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Abstract 

With the rapid increase in size and population of urban 

areas, it becomes important to understand urban 

environmental influencers so that better informed 

decisions can be made for more sustainable urban 

environments. Taxis represent one of the urban 

dynamics from which city planners can gain a better 

understanding of urban mobility as well as its 

relationship with other environmental elements. In this 

work, an analysis of the relationship between flue 

gases’ concentrations (represented by nitrogen dioxide) 

and taxi volume in Lisbon, Portugal was carried out 

from which a strong correlation between the two was 

observed. Based on four months of data, we found that 

the flue gases’ concentrations varied with taxi volume 

and in particular, taxi volume can be used to estimate 

the change in flue gases’ concentrations of the next 

hour.  
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Algorithms.   

Introduction 

Automobile is one of the major sources of toxic 

compounds that are present in combustion gases that 

negatively impact the health of urban inhabitants. 

There is a need to address this issue today while low-

carbon transport systems (which is a promising 

solution) are still being developed. Understanding of 

gas emission patterns and ability to estimate their 

concentrations in urban areas are thus essential in 

order to mitigate the problem. 

Today, taxis in various cities are equipped with GPS to 

improve their services with a better dispatching 

system. By taking the opportunistic sensing approach, 

we used GPS traces of taxis in the city of Lisbon, 

Portugal to explore the relationship between taxi 

mobility patterns and level of concentration of flue 

gases. 

Related Work 

Mining taxi trajectories has recently attracted much 

attention. Taxi-GSP traces have been used in a number 

of studies to develop better solutions and services in 

urban areas such as estimating optimal driving paths 

[1-3], predicting next taxi pick-up locations [4-7], 

modeling driving strategies to improve taxi’s profit [7-

8], identifying flaws and possible improvements in 

urban planning [9], and developing models for urban 

mobility, social functions, and dynamics between the 

different city’s areas [10-11].  

Yuan et al. [1] present the T-Drive system that 

identifies optimal route for a given destination and 

departure time. Zheng et al. [2] describe a three-layer 

architecture using the landmark graph to model 

knowledge of taxi drivers. Ziebart et al. [3] present a 

decision-modeling framework for probabilistic reasoning 

from observed context-sensitive actions. The model is 

able to make decisions regarding intersections, route, 

and destination prediction given partially traveled 

routes.  

Yuan et al. [4] develop a recommender system for both 

taxi drivers and passengers that takes into account the 

passengers’ mobility patterns and taxi drivers’ pick-up 

traces. Phithakkitnukoon et al. [5] present a model for 

predicting the number of vacant taxis for a given area 

of the city based on the naïve Bayesian classier with 

their developed error-based learning algorithm and a 

mechanism for detecting adequacy of historical data. 

Liu et al. [6] classify taxi drivers according to their 

income. They observe that top drivers operate in a 

number of different zones while maintaining exceptional 

balance between taxi demand and traffic conditions.  

Ge et al. [7] present an approach for extracting 

energy-efficient transportation patterns from taxi traces 

and use it to develop a recommender system for pick-

up locations and a sequence of waiting locations for a 

taxi driver. Zheng et al. [9] identify flawed urban 

planning in region pairs with traffic problems and the 

linking structure among these regions through their 

analysis of taxi traces. Qi et al. [10] investigate the 

relationship between regional pick-up and drop-off 

characteristics of taxis and social function of city 

regions. They develop a simple classification method to 

recognize regions’ social areas. Veloso et al. [11] 

explore the relationship between taxi volume and 

mobile phone activity. They observe a strong relation 



 

between them i.e., the amount of mobile phone calls is 

strongly correlated with the taxi volume of the previous 

two hours. Moreover, the level of inter-predictability 

varied across different time of the day. 

In addition to the dynamic in vehicular network, there 

are work focusing the study of flue gases' fluxes, and 

the development of environment data sensing methods 

[12-16]. 

Velasco et al. [12] use an eddy covariance (EC) flux 

system to obtain direct measurements of CO2 

emissions in Mexico City. The analysis shows a clear 

diurnal pattern with the highest emissions during the 

morning and the lowest emissions during nighttime. 

The measured CO2 fluxes are closely correlated to 

traffic patterns. Liu et al. [13] apply a similar 

methodology to the city of Beijing, China, collecting 

data during a four-year period, with similar results. 

Daily and weekly cycles are observed, with strong 

dependency with road traffic. Zavala et al. [14] use a 

mobile laboratory to measure on-road vehicle emission 

ratios in Mexico City. The authors show that flue gases’ 

emissions are strongly related with driving behaviors. 

Mao et al. [15] present CitySee, a real-time CO2-

monitoring system using wireless sensor networks for 

an urban area, in Wuxi, China, proposing a low-cost 

sensor deployment strategy. Hu et al. [16] propose a 

vehicular sensing system to collect CO2 concentration 

in urban areas, based on GSM short messages and GPS 

information of vehicles. Vehicles are used as carriers of 

sensing devices to monitor CO2 concentrations while 

driving through the city. The concept is tested using the 

ZigBee-based. 

