
under nonstandard interpretations.

For example, if s, t, and u are the single letters a, b and c respectively,
then the rule holds; but it does not hold after the substitution

a 7→ 1 b 7→ 1 c 7→ 0.

Another way to say this is that the rule must not be interpreted as a
universal Horn formula.

Other Axiomatizations (in order of generality)

Complete semirings (S-algebras, quantales) (Conway 1971)

arbitrary suprema & distributivity

Closed semirings (ω-complete semirings) (Aho, Hopcroft, Ullman
1974)

countable suprema & distributivity
∗-continuous KA

pq∗r = supn≥0 pqnr

Same equational theory as KA

Motivation for KAT

Propositional Dynamic Logic (PDL) [Fischer & Ladner 1979]

KA + propositional logic + modalities

ϕ ∧ [p∗](ϕ→ [p]ϕ) → [p∗]ϕ

subsumes propositional Hoare logic (PHL)

{ϕ} p {ψ} def⇐⇒ ϕ→ [p]ψ

semantically well-grounded and deductively complete, but complex
to decide

PDL (Fischer & Ladner 1979)

The test operator ? makes a program out of a test:

[[ϕ?]] = {(s, s) | s � ϕ}

Used to model conventional programming constructs:

if ϕ then p else q def⇐⇒ ϕ?; p + ¬ϕ?; q

while ϕ do p def⇐⇒ (ϕ?; p)∗;¬ϕ?

PDL (Fischer & Ladner 1979)

From a practical point of view, many arguments do not require the full
power of PDL, but can be carried out in a purely equational subsystem
using Kleene algebra

But the Boolean component is essential, as it is needed to model
conventional programming constructs

if ϕ then p else q def⇐⇒ ϕ?; p + ¬ϕ?; q

while ϕ do p def⇐⇒ (ϕ?; p)∗;¬ϕ?

Kleene Algebra with Tests (KAT)
A Mashup1 of Kleene and Boolean Algebra

(K ,B,+, ·,∗ , , 0, 1), B ⊆ K

(K ,+, ·,∗ , 0, 1) is a Kleene algebra

(B,+, ·, , 0, 1) is a Boolean algebra

(B,+, ·, 0, 1) is a subalgebra of (K ,+, ·, 0, 1)

p, q, r , . . . range over K

a, b, c , . . . range over B

1Mashup: A web page or web application that uses and combines data, presentation, or
functionality from two or more sources to create new services. The term implies easy, fast
integration, frequently using data sources to produce enriched results that were not necessarily
the original reason for producing the raw source data. –Wikipedia

Kleene Algebra with Tests (KAT)
A Mashup of Kleene and Boolean Algebra

+, ·, 0, 1 serve double duty

applied to actions, denote choice, composition, fail, and skip, resp.

applied to tests, denote disjunction, conjunction, falsity, and truth,
resp.

these usages do not conflict!

bc = b ∧ c b + c = b ∨ c

Axioms of Boolean Algebra

a + (b + c) = (a + b) + c a(bc) = (ab)c
a + b = b + a ab = ba
a + 0 = a a1 = a
a + a = a aa = a
a(b + c) = ab + ac (a + b)c = ac + bc
a0 = 0 a + 1 = 1

a + b = a b ab = a + b

a = a

Models of KAT

Language-theoretic models

K = sets of guarded strings over Σ,T

B = free Boolean algebra generated by T

Relational models

K = binary relations on a set X

B = subsets of the identity relation

Trace models

K = sets of traces s0p0s1p1s2 · · · sn−1pn−1sn

B = traces of length 0

n × n matrices over a KAT K ,B

K ′ = n × n matrices over K

B ′ = n × n diagonal matrices over B

Guarded Strings over Σ, T [Kaplan 69]

Σ action symbols T test symbols

B = free Boolean algebra generated by T
At = atoms of B = {α, β, . . .}

E.g. if T = {a, b, c}, then abc is an atom

Guarded strings α0p0α1p1α2 · · ·αn−1pn−1αn ∈ (At · Σ)∗ · At

Guarded strings are the join-irreducible elements of the free KAT on
generators Σ,T

Essentially traces on the state set At

abc

a

b

c

Standard Interpretation of KAT

GSΣ,T = {guarded strings over Σ,T}

A + B = A ∪ B
AB = {xαy | xα ∈ A, αy ∈ B}
0 = ∅
1 = At

A∗ =
⋃
n≥0

An = A0 ∪ A1 ∪ A2 ∪ · · ·

A = At− A, A ⊆ At

RExpΣ,T = {KAT terms over Σ,T}

Standard interpretation G : RExpΣ,T → 2GSΣ,T :

