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Abstract
Location-based social networks, in addition to revealing
users’ online social network, also informs users’ actual move-
ments in the offline physical world. Due to this, they have
recently been used in large-scale mobility and urban stud-
ies. In this paper, using a rigorous statistical methodology,
we have found that a rank-distance distribution, which in
recent influential research has been suggested to be a “uni-
versal” mobility law across cultural, demographic and na-
tional boundaries, does not follow a power-law distribution
as originally claimed. Using a large-scale dataset obtained
from Foursquare in Switzerland and New York City, we have
shown that place transitions can be better explained using
a log-normal and power-law with exponential cutoff model.
Our study suggests that urban mobility patterns are more
nuanced than previously reported and that goodness-of-fit
tests need to be done in view of the generality of human
mobility models.
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1 Introduction
In the last 5 years, sensor-rich mobile devices and online
social networks have experienced an exponential rise. Fu-
eled by their growth, location-based social network (LBSN
in short) have emerged, which combine the sensing capabil-
ities of smartphones with the friendship structure of online
networks. LBSNs have opened new paths to understand
linkages between the virtual and physical worlds. In addi-
tion to revealing information about users online social net-
work, these networks also inform about their actual move-
ments in the physical world. The combination of network
structure along with highly granular mobility information
provide unprecedented amount of user behavioral data to
study and model human mobility patterns at a scale which
was not feasible before.

In a typical LBSN, users voluntarily announce their arrival
to a given place (a process known as check-in) and share in-
formation about their visits to places with everyone in their
friendship circle. Given LBSNs current user base and popu-
larity, it is fair to say that they are young and still evolving.
Typically, LBSNs are manual check-in systems [6], wherein
users, based on their personal preferences and various so-
cial/monetary incentives, have complete control over when,
where and to whom they would like to disclose their place
visitations.

In the research community, all empirical analyses on LBSNs
so far have been based on a sample of global movements
of people in space and time due to the inherent nature of
data collection [8, 2, 6]. Due to restrictive programming
interfaces, primarily due to privacy concerns, it is not pos-
sible to publicly collect user-level mobility data for all users
of a location-based service. For instance, Foursquare, the
world’s leading LBSN, does not allow to collect user-level
check-in data. Typically, a sample of Foursquare public

check-ins are instead collected via Twitter’s streaming API
for all those users who post their check-in updates on their
Twitter account as well [9, 2]. As a result, data obtained
from services like Foursquare, represent only a fraction of
human movement patterns. In this paper, we assume that
mobility patterns captured via LBSNs are a representative
sample of global movements and thus useful to study hu-
man urban mobility.

Studying human mobility has been an area of active re-
search in recent times [1, 5, 12]. There is a substantial
body of work – qualitative and quantitative – in the litera-
ture which have looked into how people move around in the
physical world and the inherent motivation and costs asso-
ciated with mobility [10, 13]. Analyzing individual mobility
patterns – especially in urban areas – is crucial from a soci-
etal point of view as it has implications to transport plan-
ning, urban studies and management, epidemic spread and
emergency response. As a result, a lot of effort in the re-
search community has gone into finding empirical laws and
models to characterize the heterogeneity of human move-
ments across different urban regions. In this paper we take
a critical look into one such model for human mobility.

A recent influential study has identified universal urban hu-
man mobility patterns using data obtained from Foursquare
[8]. This study has proposed that the probability of visit-
ing a place, when measured as a function of rank-distance
(i.e., the number of intermediate places between source and
destination, as opposed to mere physical distance between
them), exhibit consistency which cuts across cultural and
national boundaries. In this paper we statistically examine
whether this particular rank-based model holds true or not
on independently collected data. To undertake this analy-
sis, we have collected and analyzed Foursquare dataset con-



sisting of more than 660,000 check-ins from within Switzer-
land and New York City.

In summary, we address the following research questions:

1. Does the rank-distance follow a power-law like distri-
bution, as suggested in earlier research?

2. If it does not follow a power-law like distribution,
which other heavy-tailed distributions can better de-
scribe transitions between places?

To answer these questions, we base our statistical analysis
following the seminal work by Clauset et al. [3]. Their
paper provides a statistical framework to estimate power-
law fit for empirical distributions, compute the goodness-
of-fit tests for a power-law like behavior, and statistically
compare and evaluate alternate heavy-tailed distributions
in favor of (or against) a power-law distribution.