Datasets 

Taxi volume 

Figure 1. Spatial distribution of taxi volume (number 

of pick-ups). 

Our taxi dataset was provided by GeoTaxi1, a company 

that focuses on software development for fleet 

management, and holds about 20% of the taxi market 

share in Portugal. The dataset was composed of around 

10 million taxi-GPS location points and collected from 

230 taxis. Along with the GPS location (latitude, 

longitude) information, it reported speed, bearing, and 

occupancy status of the taxi. The amount of pick-ups 

and drop-offs were inferred, which accounted for 

177,169 distinct trips. The number of pick-ups was 

termed taxi volume. A data cleaning process was 

applied to remove trips with less than 200m and more 

                                                 
1 Geotaxi. http://www.geotaxi.com/ . 



 

than 30km (the realistic longest trips from one side of 

the city to the other could be around 22km), and less 

than a minute and longer than three hours. 

The overall taxi volume’s spatial distribution in Lisbon is 

shown in Fig. 1 (on 500x500m2-grid cells), where the 

number of pick-ups on each cell during the period 

under study is represented by a color scale (red 

corresponds to cells with a higher number of pick-ups). 

Some major locations are identified, such as city 

downtown (A), airport (B), train stations (C, D) and 

ferry dock (E). Different public transportation 

modalities (e.g., airport, train, ferry, bus) are well 

connected through taxi services. 

 

 

Figure 2. Taxi volume variation according to hours of day 

(top) and days of week (bottom). 

Taxi volume varies in time and space. Fig. 2 presents 

temporal variation of the taxi services. As expected, the 

taxi service variation follows the business hours. It 

gradually increases in from 5am, reaches the maximum 

between 11am and 1pm, and slowly drops down in the 

afternoon. By the same token, there are more taxi 

services in working days than in weekends.  On 

average, we observed a reduction of taxi volume of 

about 46.7% at night (from 10pm to 7am) and 13.6% 

on weekends. 

Flue gases 

The flue gases’ dataset was provided by both the 

‘Comissão de Coordenação e Desenvolvimento Regional 

de Lisboa e Vale do Tejo’ (CCDR-LVT)2, and the 

‘Agência Portuguesa do Ambiente’3, which are 

governmental institutions responsible for monitoring 

atmospheric pollutants. The dataset was composed of 

hourly readings of different gases concentrations on 

seven monitoring stations (shown in Fig. 3). Every 

station monitors nitrogen oxide (NOx), nitrogen 

monoxide (NO), nitrogen dioxide (NO2), and carbon 

monoxide (CO), measured in µg/m3, which are exhaust 

combustion gases, also called flue gases. In our 

preliminary analysis, only nitrogen dioxide was 

considered in this paper. 

Although the current work focuses on a common 

window of observation from September to December 

2009, the flue gases’ database contains data from 2008 

to 2011, which is explored in this section. 

                                                 
2 CCDR-LVT. http://www.ccdr-lvt.pt/pt/ . 

3 Agência Portuguesa do Ambiente. http://www.qualar.org . 



 

The monitoring stations were classified into two groups: 

traffic stations (D and E, Fig. 3) and background 

stations (A, B, C, F, G, Fig 3). The traffic stations are 

located near traffic roads while the background stations 

are located away from main roads. On average, traffic 

station perceives higher concentrations of flue gases 

(65.3 µg/m3 for NO2) than background station (36.5 

µg/m3 for NO2), which is in line with Ndoke and Jimoh 

[18] who observed that concentrations of flue gases 

decreased as when moving away from the roads.  

 

Figure 3. Locations of monitoring stations. 

Two daily peaks of gas concentration, which is related 

to traffic congestion were also observed in [17]. The 

morning peak quickly increases in from 5am, reaches 

the maximum around 8am and quickly drops down, 

corresponding to the inbound traffic to the city. In the 

afternoon, gas concentration gradually rises around 

3pm and reaches the maximum around 7pm and slowly 

drops down, corresponding to the outbound traffic from 

the city. The rate of dispersion of gases is affected by 

temperature. Gases react to heat by expanding their 

volume as higher temperature increases molecules' 

speed, and hence disperses more quickly. When facing 

cold, gases respond by contracting and by dispersing 

slowly [19]. On average, we observed a reduction of 

flue gases’ concentrations of about 19.1% at night 

(from 10pm to 7am) and 23.1% on weekends. 

 

Figure 4. shows the average variation of flue gases over the 

course of a day. 

Likewise, warmer months (June, July and August) have 

in average lower gases concentrations (25.7 µg/m3 for 

NO2) than colder months (44.8 µg/m3 for NO2 on 

October, November and December), which can be 

observed in Fig. 5.  



 

In warmer months, the morning peak reaches higher 

values of gas concentrations than the afternoon peak 

(37.8 µg/m3 against 29.8 µg/m3 for NO2), while in 

colder months the afternoon peak attains higher values 

than the morning peak (67.8 µg/m3 against 55.9 µg/m3 

for NO2). Moreover, there is a narrower gap between 

the maximum and minimum average concentrations of 

flue gases in warmer months (23.3 µg/m3 for NO2) 

when compared with colder months (40.2 µg/m3 for 

NO2). Similar patterns were observed when exploring 

data from different years (from 2008 to 2011). 