G (p) = {αpβ | α, β ∈ At}, p ∈ Σ G (b) = {α | α ≤ b}, b ∈ T

Modeling While Programs

p; q def
= pq

if b then p else q def
= bp + bq

while b do p def
= (bp)∗b

Hoare Logic

C. A. R. “Tony” Hoare

Partial correctness assertion

{ϕ} p {ψ}

“if ϕ holds of the input state, and
if p halts, then ψ must hold of
the output state”

KAT Subsumes PHL

{b} p {c} def⇐⇒ bp ≤ pc
⇐⇒ bp = bpc
⇐⇒ the test c is always redundant after executing bp
⇐⇒ bpc = 0

⇐⇒ there is no computation of p with precondition
b and postcondition c

KAT Subsumes PHL

composition rule
{b} p {c} {c} q {d}
{b} p ; q {d}

dddbp ≤ pc ∧ cq ≤ qd ⇒ bpq ≤ pqd

conditional rule

{bc} p {d} {bc} q {d}
{c} if b then p else q {d}

bcp ≤ pd ∧ bcq ≤ qd
ddd⇒ c(bp + bq) ≤ (bp + bq)d

while rule
{bc} p {c}

{c} while b do p {bc}
bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗bbc

weakening rule
b′ → b {b} p {c} c → c ′

{b′} p {c ′}
b′ ≤ b ∧ bp ≤ pc ∧ c ≤ c ′ ⇒ b′p ≤ pc ′

KAT Subsumes PHL

In fact, one can replace the conditional and while rules with

choice rule
{b} p {c} {b} q {c}
{b} p + q {c}

dddbp ≤ pc ∧ bq ≤ qc ⇒ b(p + q) ≤ (p + q)c

iteration rule
{b} p {b}
{b} p∗ {b}

dddbp ≤ pb ⇒ bp∗ ≤ p∗b

test rule
{b} c {bc} dddbc ≤ cbc

Proof of the While Rule

The KAT translation of the while rule is

bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗bbc

Assume bcp ≤ pc. The rhs is equivalent to

c(bp)∗b ≤ (bp)∗cb.

By monotonicity, it suffices to show

c(bp)∗ ≤ (bp)∗c .

By the star rule x + zy ≤ z ⇒ xy∗ ≤ z , it suffices to show

c + (bp)∗cbp ≤ (bp)∗c .

But

c + (bp)∗cbp = c + (bp)∗bbcp ≤ c + (bp)∗bpc

= (1 + (bp)∗bp)c ≤ (bp)∗c .

Deductive Completeness

The KAT axioms exactly characterize the equational theory of

the standard interpretation G : RExpΣ,T → RegΣ,T

all language models

all relational models

all trace models

Deductive Completeness

KAT is deductively complete for all relationally valid Hoare-style rules

{b1} p1 {c1}, . . . , {bn} pn {cn}
{b} p {c}

That is,

b1p1c1 = 0 ∧ · · · ∧ bnpncn = 0 ⇒ bpc = 0

In fact, KAT is deductively complete for all Horn formulas with premises
of the form r = 0:

r1 = 0 ∧ · · · ∧ rn = 0 ⇒ p = q

This is called the Hoare theory.

Deductive Completeness

Note that PHL is trivially incomplete; e.g.

{c} if b then p else p {d}
{c} p {d}

is not provable in PHL (but

c(bp + bp)d = 0 ⇒ cpd = 0

is easily provable in KAT)

Completeness of KA and KAT

To show completeness of KA and KAT, encode classical combinatorial
constructions of the theory of finite automata algebraically:

construction of a transition matrix representing a finite automaton
equivalent to a given regular expression (Kleene 1956, Conway 1971)

elimination of ε-transitions (Kuich and Salomaa 1986, Sakarovitch
1987)

Two other fundamental constructions:

determinization of an automaton via the subset construction, and

state minimization via equivalence modulo a Myhill-Nerode
equivalence relation

Then use the uniqueness of the minimal deterministic finite automaton to
obtain completeness

Finite Automata as Matrices (Conway 1971)

A finite automaton over a KA K is represented by a triple A = (u,A, v),
where u, v ∈ {0, 1}n and A is an n × n matrix over K for some n.

The states are the row and column indices. A start state is an index i for
which u(i) = 1. A final state is an index i for which v(i) = 1. The
matrix A is called the transition matrix.

The language accepted by A is the element uTA∗v ∈ K .