2 Existing Models of Human Mobility
Modeling and analyzing human movement patterns have
been an area of research and debate in the scientific com-
munity. Various models of human mobility have been pro-
posed in the literature, ranging from distance-based models
to gravity-based models to rank-based models. In recent
times, due to the availability of large-scale datasets ob-
tained from mobile sensing and online social networks, it
has become possible to validate these models at a scale
and a spatial resolution which was not feasible earlier. In
this section we highlight two well-known models which have
been proposed to capture the heterogeneities of human mo-
bility.

2.1 Distance-based Model
The first model states that the probability of moving be-
tween places decreases as the geographical distance be-

tween the locations increases. In other words, the probabil-
ity of traveling from source (s) to destination(d), P [s→ d],
decreases as a power of distance between them, r(s, d).
Mathematically it is given by:

P [s→ d] ∝ r(s, d)−α

In recent times, one of the influential works to empirically
validate this model has been reported in [5]. Using large-
scale cellular data records (CDR) obtained from mobile op-
erators, the authors propose that human displacements are
well approximated by a truncated power-law distribution
(a.k.a. power law with exponential cutoff, also see Sec-
tion 4.3) with scaling exponent (α) equal to 1.75 (±0.15).1

2.2 Rank-based Model
A second model, recently proposed by [8] states that abso-
lute physical distance is not the decisive factor in model-
ing human displacements. Instead, they suggested a rank-
based model inspired by Stouffer’s theory of intervening
opportunities [13], which says that the probability of travel-
ing from source to destination is directly proportional to the
number of opportunities closer to source than destination.
Mobility thus is driven by a spatial distribution of opportu-
nities, as opposed to mere physical distances. This model
further proposes that transition probability varies inversely
as a power of rank [8]. Formally, the rank of a transition is
defined as the number of intermediate places which between
source and destination. As per the rank-based model, for a
scaling exponent α, the transition probability from source
(s) to destination (d), P [s→ d] is described as:

P [s→ d] ∝ ranks(d)−α

1In the literature, variants of the distance-based model have been
proposed as well, but we are omitting their details due to lack of
space.



where ranks(d) is defined as the total number of places
geographically closer to source than the destination. Tran-
sitions with a place rank of 1 implies that user has checked
in to the same place again, i.e., ranks(s) = 1 for all places.2

As stated in the introduction (Section 1), Noulas et al. [8]
have reported that the distance-based model for human
mobility does not exhibit universal properties, but instead
human transitions are better explained using a rank-based
model. In other words, their paper has suggested that
the rank-distance distribution follows a universal power-law
model.

3 Dataset
In this paper, we present our analysis based on check-in
dataset from Foursquare. Foursquare currently reports hav-
ing over 3 billion check-ins from over 30 million users world-
wide [4]. To respect users’ privacy, Foursquare does not
provide any direct mechanism to gather user-level check-in
data. A common practice, therefore, is to collect check-
ins via Twitter streaming API for all those users who post
their check-in updates on their Twitter account as well. We
have used this workaround to gather our dataset. Our cur-
rent analysis is based on two different datasets, which are
described below:

1. Swiss Check-in Dataset: We collected check-in data
within Switzerland (CHE) using the data collection
methods described above. The dataset spans more
than 62,000 check-ins from 15,845 users over a pe-
riod of 6 months between December 2011 and June

2To look at the results with ranks(s) = 0, as defined in Noulas
et al. [8], refer to the supplementary material here: http://idiap.
ch/~dsantani/mobility/

2012. In addition, we have also analyzed the move-
ment trajectories from within the Zurich (ZRH) can-
ton, which includes the largest Swiss city (Zurich)
and its vicinity. Within Switzerland, ZRH canton has
the largest Foursquare contribution amongst all 26
cantons, comprising of more than 30% of national
check-ins.

2. NYC Check-in Dataset: The second dataset is ob-
tained directly from Cheng et al.[2], which spans 22
million check-ins from 220,000 users across the globe.
In this paper, we restrict our analysis to check-ins
from New York City (NYC) only. The NYC dataset
consists of over 600,000 check-ins over 318 days start-
ing in March 2010.

Table 1 lists the basic statistics of datasets summarized
above. Based on these statistics, it is easy to compare
the relative popularity of Foursquare in New York City with
Switzerland.