 

Figure 5. Average variation of flue gases across every month 

in 2009. 

Analysis and results 

To explore the relationship between taxi volume and 

flue gases’ concentrations (represented by nitrogen 

dioxide in this study) we extracted data as a hourly 

aggregated time series, normalized to [0, 1]. We 

overlaid both time series on the same plot as shown in 

Fig. 6 and observed similar temporal patterns. Both 

exhibited daily cycles, although taxi volume shows a 

more regular pattern. 

 

Figure 6. Normalized time series of taxi volume (green) and 

nitrogen dioxide (blue) over four months of observation. 

To quantify the difference between these two time 

series, we computed the Euclidean distance (ED) as 

follows: 

𝐸𝐷 = √(𝑔 − 𝑡 )
 = |𝑔 − 𝑡 | 

where gi  represents the nitrogen dioxide, 

concentrations at hour i and ti denotes taxi volume at 

hour i. Hence, G = {g1, g2, …, gn} and T = {t1, t2, …, 

tn} represent the normalized time series of nitrogen 

dioxide concentrations and taxi volume of length n, 

respectively.  

Euclidean distance of these time series was 0.27928, 

and hourly distances are shown in Fig. 7. Higher values 

of ED were observed mostly between 9am and 3pm, a 



 

period where the concentration of nitrogen dioxide 

decreased while the taxi activity stayed high. 

 

Figure 7. Hourly Euclidean distance of the normalized time 

series of nitrogen dioxide concentrations and taxi volume.  

To further explore in terms of predictability between 

the two data sources, we employed the coefficient of 

determination or R2 (that is widely used for regression 

analysis) to measure the interdependency between 

them. The coefficient of determination, or R2, can be 

calculated as: 

𝑅 =
∑ (𝑦 − �̅�)

 − ∑ (𝑦 − �̂� ) 
 

  

∑ (𝑦 − �̅�)
 

 

 

where �̅� is the mean and �̂� denotes the predicted value 

of y (i.e., �̂� =         ). The R2 value between the 

two time series was found to be 0.86833, which 

represents a significant interdependency.  

Furthermore, we observed daily and weekly cycles. We 

observed highest similarities between these time series 

was during weekdays (R2 = 0.870014) and active hours 

(8am to 10pm, R2 = 0.80723). However, low R2-value 

observed between taxi speed and nitrogen dioxide 

concentrations. 

To further investigate the predictability that one data 

source had on the other, was used a time shifting. For 

example, one-hour lag of X yields a high R2 value with 

Y implies that X is likely a one-hour predictor of Y, i.e., 

the variation in values of X suggest a similar variation 

in values of Y of the next hour. By fixing nitrogen 

dioxide time series and shifting taxi time series 

between -5 hours to +5 hours (e.g., -5 hours of time 

shift means considering nitrogen dioxide data at time t 

against taxi data at time t-5 hours), the highest R2-

value was found at the time shift of -1 hour (R2 = 

0.871251.)  

 

Figure 8. Euclidean distance and R2-values from the sliding 

windows between azote dioxide and taxi data. 



 

As shown in Fig. 8, at time shift of -1 hour the R2 and 

Euclidean distance values were 0.871251 and 

0.278177, respectively, which suggests that generally 

taxi volume is a 1-hour predictor of nitrogen dioxide 

concentration. In other words, the variation in the 

amount of taxis is an indicative variable for the 

nitrogen dioxide of the next hour. With 1-hour time 

shifting, Fig. 9 shows fitted linear equation, 𝑦 =       , 

where    = 0.12381,    = 38.149, and R2 = 0. 871251. 

 

Figure 9. The fitted linear function of the taxi volume (at time 

t-1) against the Nitrogen dioxide concentrations (at time t) 

with R2 = 0.871251. 

The variation of nitrogen dioxide concentrations from 

warmer months to colder months suggests that the 

abovementioned relationship could vary throughout the 

year. To explore this, a time shift was used for each 

month individually. As shown in Table 1, the time shift 

decreases from warmer months to colder months. This 

is an indication that weather condition plays a part in 

the relationship between taxi volume and flue gases’ 

concentrations and this among others will be further 

investigated in our future work.  

Month Time Shift (h) R2 

September -2 0,91432 

October -1 0,88321 

November 0 0,91058 

December 0 0,92350 

Table 1. Predictability across the year (from September to 

December 2009). 

 

Conclusions 

In this work, we explored a relationship between the 

taxi volume and flue gases’ concentrations in Lisbon, 

Portugal. Using four months of data, we observed that 

taxi volume can.be used to estimate the concentration 

of nitrogen dioxide in the next hour. As weather 

condition has shown some effect on gas concentration, 

our future work will explore this effect along with other 

influential factors. 
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