For automata over the free KA on generators Σ, this is essentially
equivalent to the classical combinatorial definition

Example

Consider the two-state automaton

b

a

a, b

Accepts strings over {a, b} containing at least one occurrence of b([
1
0

]
,

[
a b
0 a + b

]
,

[
0
1

])
Modulo the axioms of KA,

[
1 0

]
·
[

a b
0 a + b

]∗
·
[

0
1

]
=

[
1 0

]
·
[

a∗ a∗b(a + b)∗
0 (a + b)∗

]
·
[

0
1

]
= a∗b(a + b)∗

Simple Automata

Definition
Let A = (u,A, v) be an automaton over FΣ, the free Kleene algebra on
free generators Σ. A is said to be simple if A can be expressed as a sum

A = J +
∑
a∈Σ

a · Aa

where J and the Aa are 0-1 matrices. In addition, A is said to be ε-free if
J is the zero matrix. Finally, A is said to be deterministic if it is simple
and ε-free, and u and all rows of Aa have exactly one 1.

The automaton of the previous example is simple, ε-free, and
deterministic.

Completeness

The first lemma asserts that Kleene’s theorem is a theorem of KA.

Lemma
For every regular expression s over Σ (or more accurately, its image in
the free KA under the canonical interpretation), there is a simple
automaton (u,A, v) such that

s = uTA∗v

is a theorem of KA.

Proof: By induction on the structure of s.

Completeness

For a ∈ Σ, the automaton([
1
0

]
,

[
0 a
0 0

]
,

[
0
1

])
suffices, since

[
1 0

]
·
[

0 a
0 0

]∗
·
[

0
1

]

=
[
1 0

]
·
[

1 a
0 1

]
·
[

0
1

]
= a.

Completeness

For s + t, let A = (u,A, v) and B = (x ,B, y) be automata such
that

s = uTA∗v t = xTB∗y .

Consider the automaton with transition matrix[
A 0
0 B

]
and start and final state vectors[

u
x

]
and

[
v
y

]
,

respectively. (Corresponds to a disjoint union construction.)

Completeness

Then [
A 0
0 B

]∗
=

[
A∗ 0
0 B∗

]
,

and [
uT xT

]
·
[

A∗ 0
0 B∗

]
·
[

v
y

]

= uTA∗v + xTB∗y

= s + t.

Completeness

For st, let A = (u,A, v) and B = (x ,B, y) be automata such that

s = uTA∗v t = xTB∗y .

Consider the automaton with transition matrix[
A vxT

0 B

]
and start and final state vectors[

u
0

]
and

[
0
y

]
,

respectively. (Corresponds to forming the disjoint union and connecting
the accept states of A to the start states of B.)

Completeness

Then [
A vxT

0 B

]∗
=

[
A∗ A∗vxTB∗
0 B∗

]
,

and [
uT 0

]
·
[

A∗ A∗vxTB∗
0 B∗

]
·
[

0
y

]

= uTA∗vxTB∗y

= st.

Completeness

For s∗, let A = (u,A, v) be an automaton such that s = uTA∗v . First
produce an automaton equivalent to the expression ss∗. Consider the
automaton

(u, A + vuT , v).

This construction corresponds to the combinatorial construction of
adding ε-transitions from the final states of A back to the start states.
Using denesting and sliding,

uT (A + vuT)∗v = uTA∗(vuTA∗)∗v
= uTA∗v(uTA∗v)∗

= ss∗.

Once we have an automaton for ss∗, we can get an automaton for
s∗ = 1 + ss∗ by the construction for + given above, using a trivial
one-state automaton for 1.

Removing ε-Transitions

This construction models ε-closure.

Lemma

For every simple automaton (u,A, v) over the free KA, there is a simple
ε-free automaton (s,B, t) such that

uTA∗v = sTB∗t.

Proof.
Write A as a sum A = J + A′ where J is 0-1 and A′ is ε-free. Then

uTA∗v = uT (A′ + J)∗v = uT J∗(A′J∗)∗v

by denesting, so we can take

sT = uT J∗ B = A′J∗ t = v .

Then J∗ is 0-1 and B is ε-free.

Determinization

=N X X D

NX = XD ⇒ N∗X = XD∗

the bisimulation rule

Minimization via a Myhill–Nerode Relation

=N X X M

NX = XM ⇒ N∗X = XM∗

the bisimulation rule again

Isomorphic Automata

=P−1 A P B

(P−1AP)∗ = P−1A∗P

Putting the Steps Together. . .

s

Ns

Ds

Ms Mt

Dt

Nt

t

build automaton build automaton

determinize determinize

minimize minimize

permute

Completeness of KAT

Let Σ = {p1, . . . , pm} and T = {b1, . . . , bn}. Let P = p1 + · · ·+ pm and
B = (b1 + b1) · · · (bn + bn). A guarded string can be viewed as a string
in (BP)∗B over the alphabet Σ ∪ T ∪ {b | b ∈ T}.