ZRH CHE NYC
Number of Users 2,003 4,968 19,294
Number of Places 4,078 15,845 18,612
Number of Check-ins 19,333 62,714 602,898
Period of Analysis (days) 185 185 318
Area (in km2) [15] 1,729 41,285 784

Table 1: Summary Statistics of Foursquare Dataset

4 Analysis
Now that we have described the Foursquare dataset in de-
tail, in this section we present our rigorous statistical anal-
ysis. First, we fit a power-law model to the dataset, then
we perform the goodness-of-fit tests to statistically validate

http://idiap.ch/~dsantani/mobility/
http://idiap.ch/~dsantani/mobility/


the power-law hypothesis, and last but not least we evalu-
ate alternate heavy-tailed distributions in favor or against
the power-law distribution.

4.1 Fitting Power Law to Foursquare Data
In this section we focus our attention towards fitting the
power-law distribution, in particular computing the scaling
exponent α for our dataset.

4.1.1 Estimating the Scaling Exponent
We begin our analysis assuming a power-law like distribu-
tion for transition ranks. We compute ranks for every place
transition and approximate a power-law fit using the meth-
ods described in [3]. More precisely, we approximate our
discrete place-rank dataset to be a continuous distribution,
and apply the method of maximum likelihood to estimate
the scaling parameter, as given by the following equation
(For mathematical derivations and proofs, the reader is re-
ferred to [3]):

α ' 1 + n

[
n∑
i=1

ln
xi

xmin − 1
2

]

In the above equation, xmin indicates the place rank x,
where the power-law scaling begins. A priori we do not
know the place rank where the scaling begins, and more-
over we are interested in estimating the fit for the complete
dataset. So, we have set xmin to be 1 for now. With this
choice, we have obtained a scaling exponent α = 1.18, 1.18
and 1.16 respectively for Switzerland, Zurich and NYC re-
spectively, shown in Table 2. These values are similar to
exponent values of 0.88 and 0.93 obtained in [8] and [6],
which points towards the similarity of our dataset with ones

used in these earlier studies.3

Note that in our analysis we have adopted the definition of
a place rank as described in Section 2. Transitions with a
place rank of 1 implies that user has checked in to the same
place again. From Table 2, we observe that in NYC more
than 25% of place ranks (x0.25) are 1. That is, one quar-
ter of place transitions in NYC are happening to the same
venue, albeit at different times. While in CHE, consecu-
tive visits to the same venue happen in over 10.5% of total
transitions. We can think of one possible explanation for
this phenomenon: Foursquare provides monetary and so-
cial incentives (badges, crowns, mayorship, etc.) to users
who have performed the maximum number of check-ins to
a given place. Due to the inherent game mechanics, users
are incentivized to check in to the same venue time and
again. This trend might simply be more popular in NYC
than in Switzerland.

xtotal x0.25 x0.50 α p
ZRH 17,330 11 216 1.18 0.00
CHE 57,746 12 158 1.18 0.00
NYC 583,604 1 1,171 1.16 0.00

Table 2: Summary statistics for different regions. x stands for
a place rank given a transition within the region. x0.25 and
x0.50 represent the first and second quantile of place ranks
respectively. α indicates the power-law exponent fitted to the
entire dataset, with the given p-value. Statistically significant
p-values are shown in bold (i.e., no statistical significance is
found for the power-law fit)

4.1.2 Visual Inspection
A typical characteristic of power-law behavior is that if the
underlying variable is distributed as per the power-law, then

3To the best of our knowledge, [8] and [6] have computed the
scaling parameter on the whole dataset i.e., by setting xmin to 1.



the probability distribution function (PDF) and the comple-
mentary cumulative distribution function (CCDF) will be a
straight line on log-log axes. It is important to realize that
having a straight line on a log-log PDF plot is a necessary
but not sufficient condition for power-law like behavior [14].
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Figure 1: PDF of rank-distance
on log-log scale for Switzerland
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Figure 2: PDF of rank-distance
on log-log scale for NYC

In order to visually reveal the power-law nature of the rank-
distance distribution, Figure 1 and 2 show the PDF of place
ranks on logarithmic scale for Switzerland and New York
City. Due to space constraints, we have omitted the PDF
plot for Zurich, though the plot looks similar to the one
obtained for Switzerland. Figure 1 and 2 also demonstrate
fits for competing heavy-tailed distributions (discussed in
Section 4.3). The blue curve indicates power-law fit to the
data, with the green curve indicating a log-normal fit, while
the red curve highlighting a power-law fit with exponential
cutoff. We also show a purple curve which depicts the “uni-
versal” scaling exponent (with α as 0.88 and intercept value
of 0.24) as estimated by [8]4. Based on visual inspection
alone, it appears that power-law is not the most suitable fit;
rather power-law with exponential cutoff provides the best
possible fit, though log-normal also looks like a better fit
when compared against a pure power-law. (We will discuss
this issue in detail in Section 4.3)