Lemma
For every KAT term p, there is a KAT term p̂ such that

KAT � p = p̂,
G (p̂) = R(p̂).

For example,

(bpq)∗a 7→ ((a + a)bp(a + b)q)∗a(b + b)

Completeness of KAT

Lemma
For every KAT term p, there is a KAT term p̂ such that

KAT � p = p̂,
G (p̂) = R(p̂).

Theorem
KAT |= p = q ⇔ G (p) = G (q).

Proof.
(⇒) Immediate, since GSΣ,T is a KAT.
(⇐) Suppose G (p) = G (q). Since KAT � p = p̂ and GSΣ,T is a KAT,
G (p̂) = G (q̂). By the Lemma, R(p̂) = R(q̂). By the completeness of
KA, KA |= p̂ = q̂. By transitivity, KAT |= p = q.

Eliminating Assumptions s = 0

An ideal of a KA or KAT is a subset I ⊆ K such that

1 0 ∈ I

2 if x , y ∈ I , then x + y ∈ I

3 if x ∈ I and r ∈ K , then xr and rx are in I

4 if x ≤ y and y ∈ I , then x ∈ I .

Given I , set x > y if x ≤ y + z for some z ∈ I , and x ≈ y if x > y and
y > x . Equivalently, set x ≈ y if x + z = y + z for some z ∈ I , and
x > y if x + y ≈ y .

> is a preorder and ≈ is an equivalence relation. Let [x] denote the
≈-equivalence class of x and let K/I denote the set of all ≈-equivalence
classes. The relation > is well-defined on K/I and is a partial order.
Note also that I = [0].

Eliminating Assumptions s = 0

Theorem
≈ is a KAT congruence and K/I is a KAT. If A ⊆ K and I = <A>, then
K/I is initial among all homomorphic images of K satisfying x = 0 for all
x ∈ A.

To show px > x ⇒ p∗x > x :

If px > x , then px ≤ x + z for some z ∈ I . Then

p(x + p∗z) = px + pp∗z ≤ x + z + pp∗z = x + p∗z .

Applying the same rule in K , we have p∗(x + p∗z) ≤ x + p∗z , therefore
p∗x ≤ x + p∗z . Since p∗z ∈ I , p∗x > x .

Eliminating Assumptions s = 0

Corollary
Let Σ = {p1, . . . , pn}, u = (p1 + · · ·+ pn)∗. Then

KAT � r = 0⇒ s = t ⇔ KAT � s + uru = t + uru.

Proof sketch: {y | y ≤ uru} is the ideal generated by r , so
s + uru = t + uru iff s ≈ t iff s = t in G/I .

Tomorrow

Automata and coalgebras!

Exercises

1 Prove that while b do (p ; while c do q) =
if b then (p ; while b + c do if c then q else p) else skip.

2 Prove that the following KAT equations and inequalities are
equivalent:

1 bp = bpc

2 bpc = 0

3 bp ≤ pc

3 Prove that the expression bp = pc is equivalent to the two Hoare
partial correctness assertions {b} p {c} and {b} p {c}.

Exercises

4 Let Σ be a finite alphabet and K a Kleene algebra. A power series in
noncommuting variables Σ with coefficients in K is a map σ : Σ∗ → K .
The power series σ is often written as a formal sumX

x∈Σ∗
σ(x) · x .

The set of all such power series is denoted K〈〈Σ〉〉. Addition on K〈〈Σ〉〉 is
defined pointwise, and multiplication is defined as follows:

(σ · τ)(x)
def
=

X
x=yz

σ(y) · τ(z).

Define 0 and 1 appropriately and argue that K〈〈Σ〉〉 forms an idempotent
semiring. Then define ∗ as follows:

σ∗(x)
def
=

X
x=y1···yn

σ(ε)∗σ(y1)σ(ε)∗σ(y2)σ(ε)∗ · · ·σ(ε)∗σ(yn)σ(ε)∗

where ε is the null string and the sum is over all ways of expressing x as a
product of strings y1, . . . , yn. Show that K〈〈Σ〉〉 forms a KA.

Exercises

5 Strassen’s matrix multiplication algorithm can be used to multiply
two n × n matrices over a ring using approximately nlog2 7 = n2.807...

multiplications in the underlying ring. The best known result of this
form is by Coppersmith and Winograd, who achieve n2.376.... Show
that over arbitrary semirings, n3 multiplications are necessary in
general. (Hint. Interpret over RegΣ, where
Σ = {aij , bij | 1 ≤ i , j ≤ n}. What semiring expressions could
possibly be equivalent to

∑n
j=1 aijbjk?)