It is evident from Figures 1 and 2 that the PDF plot is noisy
in its right fat tail, due to a sudden drop in the number of
high-ranked transitions. More than 73% of all transitions in
Switzerland happen to destinations with a rank of less than
1000, while it is over 48% for NYC. Due to the inherent
noise in the tail, it is often useful to consider the CCDF of
a power-law distributed variable. We show the CCDF plots
in Figures 3 and 4 along with the respective distribution
fits (as in Figures 1 and 2). Again from these figures, it is

4Noulas et al. [8] has used “least squares based optimization” to
estimate the scaling exponent

evident that the cutoff power-law model provides a better
fit for the transition-rank data.

4.1.3 Estimating the Lower Bound Parameter
While estimating the scaling exponent in Section 4.1.1, we
have assumed xmin to be known, and set its value to 1
in order to estimate the fit for the whole dataset. In this
section, we relax this assumption and compute an opti-
mal xmin where the power-law scaling begins, assuming a
power-law like distribution for data above xmin.

As in Section 4.1.1, we have followed the statistical meth-
ods described in [3] to compute the lower bound for the
scaling region. In brief, we choose x as xmin, which mini-
mizes the distance between probability distributions of ob-
served empirical data and the best-fit power-law model.
The Kolmogorov-Smirnov (KS) statistic [7] is used to mea-
sure the distance between the respective distributions. In
practice, we iterate through all possible values of x and
compute KS statistic (denoted by D) between our data
and the model that best fits the data above xmin. Once
we have D values for every x, the x which minimizes D
is our lower cut-off parameter xmin, and the exponent α
corresponding to xmin is the power-law scaling exponent α
in the region x ≥ xmin.

Table 3 lists the respective xmin and α for all regions un-
der investigation. We make several observations. First, it
is evident that these regions have different power-law expo-
nents, even when we account for different scaling regions.
Second, we observe that for all regions, xmin is signifi-
cantly large relative to the maximum possible rank (xmax).
For NYC with xmin = 8266, we are only fitting the model
to about 19% of the dataset; while for CHE, the fit is to
only 15% with the computed lower bound. Given that the
dataset is quite noisy in its right tail (Figures 1 and 2), it
is hard to expect a pure power-law a possible explanation



to model place transitions on, even if it is able to explain,
it is definitely not applicable to all place transitions.

xtotal xmax xmin α p
ZRH 17,330 4078 1,527 2.97 0.00
CHE 57,746 15,802 2,488 2.34 0.00
NYC 583,604 18,609 8,266 3.50 0.00

Table 3: Summary statistics for different regions, along with
power-law parameters with p-values. x stands for place ranks
for all transitions within the given region, while xmin informs
the x value where power-law scaling begins with α as the
scaling exponent and xmax refers to the maximum place rank
observed in the dataset. Statistically significant p-values are
shown in bold.(i.e., no statistical significance is found for the
power-law fit)
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Figure 3: CCDF of rank-distance
on log-log scale for Switzerland
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Figure 4: CCDF of rank-distance
on log-log scale for NYC

4.2 Goodness-of-Fit Tests
Before claiming whether power-law is a plausible fit for a
given dataset, it is crucial to perform goodness-of-fit tests,
in addition to statistically comparing the power-law with
alternative heavy-tailed distributions [14]. In this section,
we take a critical look at the power-law assumption for
rank-distance distribution in the context of human mobility.

Instead of pursuing a purely qualitative analysis of the dataset
(e.g., based on visual inspection), we quantitatively test the
power-law hypothesis. We estimate the goodness-of-fit of
power-law distribution using the KS statistic, to measure
the similarity (or differences) between our dataset and hy-
pothesized power-law model. Rather than describing the
method here, we refer the readers to [3] (section 4, page
675) for a detailed statistical explanation. We wish to high-
light the interpretation of p-value which is obtained as a re-
sult of the goodness-of fit test: p-value has an inverse inter-
pretation, compared with significance testing – the higher

the p-value, the higher the chance of observed data to fol-
low a power-law like distribution, and vice-versa.

Tables 2 and 3 list p-values for a plausible power-law model
for the three regions under study. In all the experiments in
Section 4.1.1 and 4.1.3 (i.e., with or without an estimated
lower bound), we have obtained a p-value of 0, implying
that the likelihood of the power-law model to fit the ob-
served place ranks is negligible.

The question thus arises is: if the place-rank distribution
does not follow a power-law model, which other heavy-
tailed distributions can better describe them? We investi-
gate this issue in the next section.

4.3 Alternative Models
Now that we have obtained statistical evidence to suggest
that place transitions do not follow a power-law model as
a function of rank, we turn our attention towards finding
competing distributions, if they exist, which can possibly
explain a better fit. Our goal is to find a good model, that
is a model which can explain our data well, as opposed to
an “ideal” model.

To compare power-law nature of rank-distance distribution,
we have chosen two similar heavy-tailed distributions which
are listed below:

1. Log Normal, parameterized by µ and σ takes the
form,

f(x) =
1

x
exp

[
− (ln(x)− µ)2

2σ2

]
2. Power Law with Exponential Cutoff, parameter-

ized by the scaling exponent αE and decay rate λ.
Mathematically, it is described as:

f(x) = x−αEe−λx



Note that a pure power-law is the limiting case of
cutoff power-laws, which arises when λ→ 0.

In Section 4.1, Figures 1, 2, 3 and 4 illustrate the fit of
these alternate models to the data. Furthermore, we have
performed statistical tests to compare power-law with the
above distributions. Table 4 lists the parameters for respec-
tive distributions for ZRH, CHE and NYC. In addition, it
also reports log-likelihood ratios (LR) for both distributions
in comparison with a pure power-law. Note that the com-
parison with the power-law distribution has been performed
with xmin set to 1, i.e., for the complete dataset.

Note that LR with a negative sign favors the competing
distribution over a pure power-law, while the p-value indi-
cates its statistical significance. Higher the p-value, higher
is the chance that observed sign of LR is a result of sta-
tistical fluctuations and thus the alternative distribution
hypothesis can be rejected. (It is important to observe
that the interpretation of p-value in this section differs
from the interpretation described in Section 4.2.) From
Table 4, it is clear that log-normal and cutoff power-laws
are preferred over pure power-law model due to significant
p-values (p < 0.05). We have obtained identical results
for all three geographical regions, highlighting the fact that
rank-distance distributions are better explained using cutoff
power-law model as opposed to a pure power-law model.

5 Discussion and Conclusion
Modeling and analyzing human movement patterns have
been an area of research and active debate in the scien-
tific community. Various models of human mobility have
been proposed in the literature. In recent times, due to
the availability of large-scale spatial datasets obtained from
location-based services like Foursquare, it has become pos-
sible to empirically validate some of these models at a scale,

which was not feasible earlier.

In this paper, using data obtained from these services, we
have taken a critical look into the power-law hypothesis
of the rank-based model to characterize human mobility.
We have found that the rank-distance distribution does
not follow a pure power-law on an independently collected
Foursquare data of a country (Switzerland), canton (Zurich)
and a major metropolitan (New York City). Instead, we
have observed that the rank-distance can be better ex-
plained using a power-law with exponential cutoff model,
as opposed to a pure power-law model. We have performed
the statistical analysis on this dataset and found results to
be consistent.

We wish to highlight that even though we have observed the
cutoff power-law parameter αE , to be consistent across the
three studied regions with values in the range of 0.86−0.93
(Table 4), we do not claim a cutoff power-law model as the
“universal” mobility model to explain human transitions.
Furthermore, we clearly do not imply that these results hold
true for other datasets from which human movement tra-
jectories can be inferred such as cellular data records [5],
GPS traces obtained from taxicab movements [11], etc.
This has to be empirically verified and will be investigated
as part of the future work.

Our study suggests that urban mobility patterns are more
nuanced than previously reported in the literature and that
rigorous statistical analysis including goodness-of-fit tests
should to be performed in view of the generality of human
mobility models.
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Log Normal Power Law with Exp. Cutoff
LR p µ σ LR p αE λ (×10−4)

ZRH -3,330.26 0.00 4.09 3.31 -6,294.633 0.00 0.86 2.4
CHE -10,471.73 0.00 3.97 3.37 -16,570.95 0.00 0.93 1.2
NYC -60,844.73 0.00 3.39 5.01 -198,489.1 0.00 0.91 0.40

Table 4: Distribution parameters for log normal and power law with exponential cutoff models. Log-likelihood ratios (LR) are also
shown along with their respective p-values. Statistically significant p-values are shown in bold.
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